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Abstract. This work has its origins in an attempt to describe systematically the inte-
grable geometries and gauge theories in dimensions one to four related to twistor theory. In
each such dimension, there is a nondegenerate integrable geometric structure, governed by
a nonlinear integrable differential equation, and each solution of this equation determines
a background geometry on which, for any Lie group G, an integrable gauge theory is defined.
In four dimensions, the geometry is selfdual conformal geometry and the gauge theory is self-
dual Yang–Mills theory, while the lower-dimensional structures are nondegenerate (i.e., non-
null) reductions of this. Any solution of the gauge theory on a k-dimensional geometry, such
that the gauge group H acts transitively on an `-manifold, determines a (k+ `)-dimensional
geometry (k+ ` 6 4) fibering over the k-dimensional geometry with H as a structure group.
In the case of an `-dimensional group H acting on itself by the regular representation, all
(k + `)-dimensional geometries with symmetry group H are locally obtained in this way.
This framework unifies and extends known results about dimensional reductions of selfdual
conformal geometry and the selfdual Yang–Mills equation, and provides a rich supply of
constructive methods. In one dimension, generalized Nahm equations provide a uniform
description of four pole isomonodromic deformation problems, and may be related to the
SU(∞) Toda and dKP equations via a hodograph transformation. In two dimensions, the
Diff(S1) Hitchin equation is shown to be equivalent to the hyperCR Einstein–Weyl equa-
tion, while the SDiff(Σ2) Hitchin equation leads to a Euclidean analogue of Plebanski’s
heavenly equations. In three and four dimensions, the constructions of this paper help to
organize the huge range of examples of Einstein–Weyl and selfdual spaces in the literature,
as well as providing some new ones. The nondegenerate reductions have a long ancestry.
More recently, degenerate or null reductions have attracted increased interest. Two of these
reductions and their gauge theories (arguably, the two most significant) are also described.
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1 Introduction

Background

This paper concerns differential geometry in dimensions one to four, and (primarily) four kinds
of geometric structure, one in each dimension, governed by four nonlinear integrable differential
equations. Associated to each manifold carrying one of these geometric structures, and to each
Lie group, is an integrable gauge theory, generalizing a well-known gauge theory on flat space:
the selfdual Yang–Mills equation on R4 or R2,2 and the gauge field equations arising as reduc-
tions by a (nondegenerate) group of translations to lower-dimensional flat spaces. Specifically,
reduction by a single non-null translation gives the Bogomolny equation for monopoles on R3,
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or its Lorentzian analogue on R2,1 [3, 59]. Reduction by two such translations yields the Hitchin
equation for Higgs pairs on a Riemann surface, harmonic maps from a Riemann surface to a Lie
group, or the principal chiral model on a two-dimensional space-time [30, 59]. Reduction by
three non-null translations leads to the Nahm equation [44].

In addition to the physical motivation, the selfdual Yang–Mills equation has attracted interest
because of its good integrability properties, which are inherited by the Bogomolny, Hitchin and
Nahm equations, and their analogues. Further integrable systems may be obtained by reducing
the selfdual Yang–Mills equation by other groups of conformal transformations of R4 or R2,2,
and many such reductions have been investigated [41]. For example, hyperbolic monopoles arise
from the reduction to three dimensions by a rotation, the Ernst equation is a reduction to two
dimensions by a translation and rotation, while reductions to one dimension may be interpreted
as isomonodromic deformation problems with four poles, governed (in the generic case) by the
Schlesinger equation [31, 41, 43].

Twistor theory gives one explanation for this integrability: there is a Ward correspondence
(see [5]) between solutions of the selfdual Yang–Mills equation on flat space and holomorphic
vector bundles on (suitable open subsets of) CP3. This suggests that the selfdual Yang–Mills
equation will continue to be integrable on other spaces M so long as there is still a Ward
correspondence between solutions and holomorphic vector bundles on some complex 3-mani-
fold Z, the twistor space of M . Such curved twistor spaces Z were introduced by Penrose [49]
to study selfdual vacuum metrics. (Note that in Euclidean signature, selfdual Ricci-flat metrics
are locally hyperkähler.)

Deep relationships between gauge field equations and selfdual vacuum metrics have been
observed in a number of places. In [62], Ward considered gauge theories on R4−` with the
gauge group being a transitive group of diffeomorphisms of an `-manifold Σ`. He focused on
the group of diffeomorphisms preserving a fixed volume form on Σ` and observed that gauge
fields then give rise to selfdual vacuum metrics on R4−` × Σ`. When ` = 1, the group of
volume preserving diffeomorphisms of a circle or a line is U(1) or R acting by translation, so the
monopoles are Abelian, and Ward’s construction reduces to the Gibbons–Hawking Ansatz [24].
For ` = 2, finite-dimensional subgroups of SDiff(Σ2) yield other interesting constructions of
selfdual vacuum metrics [19], while ` = 3 gives the Ashtekar–Jacobson–Smolin description of
selfdual vacuum metrics in terms of the Nahm equation [2]. One can also view the (closely
related) Mason–Newman formulation [40] as the case ` = 4.

In Ward’s construction, gauge fields on lower-dimensional flat spaces give rise to curved
4-manifolds. On the other hand, the example of hyperbolic monopoles shows that the lower-
dimensional spaces can also be curved.

One of the goals of this paper is to place these miscellaneous results and observations in a geo-
metric framework which simultaneously unifies and generalizes them. Selfdual vacuum metrics
do not provide the right setting for this. For example, the natural generalization of the Gibbons–
Hawking Ansatz to Abelian monopoles on hyperbolic space is LeBrun’s hyperbolic Ansatz for
scalar-flat Kähler metrics [39], and even on R4−`, one finds that without the volume-preserving
condition, Ward’s construction leads to hypercomplex, rather than hyperkähler, structures – see
Hitchin [33] and Joyce [37] (or Dunajski [17]) for the analogue of the Ashtekar–Jacobson–Smolin
and Mason–Newman description respectively.

In order to incorporate these constructions, it is essential to take into account a second basic
feature of the selfdual Yang–Mills equation, in addition to integrability: conformal invariance.
The selfdual Yang–Mills equation makes sense on any oriented conformal 4-manifold M , and
the purely conformal part of Penrose’s nonlinear graviton shows that there is a curved twistor
space Z as long as the conformal structure on M is selfdual [4, 49].

The thesis of this paper is that reductions of selfdual conformal geometry to lower dimensions
provide “integrable background geometries” on which curved versions of the Bogomolny, Hitchin
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and Nahm equations (with good integrability properties) can be defined. This thesis can be
illustrated by the three-dimensional case: the Jones–Tod correspondence [36] shows that the re-
duction of a selfdual conformal structure to three dimensions is an Einstein–Weyl structure, and
selfdual Yang–Mills fields reduce to generalized monopoles on such Einstein–Weyl spaces, placing
Euclidean and hyperbolic monopoles in a common framework. Selfdual spaces with symmetry
over a given Einstein–Weyl space are built out of Abelian monopoles, and this provides many con-
structions (generalizing the Gibbons–Hawking and hyperbolic Ansätze) of hyperkähler, scalar-
flat Kähler and selfdual Einstein metrics, and also of hypercomplex structures [10, 22, 29, 39].

The role of gauge fields and Abelian monopoles in Ward’s construction and the Jones–Tod
construction respectively suggests an underlying principle relating gauge field equations and
constructions of selfdual spaces. This is amplified by the following two generalizations of the
Jones–Tod construction.

First, in [8], the Jones–Tod construction and Ward’s construction on R3 were simultaneously
generalized by considering the Einstein–Weyl Bogomolny equation with the gauge group acting
transitively by diffeomorphisms on a circle or a line. The volume preserving case gives the usual
Jones–Tod correspondence between selfdual spaces with symmetry and Abelian monopoles on
Einstein–Weyl spaces, but more general gauge groups lead to new constructions of selfdual
conformal structures and metrics, including, in special cases, hyperkähler and selfdual Einstein
metrics.

Second, note that the Jones–Tod construction gives rise to a procedure for constructing
a new selfdual space from an invariant selfdual Maxwell field on a given selfdual space with
one-dimensional symmetry group: the selfdual Maxwell field descends to an Abelian monopole
on the quotient Einstein–Weyl space, out of which a new selfdual space may be built. This was
generalized, by Maszczyk, Mason and Woodhouse [43], to any freely acting symmetry group,
using a construction they call the “switch map” [41]: given a selfdual space with freely acting
group of conformal transformations H, and an invariant selfdual Yang–Mills connection on
a bundle P with a gauge group G of the same dimension as H, the quotient of P by H is
another selfdual space, with symmetry group G. Hence, for example, T 3-invariant SU(2) Yang–
Mills fields on R4 give rise to selfdual conformal structures with SU(2) symmetry, such as the
scalar-flat Kähler, hypercomplex and selfdual Einstein metrics of [14, 31, 33, 47, 55].

Overview

Ward’s construction, the (generalized) Jones–Tod correspondence, and the switch map all point
to the following framework for dimensional reduction of selfdual conformal geometry and the
selfdual Yang–Mills equation.

(i) There are background geometries in each dimension less than four obtained by dimensional
reduction of the selfduality condition for conformal structures.

(ii) The nonlinear differential equations defining these background geometries have the sur-
prising feature that they do not depend on the symmetry group that one reduces by.
Therefore, including selfdual conformal geometry, there are only four kinds of (nondege-
nerate) background geometry.

(iii) Instead, the symmetry group enters as a gauge group for a gauge theory defined on the
background geometry, and the gauge field equation is the dimensional reduction of the
selfdual Yang–Mills equation. Hence the gauge field equations play a remarkable dual
role: solutions give rise both to selfdual conformal 4-manifolds and also to selfdual Yang–
Mills fields on such manifolds.

In this paper, the above framework is established and studied in full generality. Furthermore,
the different geometries are related not just by symmetry reduction, but by a more general
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form of dimensional reduction, of which Ward’s construction and the generalized Jones–Tod
construction are examples (cf. also [25]). Such constructions also relate the lower-dimensional
geometries to each other. More precisely:

• For 1 6 k < k + ` 6 4, (k + `)-dimensional geometries are obtained from a k-dimensional
geometry by solving the gauge field equation on that background where the gauge group
acts transitively by diffeomorphisms on an `-manifold.

In four dimensions, the gauge fields and background geometries are, of course, selfdual Yang–
Mills fields on selfdual spaces, while in three dimensions, one obtains monopoles on Einstein–
Weyl spaces. The one and two-dimensional stories are new, although these structures have been
implicitly studied in many places, at least in special cases [28, 51] and the twistor theory of the
two-dimensional geometry has been developed independently by Donaldson and Fine [66, 76].
I first describe briefly the two-dimensional geometries, in the form obtained by reduction from
Euclidean signature. The two reductions from Kleinian signature (2, 2) are similar.

Given a complex line bundle W over a Riemann surface N with a Hermitian metric on
W∗ ⊗ TN , the geometric structure is a triple consisting of a U(1)-connection a on W∗ ⊗ TN ,
a section ψ of W∗ and a section C of W∗ ⊗W∗ ⊗ TN satisfying the following equations:

∂aC = 0, ∂aψ = −3Cψ, ∗F a = |ψ|2 − 2|C|2.

The flat geometry is obtained by setting W = TN , with the trivial connection on W∗ ⊗ TN
and C = ψ = 0. This is simply a Riemann surface with no additional structure. The general
two-dimensional background geometry was found in joint work with Lionel Mason [9].

The gauge fields on this background, with gauge group G, are pairs (A,Φ) consisting of
a G-connection A and a section Φ of W∗ ⊗ gN , where gN is the associated Lie algebra bundle.
These pairs satisfy the following equations:

FA − [Φ,Φ] = ψ ∧ Φ + ψ ∧ Φ, ∂a,AΦ = CΦ.

On the flat geometry, where C = 0 = ψ, these are the Hitchin equations for stable pairs, but in
the general case, the equations are coupled to the background geometry.

In one dimension, the background geometry is governed by a symmetric traceless (3 × 3)-
matrix B satisfying the Riccati equation Br = 2(B2)0, where r is an affine coordinate and the
subscript zero denotes the traceless part. More invariantly, B is a section of T ∗C ⊗ Sym0 E
where E is a rank 3 conformal vector bundle over a curve C, with ∧3E = (TC)3, and one fixes
compatible connections on E and TC to define the r-derivative Br.

The gauge fields on this background are sections Φ of E∗ ⊗ gC (where gC is a Lie algebra
bundle over C) satisfying the equation Φr − ∗[Φ,Φ] = B ·Φ, where ∗ denotes the star operator
on E and one fixes a G-connection to define Φr. The flat geometry is the trivial solution B = 0,
in which case this gauge field equation reduces to the Nahm equation.

There is one further important property of the Jones–Tod correspondence that continues to
hold in the general framework: it is constructive, i.e., a selfdual conformal structure is explicitly
determined by an Einstein–Weyl structure together with a monopole, and conversely. The
correspondence between additional monopoles and selfdual Yang–Mills fields is equally explicit.
The same remarks hold for the switch map and Ward’s construction. I therefore present explicit
formulae for the constructions of the paper.

For convenience of exposition, I will concentrate on the reductions from Euclidean signature
and the notation will be adapted to this case. However, the non-null reductions from Kleinian
signature (2, 2) are completely analogous, as are such reductions of complex geometries: I in-
dicate throughout the nondegeneracy assumptions that need to be made, and any changes in
notation that are needed. On the other hand, it remains an interesting open project to study
the integrable background geometries arising from null reductions: only two such reductions are
considered here.
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User guide

This is a long paper to read from start to finish, so I give a detailed guide to the sections, both
to draw attention to the highlights and to enable the reader to dip into the paper more easily.

The general theory of the paper is developed in Sections 2, 4, 6 and 8. Section 2 concerns
selfdual spaces with a freely acting symmetry group and presents the background geometry
equations in dimensions 1–3. In each case the main result, Theorems 2.3, 2.6 or 2.9, identifies
the selfduality condition on a conformal structure with the background geometry equations: in
particular Theorem 2.9 is the Jones–Tod correspondence [36]. Section 4 deals with invariant
selfdual Yang–Mills fields on selfdual spaces with a freely acting symmetry group. Here the
gauge field equations on the background geometries are computed.

The main general theorems are in Sections 6 and 8, where the inverse constructions to Sec-
tion 2 are established and generalized. Theorem 6.1 proves that selfdual spaces may be con-
structed from solutions to gauge field equations on k-dimensional background geometries where
the gauge group acts transitively on a (4 − k)-manifold: in the case of a group acting on itself
by the regular representation, this theorem reconstructs the selfdual spaces with freely acting
symmetry group of Section 2 – although, as mentioned already, in the general case, the group
need not even be finite-dimensional.

Theorem 8.1 generalizes all this to gauge groups acting on `-manifolds, giving explicit con-
structions of (k + `)-dimensional background geometries from gauge fields on k-dimensional
geometries for k + ` 6 4. Unfortunately, the calculations here are too complicated to present
in full. However, I do provide explicit formulae: in examples arising in practice, it is usually
not too hard to verify that the (k+ `)-dimensional geometry satisfies the background equations,
once one has a formula.

The relation between selfdual spaces, and the three-dimensional background geometries,
Einstein–Weyl spaces, is a longstanding one, and as a consequence the latter have been exten-
sively studied [8, 10, 11, 21, 22, 29, 36, 39, 55, 56, 60]. By contrast, the background geometries in
one and two dimensions, Riccati spaces, and spinor-vortex spaces, although implicitly underlying
previous work, have only been introduced and investigated relatively recently (see, e.g., [9, 66]).
Assuming that one is not interested in zero-dimensional differential geometry (see Remark 7.9),
then these geometries form the foundation for the more well-known higher-dimensional struc-
tures (using Theorems 6.1 and 8.1).

In Section 10, the geometry of Riccati spaces is described. Although there are only six
Riccati spaces up to local isomorphism, they have a rather rich structure, which is most easily
revealed in a complexified setting, since only three of the Riccati spaces arise as reductions from
Euclidean signature. The six solutions correspond to the six types of quartic polynomial, i.e.,
the five types of configuration of four points on CP1 together with the zero polynomial. These
types are denoted (I, II, III, D, N, 0), following the well-known application of this classification
to Weyl tensors. It is easy to see that the gauge field equation on the trivial (0) Riccati space
is the Nahm equation. One can also observe that the gauge field equations on the nontrivial
Riccati spaces are equivalent to (strong) isomonodromy equations for a connection with four
poles on CP1, the configuration of the poles corresponding to the type of Riccati space. This
leads to a uniform Lax pair for these problems, which reduces to the usual Lax pair for the
Nahm equation in the trivial case.

The theory of this paper would be very dry without examples and applications, so I intersperse
the main development with interludes, which motivate or illustrate the theory, yet are, to varying
degrees, self-contained. The first interlude, Section 3, relates the approach of Section 2 to other
studies of selfdual Bianchi metrics [14, 15, 47, 53, 54, 55].

The second interlude, Section 5, provides a simple a priori explanation for the conformal
invariance of Hitchin’s selfduality equation on a Riemann surface [30] (and of course, reductions
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from Kleinian signature also give conformally invariant equations: harmonic maps into a Lie
group, and the principal chiral model). This demystifies this conformal invariance: it is, after
all, a consequence of conformal invariance in four dimensions.

The third interlude, Section 7, is a unified treatment of various constructions (or at least
interpretations) of hypercomplex and hyperkähler structures. My aim here is three-fold:

(i) to provide geometrical descriptions of the well-known Mason–Newman [40], Ashtekar–
Jacobson–Smolin [2], and Park–Ward [46, 62] constructions of hyperkähler metrics from
lower-dimensional gauge fields;

(ii) to give, at the same time, hypercomplex generalizations, following [17, 26, 33, 37];

(iii) to prove that all hypercomplex and hyperkähler structures are locally obtained from any
of these constructions, in a way that is manifestly compatible with any reality conditions,
and that clarifies the extra choice that needs to be made to reduce a hypercomplex or
hyperkähler structure to a solution of the relevant gauge field equation.

I hope that the overview provided here is useful, at least to the reader who is not familiar with
the treatments in the physics literature. In addition this work answers – and extends to the
hypercomplex case – a question of Ward [62], who conjectured that any hyperkähler metric
could be obtained from Hitchin’s selfduality equation, with gauge group SDiff(Σ2). I also show
how this description gives a Euclidean analogue of Plebanski’s heavenly equations, which is
well-adapted to the study of hyperkähler metrics on elliptic fibrations.

The fourth interlude, Section 9, is a two-part analysis of hyperCR Einstein–Weyl spaces, the
three-dimensional analogue of hypercomplex structures. In the first part, following an approach
of Tod [56], the hyperCR Einstein–Weyl equation is shown to be equivalent to the Diff(S1)
Hitchin equation (revealing a hidden SO(3) symmetry in the latter). This can be viewed as
a three-dimensional version of the constructions of Section 7 although it is remarkable that the
fibres are only one-dimensional, since such constructions are not sufficiently general in four
dimensions. In the second part, Einstein–Weyl spaces admitting a dimensional reduction with
geodesic one-dimensional fibres are studied. They are shown to be hyperCR, and the quotient
spaces are trivial or spherical spinor-vortex geometries. Conversely, any shear-free geodesic
congruence on a hyperCR Einstein–Weyl space defines a generalized dimensional reduction.

The final interlude again consists of two-parts. The first shows that hyperCR Einstein–Weyl
spaces may also be constructed from the Diff(Σ2) Nahm equations. In the second part, I present
a proof that the well-known SU(∞) Toda field equation uxx + uyy + (eu)zz = 0 and the dKP
equation uyy = (ut−uux)x are both equivalent to generalized Nahm equations, via a hodograph
transformation (cf. [20] in the dKP case). Even these results are to a large extent self-contained,
although the the work of Section 8 shows that the construction is a special case of the general
theory, while Section 10 shows that the backgrounds for these generalized Nahm equations are
the type (D) and (N) Riccati spaces respectively. To the best of my knowledge, all examples
of hodograph solutions to the SU(∞) Toda field equation or dKP equation arise in this way
from explicit solutions of a generalized Nahm equation. I end the interlude by discussing these
examples.

Addenda

The majority of this paper was written in the period 1999–2001, and the present content is
not substantially different from a January 2002 version which has been posted on my academic
home page since that time. The intervening 12 years have seen many advances in the field
(for instance, by Dunajski and his collaborators [67, 68, 69, 70, 71]), and I have collected a few
of the most closely related papers as “Additional references” at the end of the bibliography.
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Some of these works develop ideas from the 2002 version of this paper, or discover related ideas
independently.

There has also been much work on null reductions and geometries, which were only touched
upon in the original version of this paper. A major driving force has been the introduction
of a global twistor theory of holomorphic discs by LeBrun and Mason [77, 78, 80, 82], both
for Kleinian signature selfdual conformal structures and 2-dimensional projective structures.
Dunajski and West [72, 73] established a relationship between these structures by considering
selfdual conformal structures with a null conformal Killing vector field. As explained in [65], the
natural context for their construction is the null reduction of selfdual conformal structures along
a β-surface foliation. The quotient is a surface with a natural projective structure structure, and
the gauge field equations are projectively invariant on this background geometry. In [81] the
global Mason–LeBrun theories are related by this construction. More recently, similar methods
have been applied in Einstein–Weyl geometry [79, 83].

One of the most intriguing recent developments has been the introduction, by Ferapontov
and his coworkers, of the method of hydrodynamic reductions to analyse integrability. This was
applied in [74] to study the central quadric Ansatz and its relation to the Painlevé equations.
In doing so, they independently rediscovered equations equivalent to the SDiff(Σ2) generalized
Nahm equations on Riccati spaces. More recently, in [75], Ferapontov and Kruglikov construct
a Weyl structure from the formal linearization of a second-order PDE in three dimensions, and
show that it is Einstein–Weyl for all solutions if and only if the system is integrable. This and
related conjectures for second-order PDEs in four dimensions suggest deep connections with the
integrable background geometry concept.

For these reasons, the main (odd-numbered) sections have been updated with addenda which
place the above works in the framework of this paper. Section 12 and Subsection 11.2 have also
been updated to reflect the exciting new directions that are currently unfolding.

Notation

In order to manipulate, in a tensorial way, the objects and structures entering into the equations
and constructions of this paper, it will be convenient to employ the formalism of densities. If V
is a real n-dimensional vector space and w any real number, then the oriented one-dimensional
linear space Lw = LwV carrying the representation A 7→ | detA|w/n of GL(V ) is called the space
of densities of weight w or w-densities. It can be constructed canonically as the space of maps
ρ : (∧nV ) \ 0→ R such that ρ(λω) = |λ|−w/nρ(ω) for all λ ∈ R× and ω ∈ (∧nV ) \ 0.

For a vector bundle V →M this construction yields an oriented real line bundle LwV , a density
line bundle. If V is oriented and of rank n, then L−nV is canonically isomorphic to ∧nV; indeed an
orientation may be defined as an orientation form ∗1 ∈ C∞(M,LnV ∧nV∗). (Here and elsewhere,
when tensoring with a density line bundle, I shall often omit the tensor product sign.) More
generally, the Hodge star operator is the isomorphism

∗ : Lw−kV ∧k V → Lw+n−k
V ∧n−k V∗

determined by the nondegenerate pairing ∧kV∗ ⊗ ∧n−kV∗ → ∧nV∗ ∼= L−nV .

A conformal structure on V is a nondegenerate symmetric bilinear form on V with values
in L2

V , or equivalently a metric on L−1
V V. The conformal inner product of sections X, Y

is 〈X,Y 〉 ∈ C∞(M,L2
V) and the conformal structure itself may be viewed as a section c ∈

C∞(M,L2
VS

2V∗). I shall make free use of the isomorphism between Lw−kV ∧k V and Lw+k
V ∧k V∗

given by a conformal structure.

When V is the tangent bundle of M , LwM = LwTM is called the bundle of w-densities of M ,
denoted Lw when M is understood. The line bundles Lw are trivializable and a nonvanishing
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(usually positive) section µ of L = L1 will be called a length scale or gauge. I shall also say that
tensors in Lw ⊗ (TM)j ⊗ (T ∗M)k have weight w + j − k.

A Weyl derivative is a covariant derivative D on L. It induces covariant derivatives on Lw

for all w. If M is conformal, i.e., there is a conformal structure c on TM , then any Weyl
derivative induces (via the Koszul formula) a Weyl connection: a torsion-free connection D
on TM with Dc = 0. Compatible Riemannian metrics g correspond to length scales µ, and
the Weyl connection induced by the Weyl derivative preserving µ is, of course, the Levi-Civita
connection of g = µ−2c.

The curvature RD of a Weyl connection D, as a co(TM)-valued 2-form, decomposes as

RDX,Y = WX,Y − [[rD(X), Y ]] + [[rD(Y ), X]].

Here W is the Weyl curvature of the conformal structure, an so(TM)-valued 2-form independent
of the choice of D, and rD is a covector valued 1-form, the (normalized) Ricci curvature of D.
For a 1-form γ and tangent vector X, [[γ,X]] = γ(X) id +γ MX, where (γ MX)(Y ) = γ(Y )X −
〈X,Y 〉γ. This bracket is part of a Lie algebra structure on TM ⊕ co(TM)⊕T ∗M and the same
notation will be used for the commutator bracket in co(TM).

The normalized Ricci curvature decomposes into a symmetric traceless part rD0 , a scalar part
scalD (the scalar curvature) and a skew part, which is just a multiple of the curvature of D on L
called the Faraday curvature FD. In practice a Weyl derivative is described by its connection
1-form ω relative to a length scale: ω is called the Weyl 1-form, and FD = dω. If FD = 0
then D is said to be closed. It follows that there are local length scales µ with Dµ = 0. If such
a length scale exists globally then D is said to be exact.

The above constructions can also be carried out locally on complex manifolds, except that L1

is now a choice of local nth root of ∧nTM .

Although confusion with the index i is unlikely, as a courtesy to the reader, I denote the
(chosen) square root of −1 by i.

Twistors and Lax pairs

Several of the results in this paper were motivated by twistor or integrable systems methods:
in particular the idea of generalized dimensional reduction arises naturally when one considers
holomorphic foliations of twistor spaces. However, I have deliberately suppressed discussion of
twistor spaces and Lax pairs, for at least two reasons: first, to make the paper accessible to
the reader not familiar with these ideas; second, because I believe it is a useful to present all
calculations and formulae in purely differential geometric terms – it is often impossible to carry
out twistor constructions in practice. An unfortunate consequence is that some of the results
and formulae appear miraculous: the twistor point of view provides a quick way to see why
such results are true, while the Lax pair formalism provides one way to carry out more detailed
calculations.

2 Selfdual spaces and the background geometries

On a conformal 4-manifold, the Hodge star operator is an involution on 2-forms, so there is
a decomposition ∧2T ∗M = ∧2

+T
∗M ⊕ ∧2

−T
∗M , and the eigenspaces ∧2

±T
∗M are called the

selfdual and antiselfdual 2-forms. This induces a similar decomposition so(TM) = so+(TM) ⊕
so−(TM) of the skew endomorphisms of TM . The Weyl curvature W splits as a sum of selfdual
and antiselfdual 2-forms W± with values in so(TM): in fact W+ is so+(TM)-valued and W− is
so−(TM)-valued (essentially because W is traceless).

A selfdual space is a conformal 4-manifold with selfdual Weyl curvature, i.e., W− = 0.
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In [37], Joyce studied selfdual spaces with a surface-orthogonal action of the torus T 2 by
conformal transformations, and found new explicit selfdual conformal metrics on connected sums
of complex projective planes. The key idea in his approach is the use of conformal connections
with torsion, and the following observation.

Lemma 2.1 (see Joyce [37]). Let (M, c) be an oriented conformal 4-manifold and D a conformal
connection (i.e., Dc = 0, but D may have torsion). Suppose that the antiselfdual part of the
torsion of D is tracelike. Then (M, c) is selfdual if and only if the Weyl part of the curvature
of D is selfdual.

When the torsion is selfdual and traceless, this lemma follows easily, since D then differs
from a Weyl connection by an so+(TM)-valued 1-form, so that the so−(TM)-valued part of the
curvature of D agrees with that of the Weyl connection. The general case is a consequence of
the fact that the trace parts of the torsion (which are 1-forms) cannot contribute to the Weyl
part of the curvature.

I shall refer to this result as Joyce’s lemma: although simple, and perhaps previously known,
its application by Joyce [37] was one of the main motivations for the present work. Indeed,
for a conformal manifold with a surface-orthogonal T 2-action, Joyce constructed, on the open
set where the torus acts freely, a conformal connection with torsion, and hence separated the
selfduality equation for the conformal structure into a nonlinear equation for a quotient geometry
and a linear equation defined on this background. He then showed that the quotient geometry
in this case is the hyperbolic plane, and superposed known solutions of the linear equation to
find new explicit metrics.

In this section, Joyce’s lemma will be applied to selfdual spaces with any freely acting group of
conformal transformations, and a large class of dimensional reductions of the selfduality equation
will be obtained. The restriction to freely acting groups of symmetries will also be relaxed later,
leading to a generalized version of dimensional reduction.

Let M be a conformal manifold with a free proper action of a group H, so that M is a principal
H-bundle over the orbit space Q = M/H. The generators of the action form a Lie algebra h of
vector fields on M and pointwise evaluation defines an isomorphism M×h→ VM , where VM is
the vertical bundle of M → Q. Now suppose that H acts conformally with nondegenerate orbits.
Then Q is a conformal manifold and the horizontal distribution VM⊥ 6 TM defines a principal
H-connection α on π : M → Q; furthermore, VM is isomorphic to the pullback of a conformal
vector bundle V → Q with L1

V = L1
Q. Although M × h and π∗V are both isomorphic to VM ,

it will be crucial in the following to distinguish between them, since the trivialization of VM
given by the H-action is not, in general, compatible with the conformal structure. However,
the isomorphism π∗V →M × h is H-equivariant, so it may be viewed as a bundle isomorphism
ϕ : V → hQ over Q, where hQ = M ×H h. To summarize, the conformal geometry of M is
encoded by:

• a conformal structure on Q;

• a conformal vector bundle V → Q with L1
V = L1

Q;

• a principal H-connection α on M → Q;

• a bundle isomorphism ϕ : V → hQ over Q.

The data (α,ϕ) identify the tangent bundle TM with the pullback of V ⊕ TQ: sections of V
or TQ will be denoted U , V , W or X, Y , Z respectively, and identified with invariant vector
fields on M .

The curvature of the principal connection α on π : M → Q is an hQ-valued 2-form Fα,
given by minus the Frobenius curvature of the horizontal distribution: Fα(X,Y ) = −ϕ([X,Y ]),
where ϕ extended by zero from V to V ⊕ TQ.
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Choose a conformal connection D on V over Q. This induces a Weyl derivative on L1
V = L1

Q,
hence a torsion-free conformal connection on TQ and a direct sum connection on V ⊕ TQ.
These conformal connections will be denoted by D, as will the pullback connection on TM =
π∗(V ⊕ TQ), which is conformal, but not torsion-free in general: the fibres of π : M → Q need
not be umbilic unless Q is three-dimensional, the nonlinear connection on M → Q need not be
flat unless Q is one-dimensional, and the sections of V parallel along the fibres of π will have
nontrivial Lie brackets unless h is Abelian.

In order to apply Joyce’s lemma, the torsion needs to be reduced. To do this, introduce
ψ : ∧2 TQ→ V and C : S2

0V → TQ, and define D = D + Ĉ + ψ̂, where Ĉ and ψ̂ are the sections
of T ∗M ⊗ so(TM) given by

ĈU+X(V + Y ) = C(U, V )− 〈C(U, ·), Y 〉,

2ψ̂U+X(V + Y ) = 〈ψ(X, ·), V 〉+ 〈ψ(Y, ·), U〉 − ψ(X,Y ).

The idea is that ψ will compensate for the curvature of the horizontal distribution, while C will
offset the traceless second fundamental form of the fibres. It will then be possible to make the
torsion selfdual by the choice of D.

The torsion TD of this modified conformal connection may be computed by applying it to
invariant vector fields, as long as one is careful that the Lie bracket on invariant vertical vector
fields is minus the Lie bracket on the Lie algebra h of generators of the action, hence minus the
bracket on the associated Lie algebra bundle hQ over Q

TD(U, V ) = ϕ−1[ϕ(U), ϕ(V )]h, (2.1)

TD(U,X) = ϕ−1Dα
Xϕ(U)− 〈C(U), X〉, (2.2)

TD(X,Y ) = ϕ−1Fα(X,Y )− ψ(X,Y ). (2.3)

Here Dα denotes the connection on π∗(V ⊗ hQ) induced by D and α. Note that the torsion is
vertical-valued.

The computation of the curvature is a little more complicated. First of all the curvatures
of D and D (on TM) are related by

RDU+X,V+Y = RDU+X,V+Y + dD(Ĉ + ψ̂)U+X,V+Y +
[[

(Ĉ + ψ̂)U+X , (Ĉ + ψ̂)V+Y

]]
.

The second term is the twisted exterior derivative of so(TM)-valued 1-forms and must be handled
carefully, since D has torsion. Relating this to the torsion of D gives

dD(Ĉ + ψ̂)U+X,V+Y = DU+X(Ĉ + ψ̂)V+Y −DV+Y (Ĉ + ψ̂)U+X

+ (Ĉ + ψ̂)TD(U+X,V+Y ) + (Ĉ + ψ̂)ψ(X,Y ) + (Ĉ + ψ̂)〈C(U),Y 〉−〈C(V ),X〉.

Notice that the derivatives in vertical directions are zero, since the connection is a pullback
connection and Ĉ, ψ̂ are invariant. Also, RD is horizontal. Hence putting everything together
leads to the following formula for the “torsion-adjusted” curvature of D

RD,taU+X,V+Y := RDU+X,V+Y − (Ĉ + ψ̂)TD(U+X,V+Y )

= RDX,Y +DX ĈV −DY ĈU +DX ψ̂V −DY ψ̂U

+ Ĉψ(X,Y ) + ψ̂〈C(U),Y 〉 − ψ̂〈C(V ),X〉 + [[ψ̂U+X , ĈV ]] + [[ĈU , ψ̂V+Y ]]

+ Ĉ〈C(U),Y 〉 − Ĉ〈C(V ),X〉 + [[ĈU , ĈV ]] + ψ̂ψ(X,Y ) + [[ψ̂U+X , ψ̂V+Y ]].

Now suppose that TD is selfdual. Then, by Joyce’s lemma, the Weyl curvature W of M is
selfdual if and only if the Weyl part of this formula is selfdual. This condition is a nonlinear
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differential equation on Q defining a reduced background geometry. A key feature of the formula
is that the right hand side is manifestly independent of (α,ϕ) and so the group structure of H
decouples from the reduced background geometry.

The details depend on the dimension; in particular, ensuring that the torsion is selfdual
constrains D. In the following subsections, I will explain these constraints and obtain the
background geometries explicitly. For later use I will also introduce individual notations for the
geometries in each dimension. As far as possible, the notation will be chosen to be consistent
with existing usage. The case of a four-dimensional group acting on itself is left as an exercise:
a field Y ∈ ∧2

−V∗ ⊗ V is needed here to make the torsion selfdual; see Remark 7.9.

2.1 Reduction to one dimension

In this case Q is a oriented curve, with weightless unit tangent ξ, and ψ = 0. Write C(U, V ) =
〈B(U), V 〉ξ, so that B is a symmetric traceless endomorphism of weight −1. I will denote the
curve Q by C and the bundle V by E . Thus E is a rank 3 conformal vector bundle over C
with L1

E = L1
C = TC, the last identification being given by ξ. The Hodge star operator is an

isomorphism between ∧2E and TC ⊗ E = L1E .
The two components of the torsion of D are given by

TD(U, V ) = ϕ−1[ϕ(U), ϕ(V )]h, TD(U, ξ) = ϕ−1Dα
ξ ϕ(U)− B(U).

This will be selfdual if and only if

ϕ−1
(
Dα
ξ ϕ− ∗[ϕ,ϕ]h

)
= B. (2.4)

Conformal connections D on E form an affine space modelled on T ∗C ⊗ co(E). Hence D can be
chosen uniquely so that the left hand side is symmetric and traceless and this in turn defines B.

The two components of the torsion-adjusted curvature of D are

RD,taU,V = [[B̂U , B̂V ]], RD,taU,ξ = −DξB̂U + B̂B(U).

A straightforward calculation shows that the Weyl part is selfdual if and only if DξB = 2(B2)0,
where the subscript zero denotes the traceless part. Since D is flat, this is really just a Riccati
equation for a 3× 3 symmetric traceless matrix. On the other hand, the orientation of C is not
needed if B is viewed as an endomorphism-valued 1-form on C.

Definition 2.2. Suppose that E is a rank 3 conformal vector bundle over a curve C with
L1
E = L1

C . Equip E with a conformal connection D and a section B of T ∗C ⊗ Sym0 E . Then
(C, E) is said to be a Riccati space if (D,B) satisfy the equation

DB = 2
(
B2
)

0
.

Equivalently, with respect to a conformal trivialization of E , the connection D is given by
a section (a,Θ) of T ∗C ⊗ co(E) = T ∗C ⊕ (T ∗C ⊗ so(E)) and

Ḃ − aB + [[Θ,B]] = 2
(
B2
)

0
,

where the dot denotes differentiation with respect to a compatible coordinate. In particular,
using a D-parallel trivialization of E and an affine coordinate r (i.e., Ddr = 0), Br = 2(B2)0.

Joyce’s lemma now gives the following result.

Theorem 2.3. Let M be an oriented conformal manifold with a 3-dimensional Lie algebra h of
linearly independent conformal vector fields such that the projection π onto the space of orbits is
a submersion over a curve C. Let E be a rank 3 conformal vector bundle on C such that π∗E is
the vertical bundle of M (trivialized along the fibres by invariant vector fields) and define (D,B)
by equation (2.4) as explained above.

Then M is selfdual if and only if (C, E) is a Riccati space.
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2.2 Reduction to two dimensions

The two-dimensional geometry is perhaps the richest. In the Euclidean case, Q is a Riemann
surface, which will be denoted N , and the conformal vector bundle V has rank two, and so will
be viewed as a complex line bundle W → N . It will be convenient to view ϕ : W → hN as
a complex linear map 1

2(ϕ− iϕ ◦ J) : W → hN ⊗C. The constraint L1
W = L1

N means that there
is a Hermitian metric on W∗ ⊗C TN . On fixing orientations, this may also be interpreted as
an identification W ⊗C W = TN ⊗C TN , or ∧1,1W = ∧1,1TN . Here the orientations will be
chosen so that the induced almost complex structure J on TM = π∗(W ⊕ TN) is selfdual, i.e.,
the corresponding weightless 2-form Ω ∈ C∞(M,L2 ∧2 T ∗M) is selfdual.

The Hodge star operator on ∧2TM interchanges the vertical and horizontal components using
the identification above, and acts on mixed bivectors by ∗(U ∧X) = −JU ∧ JX. In particular
the torsion of the modified connection D is selfdual if and only if

ϕ−1
(
Fα − [ϕ,ϕ]h

)
= ψ,

ϕ−1
(
Dα
Xϕ(U) +Dα

JXϕ(JU)
)

= 〈C(U), X〉+ 〈C(JU), JX〉 (2.5)

for any vector field X and section U of W. The first equation defines ψ uniquely. For the
second equation, note that conformal connections D on W form an affine space modelled on
T ∗N ⊗R co(W), and therefore D can be chosen uniquely such that ϕ−1Dα

Xϕ is symmetric and
traceless for all X. The remaining ambiguity in C is fixed by supposing it is complex linear, i.e.,
a section of S2

0W∗ ⊗C TN , so that the second equation determines it uniquely. Note though,
that the second equation does not use all of D: only the induced holomorphic structure of W is
needed.

For the selfduality of the Weyl curvature, it now suffices to compute RD,taU,Y and one additional
component. To see this, note first that ψ̂ and Ĉ are so(TM)-valued, and therefore no information
is lost by considering RD and RD to be the curvatures on L−1TM rather than TM , so that the
curvature equation is an identity between so(TM)-valued 2-forms. The selfduality condition is
obtained by requiring that the Weyl part of RD,ta is selfdual. This amounts to considering the
traceless part of the induced bundle map from ∧2

−TM to so−(TM). Let Ω and J be the sections
of these bundles obtained by reversing the orientation of Ω and J on TN . There are therefore
three equations to find:

(i) The traceless part of the Ω
⊥ ⊗ J⊥ component of RD,ta should be zero.

(ii) The part of RD,ta in Ω
⊥ ⊗ 〈J〉 should be zero.

(iii) The multiple of Ω⊗ J should equal half the trace in Ω
⊥ ⊗ J⊥.

All of these except (iii) involve considering only the part of RD,ta in Ω
⊥⊗so(TM), which involves

evaluating RD,ta on bivector fields of the form U ∧ Y − ∗(U ∧ Y ) = U ∧ Y + JU ∧ JY . An easy
calculation gives

RD,taU,Y = −DY C(U, ·) +DY C(U, ·)T − 1
4DY ψ(JU)(J − J)

+ C
(
〈C(U), Y 〉, ·

)
− C

(
〈C(U), Y 〉, ·

)T − 1
4〈C(U, Jψ), Y 〉(3J − J)− 1

4Jψ(U)JψMY,

where T denotes the transpose, and I have contracted horizontal and vertical skew endomor-
phisms using X MY = 1

2Ω(X,Y )(J − J) and U MV = 1
2Ω(U, V )(J + J). Also, using Ω, ψ may

be viewed as a section of W∗, so that ψ(X,Y ) = 2Ω(X,Y )Jψ.
One readily obtains conditions (i) and (ii):

DXC(U, ·) +DJXC(JU, ·) = 0,
1
2

(
DXψ(U) +DJXψ(JU)

)
= −3〈C(ψ,U), X〉,

for any vector field X and section U of W.
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It remains to compute condition (iii). For this note that RD is given by 1
4sN (Ω− Ω)⊗ (J −

J) + 1
4sW(Ω − Ω) ⊗ (J + J), where sN = 1

2 scalN and sW = 1
2 scalW are the normalized scalar

curvatures of D on TN and W. This yields, finally,

sN − sW = |ψ|2 − 2|C|2.

These equations, and the equations defining C and ψ, depend only on D through the induced
holomorphic structure ∂a on W. The conformal connections on W and TN may be viewed as
Chern connections determined by the holomorphic structures on these bundles together with
the choice of a Weyl derivative on L1. The difference sN − sW does not depend on the choice
of Weyl derivative, since it is the normalized scalar curvature of the Chern connection on the
Hermitian line bundle W−1TN .

Aside 2.4. The construction of a “Chern–Weyl” connection does not seem to be known and
relates to a simple coordinate-free description (also not well-known) of the usual Chern connec-
tion, so I will sketch it here. Let E be a complex vector bundle (over a complex manifold M,J)
with holomorphic structure ∂E and compatible conformal metric c : S2

RE → L2
E with respect to

which the complex structure on E is orthogonal; the latter is equivalently a conformal Hermitian
structure E ⊗C E → L2

E ⊗ C. (Note that a complex line bundle automatically has a conformal
Hermitian structure.) Now given any covariant derivative D on L1

E , let ∂DX = 1
2(DX + iDJX)

(for all vector fields X) be the induced almost holomorphic structure on L2
E ⊗ C. Then there

is a unique conformal Hermitian connection DE on E inducing D on L1
E . It is given by the

formula

〈DE
Xs1, s2〉 = ∂DX〈s1, s2〉 − 〈s1, ∂

E
Xs2〉+ 〈∂EXs1, s2〉,

where s1 and s2 are sections of E. The proof is immediate (the idea behind the formula is simply
that DE = ∂E + ∂E , where ∂E is the complex-linear part of the derivative). In the case that
the covariant derivative on L1

E is just a trivialization, so that ∂D = ∂, this is the usual Chern
connection by uniqueness.

Definition 2.5. Suppose that W is a complex line bundle over a Riemann surface N such
that L1

W = L1
N (i.e., there is a Hermitian metric on W−1TN). Equip W with a holomorphic

structure ∂a, a section C of W−2TN , and a section ψ of W−1. Then (N,W) is said to be
a spinor-vortex space if (∂a, C, ψ) satisfy the equations

∂aC = 0, (2.6)

∂aψ = −3Cψ, (2.7)

sW−1TN = ψψ − 2CC, (2.8)

where sW−1TN is the normalized scalar curvature of the Chern connection on W−1TN .

Joyce’s lemma now gives the following result.

Theorem 2.6. Let M be an oriented conformal manifold with a 2-dimensional Lie algebra h of
linearly independent conformal vector fields such that the projection π onto the space of orbits is
a submersion over a Riemann surface N . Let W be a complex line bundle on N such that π∗W
is the vertical bundle of M (trivialized along the fibres by invariant vector fields) and define
(∂a, C, ψ) by (2.5) as explained above.

Then M is selfdual if and only if (N, E) is a spinor-vortex space.

Of course there are only two possible 2-dimensional Lie algebras. In the case that h is Abelian
and ψ = 0, this result reduces to the original application of Lemma 2.1 by Joyce [37].
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Remark 2.7. It is straightforward to adapt the calculations of this subsection to other sig-
natures: in general N is a conformal surface with two line bundles W, W̃ such that WW̃ ∼=
T 1,0NT 0,1N where T 1,0N and T 0,1N are the null line subbundles of TN ⊗ C. The line bun-
dles W and W̃ are equipped with “(anti)holomorphic structures” ∂̃a, ∂a and there are sections

(C, C̃, ψ, ψ̃) satisfying appropriate reality conditions: in the Euclidean case W̃ = W, C̃ = C and
ψ̃ = ψ, but there is also a Lorentzian case, when the fields are all real, and a Euclidean reduction
from Kleinian signature (2, 2) when ψ̃ = −ψ.

2.3 Reduction to three dimensions

The reduction to three dimensions is the Jones–Tod correspondence [36], which was one of the
motivations for this work. The proof using Joyce’s lemma is outlined in [37], so I will only recall
the main ideas and definitions.

In this case, Q is an oriented 3-dimensional conformal manifold, which will be denoted B,
and V is an oriented line bundle isomorphic to L1 = L1

B. Note that C automatically vanishes,
and write ψ = ∗ω, where ω is a 1-form on B. Then the torsion TD will be selfdual provided that

∗(Dϕ− ωϕ) = Fα. (2.9)

(The connection α does not act on ϕ since h is Abelian.)

This equation determines (D,ω) up to the gauge freedom D 7→ D + γ, ω 7→ ω − γ for any
1-form γ on B (note that (D + γ)ϕ = Dϕ − γϕ, since ϕ has weight −1). In other words, it
determines uniquely the Weyl derivative D + ω. This is called the Jones–Tod Weyl structure.

The gauge freedom can be used to set Dϕ = 0, or to set ω = 0. Taking the latter point of
view, the Jones–Tod Weyl structure is just D, determined by ∗Dϕ = Fα.

The curvature of D is simply the pullback of the curvature of D on B. In particular the Weyl
part will be selfdual iff it vanishes and this is readily seen to be equivalent to the vanishing
of rD0 [37].

Definition 2.8. Suppose that B is a conformal 3-manifold and let D be a Weyl connection
on B. Then B is said to be an Einstein–Weyl space iff rD0 = 0, i.e., the symmetric traceless
Ricci tensor of D vanishes.

Theorem 2.9 ([36]). Let M be an oriented conformal 4-manifold and K a nonvanishing con-
formal vector field such that the projection π of M onto the space of trajectories is a submersion
over a conformal manifold B. Equip B with the Jones–Tod Weyl structure.

Then M is selfdual if and only if B is Einstein–Weyl.

All three background geometries are themselves defined by geometric gauge theories: con-
formal local trivializations of the bundle V over Q are related by gauge transformations. In
the three-dimensional case, V is simply L1, so conformal trivializations are length scales, and
this is Weyl’s original gauge theory [63]. Analogously, in the one and two-dimensional case,
E and W should be regarded as part of the geometry of the space, not auxiliary bundles, and
these background equations, although gauge-theoretic, should not be confused with the gauge
field equations on auxiliary G-bundles which will be studied in Section 4.

Addenda: null reductions

The constructions of this section assume nondegeneracy of the conformal structure c on M
along the orbits of the symmetry group H. In (real) Euclidean signature, this is automatic, but
this is not the case when M has Kleinian signature, nor when M is a holomorphic conformal
manifold. When the conformal structure degenerates on the orbits, the reduction is said to be



Integrable Background Geometries 15

null. For the generic local considerations of this paper, I assume that the radical (or kernel)
RV := VM ∩ VM⊥ of the conformal structure along the H orbits has constant rank (as before,
VM denotes the tangent bundle to the H orbits). There are thus three possibilities:

(1) RV has rank one;

(2+) RV = U+ has rank two and is selfdual;

(2−) RV = U− has rank two and is antiselfdual.

In case (1), R⊥V = VM + VM⊥ has rank three, and R⊥V /RV is the sum of two null subbundles
with a nondegenerate pairing between them. Their inverse images U± in R⊥V are selfdual and
antiselfdual null 2-plane distributions. There are several subcases to consider here, depending on
the rank of VM . If either U± ⊆ VM then VM must have rank 3, in which case VM⊥ ⊂ VM ,
hence VM⊥ = RV and R⊥V = VM , so VM = U+ + U−. If VM has rank two, then TM =
VM + U+ + U−, and clearly if rankVM = 1, then RV = VM .

Cases (2±) are simpler, at least when rankVM = 2, so VM = RV is a bundle of selfdual or
antiselfdual 2-planes. I concentrate on these two cases here. One justification for such a focus is
that in the other cases, one may be able to prove that the distributions U+ or U− are integrable,
and hence study the reduction in terms of their leaf spaces. For instance, Dunajski–West [72]
establish such an integrability result when rankVM = 1.

Suppose then that π : M → Q = M/H is a principal H-bundle over a manifold Q such that
VM has rank two and is totally null. As VM⊥ = VM , neither VM nor TQ inherit conformal
structures from M ; instead there is a nondegenerate pairing VM ×π∗TQ→ L2. This pairing in
H-invariant, and thus identifies VM = π∗(T ∗Q⊗ V), for a line bundle V → Q (whose pullback
to M will be identified with L2). As in the nondegenerate setting the isomorphism of VM with
M × h descends to a bundle isomorphism ϕ : T ∗Q ⊗ V → hQ := M ×H h over Q. There is no
canonical splitting of the short exact sequence 0→ π∗T ∗Q⊗ V → TM → π∗TQ→ 0, but such
a splitting may be chosen so that the complementary subbundle to VM is H-invariant and null.
This yields a principal H-connection α on π : M → Q.

A torsion-free connection on TN and a connection on V together induce a conformal connec-
tion D on TM with vertical-valued torsion as before. A conformal connection D with selfdual
torsion may be obtained by adding correction terms to D. Compared to the nondegenerate
case, the correction term C may be absorbed into the choice of D, and replaced by a vertical
correction χ : ∧2 (T ∗Q ⊗ V) → T ∗Q ⊗ V. Thus D = D + χ̂ + ψ̂, where ψ : ∧2 TQ → T ∗Q ⊗ V
as before, and

2χ̂U+X(V + Y ) = 〈χ(U, ·), Y 〉+ 〈χ(V, ·), X〉 − χ(U, V ),

2ψ̂U+X(V + Y ) = 〈ψ(X, ·), Y 〉+ 〈ψ(Y, ·), X〉 − ψ(X,Y ).

The torsion satisfies

TD(U, V ) = ϕ−1[ϕ(U), ϕ(V )]h − χ(U, V ), (2.10)

TD(U,X) = ϕ−1Dα
Xϕ(U), (2.11)

TD(X,Y ) = ϕ−1Fα(X,Y )− ψ(X,Y ), (2.12)

while the curvature computes to

RDU+X,V+Y = RDU+X,V+Y + (χ̂+ ψ̂)TD(U+X,V+Y )

+DU+X(χ̂+ ψ̂)V+Y −DV+Y (χ̂+ ψ̂)U+X

+ (χ̂+ ψ̂)ψ(X,Y ) + (χ̂+ ψ̂)χ(U,V ) +
[[

(χ̂+ ψ̂)U+X , (χ̂+ ψ̂)V+Y

]]
.
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Hence the torsion-adjusted curvature is

RD,taU+X,V+Y = RDX,Y +
[[

(χ̂+ ψ̂)X , (χ̂+ ψ̂)Y
]]

+ χ̂ψ(X,Y )

+DX(χ̂+ ψ̂)Y −DY (χ̂+ ψ̂)X +DX χ̂V −DY χ̂U

+
[[

(χ̂+ ψ̂)X , χ̂V
]]

+
[[
χ̂U , (χ̂+ ψ̂)Y

]]
+ [[χ̂U , χ̂V ]] + χ̂χ(U,V ). (2.13)

Antiselfdual (α-surface) reduction

When VM is antiselfdual, the fibres of π : M → Q are α-surfaces (i.e., they correspond to
points in the twistor space of M). Under the isomorphism of TM with π∗(T ∗Q⊗V ⊕ TQ), the
antiselfdual bivectors decompose into three rank one subbundles: ∧2(T ∗Q⊗V), ∧2TQ, and the
tracelike part of TQ⊗ T ∗Q⊗V. The corresponding decomposition of so−(TM) has summands
Hom−(TQ, T ∗Q⊗V), Hom−(T ∗Q⊗V, TQ) and the span of idT ∗Q⊗V − idTQ; here Hom− denotes
the subbundle of skew symmetric operators.

In order to interpret equations (2.10)–(2.12) and (2.13), it is convenient to set V = L2⊗∧2TQ
for a line bundle L, so that ϕ, ψ and χ may be viewed as 1-forms on Q, with values in L2⊗ hQ,
L−2 and L2 respectively.

Then TD is selfdual iff χ∧ϕ = 1
2 [ϕ∧ϕ]h, ψ∧ϕ = Fα and dD,αϕ = 0. The first two equations

determine χ and ψ uniquely (since ϕ : TN → L⊗ hQ is injective), while the third depends only
on (and essentially determines) the connection a induced by D on L.

In the expression (2.13) for the torsion-adjusted curvature, very few terms contribute to the
antiselfdual Weyl part. For instance, only the trace part of first and last lines contribute, and
the latter trace vanishes identically. After some tedious computations, the background equations
for the 1-forms ψ and χ and the connection a on L reduce to

daψ = 0, daχ = 0, F a = χ ∧ ψ,

which may be interpreted as the flatness of the connection da + ψ + χ on L ⊕ L−1 (where da

is the direct sum connection, while ψ and χ are viewed as 1-forms with values in Hom(L−1,L)
and Hom(L,L−1)).

Selfdual (β-surface) reduction

In the selfdual case, only the mixed part of TD has a antiselfdual component, so there is no
loss in setting ψ = χ = 0. The selfduality of the torsion then reduces to Dαϕ = 1

2dD
α
ϕ,

where ϕ is interpreted as a 1-form on Q as before. This equation determines D up to projective
transformation (DXY 7→ DXY +γ(X)Y +γ(Y )X for a 1-form γ), and the background equations
are vacuous. Hence the background geometry is an arbitrary (torsion-free) projective surface
(Q, [D]); this reduction was obtained in [72] and [65].

3 Interlude: Bianchi metrics

Selfdual conformal manifolds with a freely acting three-dimensional symmetry group have been
studied in many places [14, 15, 31, 42, 43, 47, 53, 54, 55]. In this interlude, I will show briefly
how the direct approach to selfdual Bianchi metrics is related to the Riccati space reduction of
the previous section.

For simplicity, I focus on the case of diagonal Bianchi IX metrics. Such a metric may be
written in the form

g = w1w2w3dt2 +
w2w3

w1
σ2

1 +
w3w1

w2
σ2

2 +
w1w2

w3
σ2

3,
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where σ1, σ2, σ3 are the usual left-invariant 1-forms on SU(2) and w1, w2, w3 are functions of t.
If X1, X2, X3 are the dual vector fields to σ1, σ2, σ3, then the vector fields ∂t, ϕ1 = w1X1,
ϕ2 = w2X2 and ϕ3 = w3X3 form a conformal frame. Notice that ϕ̇1 − [ϕ2, ϕ3] is the multiple
ẇ1 − w2w3 of X1, where the dot denotes the derivative with respect to t. The other two
components are similar. Following [47, 53], write

ẇ1 = w2w3 − w1(A2 +A3),

ẇ2 = w3w1 − w2(A3 +A1),

ẇ3 = w1w2 − w3(A1 +A2).

Comparing with equation (2.4), observe that the matrix B is diagonal, with eigenvalues −(A2 +
A3),−(A3 + A1),−(A1 + A2). In the approach of the previous section, the conformal gauge
freedom is used to set A1 + A2 + A3 = 0, so that B is traceless with eigenvalues A1, A2, A3.
This is not usually done in the literature, because by working with an arbitrary compatible
metric, additional (non-conformally-invariant) equations can be imposed. In particular, vacuum
metrics – and more generally, Kähler metrics (with antiselfdual complex structure) – are scalar-
flat. Hence scalar-flatness is often used as a gauge condition, in which case the following
well-known system, originating in work of Brioschi, Chazy, Darboux, and Halphen, is obtained:

Ȧ1 = A2A3 −A1(A2 +A3),

Ȧ2 = A3A1 −A2(A3 +A1),

Ȧ3 = A1A2 −A3(A1 +A2).

Joyce’s lemma explains the remarkable fact that this system depends only on w1, w2, w3 through
the functions A1, A2, A3. The trace of this system is the scalar-flat gauge condition: Ȧ1 + Ȧ2 +
Ȧ3 = −A2A3 − A3A1 − A1A2, while the traceless part is the selfduality equation for the Weyl
curvature – the latter condition is independent of the choice of conformal gauge, and may be
rewritten as a matrix Riccati equation in the following way:

B =
1

3

2A1 −A2 −A3 0 0
0 2A2 −A3 −A1 0
0 0 2A3 −A1 −A2

 ,
Ḃ − aB = 2

(
B2
)

0
,

where

a = −2

3
(A1 +A2 +A3).

In other words, the matrix Riccati equation is obtained by separating the diagonal matrix
B+a id, with eigenvalues −(A2 +A3),−(A3 +A1),−(A1 +A2), into its trace (which defines the
connection D = ∂t + a on the one-dimensional quotient geometry), and its traceless part (which
is B).

One advantage of this geometric interpretation is that different gauge conditions can be
easily compared. Evidently the condition a = 0 fixes t up to affine transformations. In order
to interpret the scalar-flat gauge condition ȧ = 2

3(A2A3 + A3A1 + A1A2), it is natural and
illuminating to express the right hand side in terms of a and trB2. The result is

ȧ− 1
2a

2 = −1
3 trB2.

Note that (∂t − 1
2a)(∂t + 1

2a) = ∂2
t + 1

2 ȧ −
1
4a

2, so that on sections of L1/2, D2 = ∂2
t − 1

6 trB2.
Hence the scalar-flat gauge condition may be interpreted as fixing t to be a projective coordi-
nate with respect to the projective structure D2 + 1

6 trB2; this determines t up to a projective
transformation.
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4 The gauge field equations

Let ∇ be a G-connection, on a vector bundle E over a conformal manifold M , which is invariant
under an action of a group H of conformal transformations. Infinitesimally, the generators form
a Lie algebra h of conformal vector fields on M and there is an action of these vector fields by
Lie derivative on sections of E such that Lξ∇ = 0 for all ξ ∈ h. Each ξ ∈ h therefore determines
a Higgs field Sξ in the associated Lie algebra bundle gM 6 End(E) defined by Sξs = Lξs−∇ξs.
(Note the unusual sign convention, which is necessary for consistency later.) Since Lξ∇ = 0 and
[Lξ,Lχ] = L[ξ,χ], it follows that

Lξ(Sχ) = S[ξ,χ]

and so S : M × h → gM is H-equivariant. Part of the curvature F∇ of ∇ is determined by the
Higgs fields – one readily computes that for any ξ ∈ h and any vector field X,

F∇(ξ,X) = ∇X(Sξ).

In particular, for two vector fields ξ, χ in h,

F∇(ξ, χ) = [Sξ, Sχ]g − S[ξ,χ],

where the first bracket is the Lie bracket in gM .
Now suppose that H acts freely on M with nondegenerate conformal metrics on the orbits,

and define (α,ϕ) as in Section 2. The bundle E is the pullback of a bundle, also denoted E,
overQ. Since∇ isH-invariant, it descends to a connectionA overQ. The Higgs fields are alsoH-
invariant; hence setting Φ(U) = Sϕ(U) defines a bundle map Φ: V → gQ over Q. Next introduce

a conformal connection D on V. Then ∇X(Sξ) = (DA
XΦ)

(
ϕ−1(ξ)

)
− Φ

(
ϕ−1(Dα

Xϕ)ϕ−1(ξ)
)

and
a simple computation of the curvature of ∇ yields the following equations:

F∇(U, V ) = [Φ(U),Φ(V )]g − Φ
(
ϕ−1[ϕ(U), ϕ(V )]h

)
,

F∇(U,X) = (DA
XΦ)(U)− Φ

(
ϕ−1Dα

Xϕ(U)
)
,

F∇(X,Y ) = FA(X,Y )− Φ
(
ϕ−1Fα(X,Y )

)
.

This formulation makes manifest the analogy between (A,Φ) and (α,ϕ): the former is a G-
connection and gQ-valued section of V∗, while the latter is an H-connection and hQ-valued
section of V∗.

Furthermore, these formulae for F∇ are closely analogous to the formulae (2.1)–(2.3) for TD

obtained in the previous section: adding torsion terms to the above equations yields(
F∇ + Φ ◦ TD

)
(U, V ) = [Φ(U),Φ(V )]g, (4.1)(

F∇ + Φ ◦ TD
)
(U,X) = (DA

XΦ)(U)− Φ
(
〈C(U), X〉

)
, (4.2)(

F∇ + Φ ◦ TD
)
(X,Y ) = FA(X,Y )− Φ

(
ψ(X,Y )

)
. (4.3)

Assuming that TD is selfdual (which can always be arranged, using the choice of D, by the work
of Section 2), the selfduality of F∇ is now equivalent to the selfduality of the right hand sides
of (4.1)–(4.3).

This reduced gauge field equation is easy to compute in each dimension (and equivalent
calculations have already been used in Section 2). Notice that no assumption of selfduality
on M is needed for these computations: just as the selfdual Yang–Mills equation makes sense
on any oriented conformal 4-manifold, so also the generalized Bogomolny equation is defined
on any Weyl space, and the same is true on the one and two-dimensional geometries. However,
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the principal dogma underlying this work is that the natural backgrounds for the gauge field
equations are selfdual spaces, Einstein–Weyl spaces, spinor-vortex spaces and Riccati spaces.
There are two reasons for this: first, the Ward correspondence predicts that the reduced gauge
field equations on these backgrounds will be integrable; second, it will soon be apparent, if not
already, that the gauge field equations and background equations are intimately related.

4.1 Generalized Nahm equations on Riccati spaces

The reduction to one dimension is straightforward, since there is no curvature. Hence the
connection A on gC can be assumed trivial, and the gauge field equation for Φ ∈ C∞(C, E∗⊗gC)
is

DΦ− ∗[Φ,Φ]g = B ·Φ, (4.4)

where B ·Φ = Φ ◦ B and the Lie bracket pairing [Φ,Φ]g ∈ C∞(C,∧2E∗ ⊗ gC) is interpreted as
a section of T ∗C ⊗ E∗ ⊗ gC using the Hodge star and conformal structure on E , together with
the identifications L1

E = L1
C = TC. When B = 0, this is the Nahm equation.

4.2 Generalized Hitchin equations on spinor-vortex spaces

For the reduction to two dimensions, it is natural, as before, to reinterpret Φ as a complex linear
map from W to gN ⊗ C. Then the gauge field equations for (A,Φ) are

FA − [Φ,Φ]g = ψ ∧ Φ + ψ ∧ Φ, ∂a,AΦ = CΦ.

When C = ψ = 0 and W = TN , with the induced holomorphic structure, these are Hitchin’s
equations.

To adapt the gauge field equations to spinor-vortex spaces in general signature (when there
are background fields C, C̃, ψ, ψ̃), replace Φ by an additional field Φ̃, satisfying the analogous
∂a,A-equation. The Lorentzian reality condition (Φ, Φ̃ real) provides a generalized chiral model,
while a generalization of the harmonic map equation is obtained by introducing the crucial sign
change Φ̃ = −Φ (recall also that ψ̃ = −ψ in this case).

4.3 Generalized Bogomolny equations on Einstein–Weyl spaces

The reduction to three dimensions gives the natural generalization to Weyl geometry of the
Bogomolny equation for magnetic monopoles

∗DAΦ = FA.

The Euclidean, hyperbolic or spherical Bogomolny equation arises when the Einstein–Weyl
structure is given by a metric of constant curvature.

Addenda: twisted flat pencils and projective pairs

The same methodology as in the nondegenerate cases yields gauge field equations over the null
reductions, using the equations (2.10)–(2.12) for the torsion TD.

In the background geometry (a, φ, ψ) on (Q,L) obtained by reduction along an α-surface
foliation, the gauge fields consist of a G-connection A and a 1-form Φ with values in L2 ⊗ gQ,
and the gauge field equations are

FA = ψ ∧ Φ, da,AΦ = 0, 1
2 [Φ ∧ Φ] = χ ∧ Φ. (4.5)
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If ψ = χ = 0 (so a is flat, and L may be trivialized) then these are the equations for a pencil
of flat connections dA + λΦ on a surface (also known as the topological chiral model). Thus
solutions of (4.5) may be called twisted flat pencils. The special case ψ = 0 has been studied by
Tafel and Wójcik in [52].

On a projective surface (Q, [D]) obtained by reduction along a β-surface foliation, the gauge
fields consist of a G-connection A and a 1-form Φ with values in OQ(2) ⊗ gQ (where OQ(3) =
∧2TQ), and the gauge field equations are

DAΦ = 1
2dD,AΦ.

Solutions (A,Φ) were referred to (somewhat unimaginatively) as projective pairs in [65].

The special case of reductions of the selfdual Yang–Mills equation on R2,2 (or C4) by null
translations was considered already by Mason and Woodhouse [41]: the α-plane reduction (yield-
ing flat pencils) is denoted HSD, while the β-plane reduction (yielding projective pairs) is de-
noted HASD.

5 Interlude: spinor-vortex spaces and Hitchin’s equations

In [30], Hitchin considered solutions of the selfdual Yang–Mills equation on R4 invariant under
two translations. He observed that the Yang–Mills connection could be decomposed into a con-
nection over R2 and two Higgs fields. He combined these Higgs fields into a complex Higgs
field and then noticed that, remarkably, the reduced Yang–Mills equation becomes conformally
invariant provided this complex Higgs field is interpreted as a 1-form rather than a scalar. This
was a surprise, because although the selfdual Yang–Mills equation is conformally invariant, the
notion of translation-invariance is not. Furthermore, conformal invariance in two dimensions
implies an infinite-dimensional symmetry group.

The reduction process described here provides a simple explanation of this phenomenon:
W− = 0 is conformally invariant, and so is the notion of torus symmetry. Hence the equations
for (∂a, ψ, C, α, ϕ) are conformally invariant on a fixed Riemann surface with a complex line
bundleW and a Hermitian metric onW−1TN . In particular, it is clear that the equations (2.6)–
(2.8) for (∂a, ψ, C) are conformally invariant.

If C is not identically zero, then (on the open set where C is nonvanishing) the freedom in the
holomorphic structure onW can be fixed by declaring that C is an identification ofW2 with TN .
The length of C now defines a gauge, breaking conformal invariance. More precisely, given a Weyl
derivative D, the Chern connection on W only agrees with the connection induced from TN
if D = Dg, where g is the metric induced by |C|. Equation (2.8) becomes 1

2s
g = −2 + 4|ψ|2g;

in particular, if ψ is zero, then g has constant negative curvature, which is the case studied by
Joyce [37], the hyperbolic spinor-vortex geometry.

On the other hand if C is identically zero, then ψ is holomorphic, so if ψ is not identically zero,
then (on the open set where ψ is nonvanishing), ψ trivializes W. Again this breaks conformal
invariance by introducing a natural gauge, |ψ|; the corresponding metric has constant positive
curvature (sg = 4). This is the spherical spinor-vortex geometry.

Finally if C and ψ both vanish, then the holomorphic structure can be fixed by setting W =
TN , so that the Chern connection on W−1TN is trivial. This trivial spinor-vortex geometry
does not break conformal invariance.

The Yang–Mills equation is reduced to two dimensions by interpreting the Higgs fields as
a section Φ of W−1 ⊗R End(V ), using ϕ. The resulting gauge field equations are independent
of (α,ϕ), i.e., they are intrinsic to the spinor-vortex space. On a trivial spinor-vortex space,
W = TN , so Φ becomes an endomorphism-valued 1-form, and, as remarked already, the gauge
field equations for (A,Φ) are Hitchin’s equations. Thus it is the isomorphism ϕ, and the geometry
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of the trivial spinor-vortex space that are responsible for the interpretation of the Higgs fields
as a 1-form, rather than as scalars.

6 Selfdual spaces from gauge fields

In Sections 2 and 4, background geometries and gauge field equations were found by reducing the
selfduality equation for conformal structures and Yang–Mills fields respectively. In the approach
taken, the symmetry group H, and the pair (α,ϕ) defining the reduction, decoupled from the
construction, and the reduced background geometry and gauge field equations were found to be
independent of these data.

In some sense, this was a sleight of hand, since (α,ϕ) were used to define the data on the
quotient which make up the background geometry (i.e., D, ψ and C). However, the procedure
may be turned around: starting with the background geometry, these definitions, originally
obtained by imposing selfduality on the torsion TD, may be viewed as equations for the pair
(α,ϕ). Indeed, applying ϕ to the formulae (2.1)–(2.3) for TD gives:(

ϕ ◦ TD
)
(U, V ) = [ϕ(U), ϕ(V )]h, (6.1)(

ϕ ◦ TD
)
(U,X) = (Dα

Xϕ)(U)− ϕ
(
〈C(U), X〉

)
, (6.2)(

ϕ ◦ TD
)
(X,Y ) = Fα(X,Y )− ϕ

(
ψ(X,Y )

)
. (6.3)

The right hand sides of these formulae correspond precisely to the right hand sides of (4.1)–(4.3).
Hence the selfduality equation for TD coincides with the gauge field equation for (α,ϕ) on the
background geometry.

This leads immediately to an inverse construction of selfdual spaces with symmetry from
gauge fields with `-dimensional gauge group on k-dimensional background geometries, where
k+ ` = 4. However, the construction can be generalized further by noting that the selfduality of
TD is implied by the gauge field equation as long as ϕ : V → hQ is injective. I will now explain
this generalized construction.

Let P → Q be a principal H-bundle with an H-connection α and a Higgs field ϕ : V → hQ,
where hQ = P ×H h. Suppose that H acts transitively on an `-manifold Σ`, where Q has
dimension k = 4− `, so that the associated fibre bundle P ×H Σ` is four-dimensional.

The basic example is the case that the action of H is also free, in which case Σ` is a principal
homogeneous space for H and therefore there is a commuting free transitive action of a Lie
group H̃ isomorphic to H. Choosing a basepoint on Σ` identifies H̃ and Σ` with H and the two
actions are the left and right regular actions. However, it can be useful to distinguish between
the structure group H, and the symmetry group H̃: if P is a principal H-bundle over Q, then
P ×H Σ` is a principal H̃-bundle.

For general Σ`, there is still an associated bundle π : P×HΣ` → Q, but this does not have any
symmetries in general, since there is no longer a commuting right action of H̃ on Σ`. However,
the fibre of hQ = P ×H h is still a Lie algebra of vertical vector fields on P ×H Σ`, which will
be called “invariant”, but for consistency with the case Σ` = H, the Lie bracket of these vector
fields is opposite to the Lie bracket in hQ. The map ϕ : V → hQ therefore induces a map ϕ̂
from π∗V to the vertical bundle of P ×H Σ`. These bundles both have rank `, so let M be
an open subset of P ×H Σ` where ϕ̂ is an isomorphism. Note that ϕ̂ sends basic sections to
“invariant” vector fields.

Equip TM ∼= (π|M )∗(V ⊕ TQ) with the direct sum conformal structure, so that a conformal
connection D on V induces a conformal connection on TM . As before, a modified conformal
connection D can be constructed, using the pullbacks of ψ and C: the torsion of this connection
will be vertical-valued, and will satisfy (6.1)–(6.3). Since ϕ is injective, the torsion will be
selfdual if (α,ϕ) satisfy the gauge field equation on Q. The calculation of the curvature of D
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carries over immediately to this more general setting, hence Joyce’s Lemma can be applied to
establish the following result.

Theorem 6.1. Let H be a transitive group of diffeomorphisms of an `-manifold Σ`. Suppose that
(α,ϕ) is a solution of the gauge field equation (i.e., the Nahm, Hitchin or Bogomolny equation)
on a principal H-bundle P → Q, where Q is a (4−`)-dimensional background geometry (i.e., an
Einstein–Weyl, spinor-vortex or Riccati space). Then on the open subset M of π : P ×H Σ` → Q
where ϕ̂ is an isomorphism, (α,ϕ) identifies TM with π∗(V⊕TQ), and the direct sum conformal
structure is selfdual.

For later work, it will be useful to have a more explicit description of the construction of
this theorem. Choose a local conformal frame ei for TQ⊕ V over Q compatible with the direct
sum decomposition, and a local section of P . Then, by identifying M locally with Q × Σ` and
viewing the connection α as a Vect(Σ`)-valued 1-form on Q, the components of (α,ϕ) with
respect to ei define four vector fields Xi on Σ`: X1, . . . Xk are the components of the connection
and Xk+1, . . . X4 are the components of ϕ. Since ei is a conformal frame on TQ ⊕ V, the
conformal structure on M is clearly represented contravariantly by the metric

(e1 −X1)2 + · · ·+ (ek −Xk)
2 +Xk+1

2 + · · ·+X4
2. (6.4)

This is a metric on T ∗M . The covariant metric on TM is dual to this, and will be discussed in
Section 8. In fact it is sometimes more convenient to use contravariant metrics, since they push
forward easily.

Remarks 6.2.

(i) Note that the calculations leading to this theorem are entirely formal and so, at least
for local considerations, H need not be finite-dimensional, but could be any subgroup of
Diff(Σ`). Hence the conformal aspects of Ward’s construction [62] are included in the
theorem when the background geometry is trivial.

(ii) Theorem 6.1 provides a new interpretation of the switch map [41, 43]. Let M be a selfdual
conformal 4-manifold with freely acting `-dimensional symmetry group H. Then the local
quotient Q = M/H is an background geometry of dimension 4− `. An invariant selfdual
Yang–Mills field (on a principal bundle P ) with `-dimensional gauge group G descends to
a solution of the gauge field equation on Q, from which a new selfdual space M̃ may be
constructed.

Note the following features of this interpretation.

• The construction avoids considering the (4 + `)-dimensional manifold P explicitly.

• The procedure decomposes into two steps of independent interest: the construction
of gauge fields on Q from H-invariant selfdual Yang–Mills fields on M , and the
construction of selfdual spaces from gauge fields on Q.

• The group G need not be `-dimensional, so long as it acts transitively on an `-
manifold. Hence the constructions of [19] fit into the same framework.

(iii) In the case that Σ` = H, M has symmetry groupH, but enlarging the groupH acting on Σ`

gives less symmetry, rather than more symmetry, since there are fewer diffeomorphisms
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of Σ` commuting with the H-action. In general there will be none, and M will have no
symmetry. In other words, the group H is a structure group rather than a symmetry group:
only in the case of H acting freely does it happen that the commuting symmetry group is
(isomorphic to) H.

Selfdual conformal manifolds with symmetry groups which do not act freely are rather special:
for instance they are foliated by the surfaces of equal isotropy group, and the curvature must
be invariant under the isotropy representation. Some examples arise as very special cases of the
constructions of this paper. More precisely, if G is a (not necessarily free or transitive) group of
diffeomorphisms of Σ`, then G will be a symmetry group of M provided there is a representation
of G on V such that ϕ and α are G-invariant. In the case that G acts trivially on V, this means
that the structure group H reduces to the group of diffeomorphisms of Σ` commuting with G.
On the other hand, there are interesting examples where G acts nontrivially on V, see for
instance [33].

The use of structure groups rather than symmetry groups also turns out to be natural when
partial reductions are considered in view of the following remark. If H acts freely on M and K is
a subgroup of H, then K also acts freely on M and the structure group of M/K is H/K0 acting
on H/K, where K0 is the maximal normal subgroup of H lying in K. For example, if SU(2)
acts freely on M then SO(3) acting on S2 will be the induced structure group for M/U(1). In
Section 8, it will be shown that such partial reductions M/K arise directly from gauge fields
on M/H with gauge group H/K0.

Addenda: generalized constructions from null reductions

The same principles may be applied to null reductions to obtain constructions of selfdual 4-
manifolds from twisted flat pencils and projective pairs, where the gauge group is a transitive
group of diffeomorphisms of a surface Σ2. The only change needed, relative to the nondegenerate
case, is that the conformal structure on M is obtained from the natural pairing between VM
and π∗TQ, rather than conformal structures on each summand.

The construction of selfdual conformal structures from flat pencils of connections on a surface
is not at all new: as discussed in the following Interlude, it underpins Plebanski’s heavenly
equations and interpretations of hypercomplex and hyperkähler structures as topological chiral
models. On the other hand, the construction of selfdual conformal structures from twisted flat
pencils with gauge group Diff(Σ2) has not been studied, as far as I am aware.

The analogous story for projective pairs on a projective surface underpins the Dunajski–
West construction of selfdual conformal manifolds with a null Killing vector [72]. In [65], their
construction is shown to be a reduction of gauge group from Diff(Σ2) to the subgroup commuting
with a nonvanishing vector field.

7 Interlude: hypercomplex and hyperkähler structures

From the point of view of integrable systems, hypercomplex and hyperkähler 4-manifolds are
considerably simpler than the general selfdual space.

Recall that a hypercomplex structure consists of a triple I, J , K of integrable complex
structures, satisfying the quaternionic relation IJ = K. It is well known that a hypercomplex
manifold comes equipped with a unique torsion-free connection D with DI = DJ = DK = 0,
called the Obata connection [45].

A hypercomplex 4-manifold possesses a canonical conformal structure, defined by requiring
that (X, IX, JX,KX) is a conformal frame for any nonzero tangent vector X. The Obata
connection preserves this conformal structure, and is thus a Weyl connection. Since I, J , K
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are anticommuting orthogonal complex structures, their (weightless) Kähler forms are either
all selfdual or all antiselfdual: I fix the orientation by requiring that they are antiselfdual.
Therefore D is flat on L2 ∧2

− T
∗M , and in particular, M is a selfdual conformal manifold. The

hypercomplex structure is hyperkähler if and only if D is exact, i.e., the Obata connection
preserves a length scale, and hence a metric in the conformal class.

The simplicity of the hypercomplex condition manifests itself in the following local description
of hypercomplex 4-manifolds.

Theorem 7.1. Let V0, V1, V2, V3 be linearly independent vector fields on a 4-manifold M and
let η0, η1, η2, η3 be the dual coframe of 1-forms (with ηi(Vj) = δij). Define almost complex
structures I, J , K by

IV0 = V1, IV2 = V3, JV0 = V2, JV3 = V1, KV0 = V3, KV1 = V2.

Then the following are equivalent.

1. The frame Vi satisfies the equations

[V0, V1] + [V2, V3] = 0, (7.1)

[V0, V2] + [V3, V1] = 0, (7.2)

[V0, V3] + [V1, V2] = 0. (7.3)

2. For each i, dηi is selfdual with respect to the conformal structure represented by the metric
g = η2

0 + η2
1 + η2

2 + η2
3 (where I, J , K are antiselfdual).

3. (I, J,K) is hypercomplex with Obata connection D and divD ηi = 0 for all i.

Any hypercomplex 4-manifold M arises locally in this way, and is hyperkähler if and only if the
vector fields Vi all preserve a volume form ν.

The hyperkähler version of this theorem is due to Mason–Newman [40], following a construc-
tion of Ashtekar–Jacobson–Smolin [2] which will be described below. The hyperkähler case is
simpler, because for D exact, the ηi are divergence-free with respect to D if and only if the Vi
preserve a volume form – see (7.4).

The general construction was first written explicitly by Joyce [37], but the fact that all four-
dimensional hypercomplex structures arise in this way is due to Dunajski [17]. The description
I have given differs slightly from these references, and owes a great deal to the approaches of
Hitchin [33] (see below) and Grant–Strachan [26]. Since the role of the divergence condition has
perhaps not been fully elucidated before, and will be useful later, I give a complete proof.

Proof. Since

ηi([Vj , Vk]) = −dηi(Vj , Vk)

for all i, j, k, it is manifest that (i) and (ii) are equivalent formulations of the same equations.
Also, (7.2) and (7.3) clearly imply that I is integrable since they may be rewritten as

[V0 + iV1, V2 + iV3] = [V0, V2]− [V1, V3] + i([V0, V3] + [V1, V2]) = 0.

Similarly (7.3) and (7.1) imply that J is integrable, and (7.1) and (7.2) imply thatK is integrable.
Now note that for any 1-form η on a hypercomplex manifold dη is selfdual if and only if it is
orthogonal to the weightless Kähler forms of I, J , K. Since DI = DJ = DK = 0, this is
equivalent to Iη, Jη and Kη being divergence-free with respect to D (for instance, divD(Iη) =∑
i
〈εi, IDeiη〉, and I is skew). Hence (iii) is equivalent to (i) and (ii).
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On any hypercomplex manifold, the conditions divD η = 0 and dη− = 0 form a deter-
mined first-order linear system for a 1-form η, which therefore admits local (non-null) solutions:
(η, Iη, Jη,Kη) is then a divergence-free conformal coframe.

It remains to characterize the hyperkähler case in terms of volume forms – or length scales.
Suppose that µ = efµg is a length scale; then µ−4Vi = µ−4µ2

gηi = e−2fµ−2ηi and so

div
(
µ−4Vi

)
= divD

(
e−2fµ−2ηi

)
=
〈
D
(
e−2fµ−2

)
, ηi
〉

+ e−2fµ−2 divD ηi. (7.4)

Since divD ηi = 0, D preserves the length scale efµ = e2fµg if and only if the Vi all preserve the
volume form ν = µ−4 (note that ∧4T ∗M ∼= L−4, using the orientation of M). �

There is an equivalent way to describe the divergence-free condition on the coframe, using
spinors [17, 41]. Recall that any conformal 4-manifold locally admits (weightless) spin bun-
dles $±, which are SL(2,C) bundles such that $+⊗$− is isomorphic to the complexified weightless
cotangent bundle LT ∗M ⊗ C with the metric induced by the two area forms. The conventions
are chosen so that L2 ∧2

− T
∗M ⊗ C = S2$−. On a hypercomplex manifold D induces a flat

connection on $− preserving the area form.
For Euclidean reality conditions, the real structure on the LT ∗M ⊗C is induced by (parallel)

quaternionic structures on $±. If frames (ρ0, ρ1) for L−1$+ and (σ0, σ1) for $− are chosen so that
the quaternionic structure sends ρ0 to ρ1 and σ0 to σ1, then

η0 + iη1 = ρ0 ⊗ σ0, η2 + iη3 = ρ0 ⊗ σ1,

η0 − iη1 = ρ1 ⊗ σ1, η2 − iη3 = −ρ1 ⊗ σ0

defines a real conformal coframe (η0, η1, η2, η3).

Proposition 7.2. Suppose that M is hypercomplex with Obata connection D and that (σ0, σ1)
is a D-parallel frame for $−.

1. Let ρ be a section of L−1$+. Then ρ⊗ σ0 and ρ⊗ σ1 are divergence-free with respect to D
if and only if ρ satisfies the Dirac–Weyl equation

∑
i
εi ·Deiρ = 0.

2. Let η be a 1-form. Then η ·σ0 and η ·σ1 satisfy the Dirac–Weyl equation if and only if
divD η = 0 and dη− = 0.

Here the dot denotes the natural (Clifford) action T ∗M ⊗ Lw$± → Lw−1$∓.

Proof. These are direct calculations:

(i) For A = 0, 1, divD(ρ⊗ σA) =
∑
i
εi(Deiρ⊗ σA) = ω−

(∑
i
εi ·Deiρ, σA

)
.

(ii) For A = 0, 1,
∑
i
εi ·Dei(η ·σA) =

∑
i
εi · (Deiη) ·σA = (divD η)σA + dη ·σA.

In (i) ω− is the area form on $−, and in (ii) the Clifford action of dη+ is trivial. �

An important class of solutions to the equations divD η = 0 and dη− = 0 is obtained by taking
η = dr where ∆Dr := divD dr = 0. Evidently the equation ∆Dr = 0 admits local solutions
on any hypercomplex 4-manifold. Hence the following result is obtained, which is the original
construction of Ashtekar–Jacobson–Smolin [2] in the hyperkähler case, and is due to Hitchin [33]
in general.

Theorem 7.3. Let Φ be a solution of the Nahm equation (on a trivial Riccati space) with
gauge group Diff(Σ3) for some 3-manifold Σ3. Then the selfdual space constructed from Φ is
hypercomplex. Any hypercomplex 4-manifold arises locally in this way, and is hyperkähler if and
only if there is a reduction to the gauge group SDiff(Σ3).
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Proof. Let r be an affine coordinate on a trivial Riccati space C, choose a conformal trivi-
alization of E , and write the components of Φ, which are vector fields on Σ3, as (V1, V2, V3).
Then the vector fields (∂r, V1, V2, V3) on M ⊂ C × Σ3 satisfy (7.1)–(7.3) as a consequence of
the Nahm equation, and so the dual frame (dr, η1, η2, η3) has dηi selfdual (note that I use the
opposite orientation to [33]). Conversely any hypercomplex manifold arises locally in this way
by letting r be a solution of ∆Dr = 0 and setting (η1, η2, η3) = (Idr, Jdr,Kdr).

Finally note that ∂r and Vi preserve a volume form e−4fdr ∧ η1 ∧ η2 ∧ η3 if and only if

L∂r
(
e−4fη1 ∧ η2 ∧ η3

)
= 0 and dr ∧ LVi

(
e−4fη1 ∧ η2 ∧ η3

)
= 0.

Here I use the fact that dr(Vi) = 0, dr(∂r) = 1 and that ι∂r(e
−4fη1 ∧ η2 ∧ η3) = 0. The first

equation says that e−4fη1 ∧ η2 ∧ η3 is an r-independent volume element on Σ3 (i.e., a parallel
volume form on C × Σ3 → C), and the second equation says that the Vi are volume-preserving
vector fields for each fixed r (i.e., on each fibre of C ×Σ3 → C). This is exactly what it means
to have a reduction to SDiff(Σ3). �

As this construction involves taking dη0 = 0, it is natural to ask if one can find divergence-
free coframes with dη0 = 0 = dη1 and hence formulate the hypercomplex equations as Hitchin
equations on a trivial spinor-vortex space.

A number of constructions of four-dimensional hyperkähler metrics from two-dimensional
integrable models are known, due to Park [46], Ward [62] and (later) Husain [34]: see [58] for
a review. Unfortunately, it is not always clear in these constructions whether all hyperkähler
metrics are obtained, what choices are needed to obtain the integrable model from a hyperkähler
metric, and if they are compatible with Euclidean reality conditions. In particular, as far as I
can tell, none of these works establish an equivalent formulation of the Euclidean hyperkähler
condition as a Euclidean two-dimensional integrable model.

Indeed, the usual approach is to use the equation [V0 + iV1, V2 + iV3] = 0 to introduce
coordinates (x, y, u, v) such that V0 + iV1 = ∂x and V2 + iV3 = ∂y. There are several variations
on this theme, since the meaning of ∂x and ∂y in (x, y, u, v) coordinates depends on u and v,
leading to different forms for V0− iV1 and V2− iV3. This procedure tends to obscure the nature
of the choice made to obtain the frame, making it more difficult to argue that any hyperkähler
metric admits such a frame.

Fortunately there is an alternative approach, which clarifies the choice of frame, is easily
made compatible with any reality conditions, and generalizes to the hypercomplex case. The
following elementary observation is very well known, at least in the hyperkähler case.

Proposition 7.4. Let z be a complex function on a hypercomplex 4-manifold (M,D) which
is holomorphic with respect to one of the complex structures. Then ∆Dz = 0, so that dz is
a complex null 1-form which is divergence-free with respect to D.

Proof. If z is I-holomorphic, then Idz := −dz ◦ I = −idz. Now I is skew and DI = 0, so
divD(Idz) =

∑
i
〈εi, IDeidz〉 = 0 since d2z = 0. Hence ∆Dz = divD(dz − iIdz) = 0. �

Remark 7.5. I have presented this observation using language adapted to Euclidean signature
manifolds. In Kleinian signature, some of the complex structures are imaginary, so that iI (say)
is a real involution, inducing a decomposition TM = T+M ⊕ T−M into its ±1 eigenspaces.
These distributions are integrable, and the analogue of a holomorphic function is a function
constant on one of the families of integral surfaces – such functions can of course be real valued.
Note that the orientation 2-forms of these integral surfaces are the (weightless) Kähler forms of
the null complex structures J ± iK, which are decomposable (and up to rotation, J and iK are
real).
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The Euclidean and Kleinian cases can be considered together by first working on a com-
plexified hypercomplex manifold, then imposing reality conditions. The above proposition ap-
plies equally in the complexified setting. Other, more Kleinian, arguments are also available
(cf. [13, 50]).

Before discussing the non-null reduction to two dimensions, I will briefly discuss the null
reduction (closely related to Plebanski’s heavenly equations [50]) which is used in the literature
to relate the selfdual vacuum equation to a topological chiral model [46, 62]. I present the
generalizations to the hypercomplex case, following [17, 26].

Topological models and heavenly equations

Choose independent functions (w, z), both holomorphic with respect to I; then dw,dz are null
1-forms with 〈dw,dz〉 = 0, and one can take these to be η0 + iη1 and η2 + iη3. This can be done
compatibly with Kleinian reality conditions by taking iI and (w, z) real, but is incompatible
with Euclidean reality conditions.

Locally, M is a bundle of null surfaces over a quotient surface N with coordinates w, z.
Choosing fibre coordinates amounts to choosing a local trivialization of this bundle, and locally
one can take M = N×Σ2. Then V0−iV1 = ∂w−α, V2−iV3 = ∂z−β, V0 +iV1 = φ, V2 +iV3 = ψ,
where α, β, φ, ψ are vector fields tangent to the fibres. The equations (7.1)–(7.3) now read:

[∂w − α, ∂z − β] = 0, [φ, ψ] = 0, [∂z − α, φ] + [∂w − β, ψ] = 0,

which are the equations for a pencil of flat connections d +A+ λΦ with gauge group Diff(Σ2),
where A = −αdw − βdz and Φ = −ψdz + φdw. (This is also known as a topological chiral or
sigma model.)

Plebanski’s first and second heavenly equations [50], and their generalizations to the hyper-
complex case (due to Grant–Strachan [26] and Dunajski [17] respectively) are obtained by fixing
the gauge freedom in different ways.

• First, since d + A is flat, one can set A = 0 (i.e., α = β = 0), then integrate the equation
dΦ = 0 (i.e., φz + ψw = 0) to get V0 − iV1 = ∂w, V2 − iV3 = ∂z, V0 + iV1 = Uw, V2 + iV3 = −Uz
for a vector field U tangent to the fibres (with Uz and Uw linearly independent). The remaining
equation is [Uw, Uz] = 0. If U is area preserving on the fibres, with local hamiltonian Ω, then
Plebanski’s first equation {Ωw,Ωz} = 1 is obtained, where {·, ·} denotes the Poisson bracket
with respect to a suitably scaled area form on the fibres.

• Second, since [φ, ψ] = 0, one can choose the fibre coordinates (x, y) so that φ = ∂x and
ψ = −∂y, then integrate the equation αx−βy = 0 to give V0− iV1 = ∂w−γy, V2− iV3 = ∂z−γx,
V0 + iV1 = ∂x, V2 + iV3 = −∂y. The remaining equation is γxw − γyz = [γx, γy]. Again the area
preserving condition reduces everything to a single function Θ, satisfying Plebanski’s second
heavenly equation Θxw + Θyz = {Θx,Θy}.

All complexified hypercomplex and hyperkähler metrics are obtained from these construc-
tions, but information about Euclidean real slices is lost.

Hypercomplex structures from the Hitchin equations

In order to obtain a formulation compatible with Euclidean reality conditions, take z to be
I-holomorphic and z̃ to be (−I)-holomorphic. Then dz and dz̃ are null and so dz + dz̃ and
I(dz + dz̃) = −i(dz − dz̃) are orthogonal, closed, divergence-free 1-forms of the same length.
Generically, this length will be nonzero on a dense open set, and one can take η0 + iη1 = dz and
η0 − iη1 = dz̃. Euclidean reality conditions are easily obtained by setting z̃ = z̄ for I real.
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Theorem 7.6. Let (A,Φ) be a solution to the Hitchin equations (on a trivial spinor-vortex
space), with gauge group Diff(Σ2) for some 2-manifold Σ2. Then the selfdual space constructed
from (A,Φ) is hypercomplex. Any hypercomplex 4-manifold arises locally in this way, and is
hyperkähler if and only if there is a reduction to the gauge group SDiff(Σ2).

Proof. Choose conformal coordinates z = x + iy, z̃ = x − iy on a trivial spinor-vortex space
and write A = αdz + α̃dz̃, Φ = φdz + φ̃dz̃, where α, α̃, φ, φ̃ are complex vector fields on Σ2.
Then the Hitchin equations become

[∂z − α, φ̃] = 0, [∂z̃ − α̃, φ] = 0, [∂z − α, ∂z̃ − α̃]− [φ, φ̃] = 0,

and so the vector fields V0 − iV1 = ∂z − α, V0 + iV1 = ∂z̃ − α̃, V2 − iV3 = φ̃ and V2 + iV3 = φ
satisfy equations (7.1)–(7.3). Hence the selfdual space is hypercomplex, with a divergence-
free coframe (η0, η1, η2, η3) such that η0 + iη1 = dz and η0 − iη1 = dz̃ so that η0 and η1 are
closed. Conversely, any hypercomplex 4-manifold admits such a divergence-free coframe, so the
distribution generated by V2 and V3 (i.e., annihilated by η0 and η1) is integrable. Under this
assumption the form of the vector fields given above is entirely general, and so any hypercomplex
structure arises in this way.

The characterization of the hyperkähler case is entirely analogous to Theorem 7.3: Vi preserve
a volume form e−4fdz ∧ dz̃ ∧ η2 ∧ η3 if and only if the area form e−4fη2 ∧ η3 is parallel with
respect to the connection A = αdz + α̃dz̃, and the vector fields φ, φ̃ are area-preserving (on
each fibre), which is exactly what it means to have a reduction to SDiff(Σ2). �

Remark 7.7. This result can also be interpreted in Kleinian signature, when the Hitchin equa-
tions are replaced by harmonic maps into a Lie group or the principal chiral model. The latter
is the context for Husain’s formulation [34]. The non-null reduction (in the hyperkähler case) is
also discussed briefly by Ward [62] and Ueno [58].

Although this discussion has been local, there are intriguing connections with the global
geometry of elliptically fibred K3 surfaces. Yau’s solution of the Calabi problem shows that
on any K3 surface there is a unique hyperkähler metric in each Kähler class, but no explicit
description is known. Any such hyperkähler metric will correspond to a solution of the SDiff(Σ2)
Hitchin equations, once a holomorphic function is chosen on a suitable open subset of the K3
surface to define the dimensional reduction. Now there are K3 surfaces which admit fibrations
over CP1 (meromorphic functions) with elliptic curves as fibres, and, generically, 24 singular
fibres. On the complement of the singular fibres, there is therefore a dimensional reduction to
the Hitchin equations (on CP1 minus 24 points) with gauge group SDiff(T 2). The work of Gross
and Wilson [27] shows that this solution is well approximated by an Abelian solution (gauge
group T 2) defining a ‘semi-flat’ metric.

Remark 7.8. Continuing the development of this section, it is natural to ask if the hypercomplex
equations are equivalent to the Diff(S1) Bogomolny equation on R3. In fact, it is shown in [8] that
the selfdual space constructed from a solution of the Diff(S1) generalized Bogomolny equation
on an Einstein–Weyl space B is hypercomplex if B is “hyperCR” (see Section 9). However,
not all hypercomplex structures arise this way, since for the hyperkähler case in particular,
SDiff(S1) = U(1) and only metrics with symmetry are obtained.

Remark 7.9. The Mason–Newman–Dunajski–Joyce construction of Theorem 7.1 also has a gau-
ge-theoretic interpretation, of course: the Vi satisfy gauge field equations on a trivial zero-dimen-
sional geometry (!) with gauge group Diff(Σ4) for some 4-manifold Σ4. It has been observed in
many places (in particular [40]) that these equations are the reduction of the selfdual Yang–Mills
equations on R4 by four translations, and it would therefore be natural to extend the integrable
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background geometries programme to the zero-dimensional case. The background geometry is
a four-dimensional conformal vector spaceM together with an element Y of ∧2

−M∗⊗M which
acts as a right hand side for equations (7.1)–(7.3). The background equation is an unpleasant
quadratic condition on Y, which I have left as an exercise for the enthusiastic reader: including
all the constructions involving this zero-dimensional geometry would have added unnecessarily
to the length of this paper.

8 Background geometries from gauge fields

Theorem 6.1 admits the following generalization.

Theorem 8.1. Let H be a transitive group of diffeomorphisms of an `-manifold Σ`. Suppose
that (α,ϕ) is a solution of the gauge field equation on a principal H-bundle P → Q, where Q is
a k-dimensional background geometry and k + ` 6 4. Then the open subset of π : P ×H Σ` → Q
where ϕ̂ is surjective carries naturally the structure of a (k+`)-dimensional background geometry.

Proof. The idea is to apply Theorem 6.1 using the group H × R4−k−` acting on Σ` × R4−k−`.
Suppose that ϕ̂ is surjective at some point x of the fibre of P ×H Σ` over q ∈ Q. Let K 6 V
be the kernel of ϕ̂ at x. Then there exists a solution (α0, ϕ0) of the gauge field equation, with
gauge group R4−k−`, defined on a neighbourhood of q, such that kerϕ0 ∩ K = {0} at q: the
linear gauge field equation can be solved with any initial condition. The pair (ϕ̂, ϕ̂0) is therefore
an isomorphism on a neighbourhood M = U ×R4−k−` of {x}×R4−k−` in

(
P ×H Σ`

)
×R4−k−`.

The resulting selfdual conformal structure on M clearly admits R4−k−` as a symmetry group.
Hence the quotient U ⊆ P ×H Σ` is a (k+ `)-dimensional background geometry by the results of
Section 2. However, the conformal metric on this quotient is clearly independent of the choice
of (α0, ϕ0), since the pushforward of the inverse metric (6.4) from Σ` × R4−k−` to Σ` kills the
components of the vector fields Xi in R4−k−`. Hence the conformal metric is uniquely defined
wherever ϕ̂ is surjective. One also sees that the other fields defining the background geometry
are well defined, but the details here depend on the geometry and are rather complicated. The
general formulae are given in the following subsections: these will complete the proof, since they
are manifestly well defined. �

I now give some explicit formulae, using the notation (A,Φ) for the gauge fields, rather
than (α,ϕ). From the above description it is clear at least that the conformal metric on the
(k + `)-dimensional background geometry may be represented contravariantly by

(e1 −X1)2 + · · ·+ (ek −Xk)
2 +Xk+1

2 + · · ·+X4
2,

but note that Xk+1, . . . X4 are 4−k vector fields on an `-manifold Σ` with ` 6 4−k, so inverting
this metric is only straightforward when k + ` = 4. It will be convenient therefore to introduce
a volume form ν on Σ` and hence present the explicit formulae in an ‘SDiff-gauge’. This will
also make it easy to understand the volume-preserving case.

8.1 Riccati space constructions

First suppose that Φ is a generalized Nahm field with values in Vect(Σ3) and that ν is a volume
form on Σ3. Then the contravariant metric

∂2
r + 〈Φ,Φ〉 is dual to dr2 + 〈η, η〉,

where

η =
ν(Φ× Φ, ·)
ν(Φ× Φ× Φ)



30 D.M.J. Calderbank

is a section of E∗ with values in Ω1(Σ3) (the space of 1-forms). Here and in the following ×
denotes the cross product E∗ ⊗ E∗ → L−1E∗ (given by the wedge product and Hodge star
operator): the Vect(Σ3) values of Φ are then contracted into the entries of the volume form ν.
dr2 + 〈η, η〉 is the covariant form of the selfdual conformal structure obtained from Φ.

Now suppose that Φ is a generalized Nahm field with values in Vect(Σ2) and that ν is an
area form on Σ2. Let F be an Abelian Nahm field acting on R with coordinate θ. Then Φ+F∂θ
is a generalized Nahm field with values in Vect(Σ2×R) and ν ∧ dθ is a volume form on Σ2×R.
The selfdual conformal structure is therefore represented by dr2 + 〈η, η〉 where now

η =
ν(Φ× Φ)dθ + F × ν(Φ, ·)

〈F, ν(Φ× Φ)〉
.

Straightforward manipulations and triple cross product identities may be used to rediagonalize
the conformal metric

dr2 + 〈η, η〉 = dr2 +
|ν(Φ× Φ)|2dθ2 + 2〈ν(Φ× Φ), F × ν(Φ, ·)〉dθ + |F × ν(Φ, ·)|2

〈F, ν(Φ× Φ)〉2

= dr2 +
|ν(Φ× Φ)|2|F × ν(Φ, ·)|2 − 〈ν(Φ× Φ), F × ν(Φ, ·)〉2

|ν(Φ× Φ)|2〈F, ν(Φ× Φ)〉2

+
|ν(Φ× Φ)|2

〈F, ν(Φ× Φ)〉2

(
dθ +

〈ν(Φ× Φ), F × ν(Φ, ·)〉
|ν(Φ× Φ)|2

)2

= dr2 +
〈ν(Φ, ·), ν(Φ, ·)〉
|ν(Φ× Φ)|2

+
|ν(Φ× Φ)|2

〈F, ν(Φ× Φ)〉2

(
dθ +

〈ν(Φ× Φ), F × ν(Φ, ·)〉
|ν(Φ× Φ)|2

)2

.

Hence the conformal structure on the quotient by ∂θ is represented by the metric

dr2 +
〈ν(Φ, ·), ν(Φ, ·)〉
|ν(Φ× Φ)|2

,

which is, of course, inverse to ∂2
r + 〈Φ,Φ〉: note in particular that 〈ν(Φ×Φ),Φ〉 = 0, expressing

the fact that neither the components of Φ, nor the dual 1-form components of ν(Φ, ·) are linearly
independent (pointwise on Σ2).

I want to give the Weyl structure in an SDiff-gauge, with representative metric

|ν(Φ× Φ)|2dr2 + 〈ν(Φ, ·), ν(Φ, ·)〉.

This metric can be conveniently diagonalized as

g = |ν(Φ× Φ)dr + ν(Φ, ·)|2

using the fact that 〈ν(Φ × Φ), ν(Φ, ·)〉 = 0. It takes quite a bit of calculation to compute the
Jones–Tod Weyl structure ω in this gauge (i.e., D = Dg + ω), but the result is

ω =

〈
2B
(
ν(Φ× Φ)

)
− ν(Φ× Φ)× divν Φ, ν(Φ× Φ)dr + ν(Φ, ·)

〉
|ν(Φ× Φ)|2

.

Writing ν = dp ∧ dq and expanding the cross products in components gives a fuller expression

g = η2
1 + η2

2 + η2
3, (8.1)

ω =

2
∑
j,k

Bjkνjηk −
∑
i,j,k

εijkνi(φ
j
p + ψjq)ηk

ν2
1 + ν2

2 + ν2
3

,
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where

ηi = νidr + φidq − ψidp,
ν1 = φ2ψ3 − φ3ψ2, ν2 = φ3ψ1 − φ1ψ3, ν3 = φ1ψ2 − φ2ψ1,

and

Φ =
(
φ1, φ2, φ3

)
∂p +

(
ψ1, ψ2, ψ3

)
∂q.

Well, nobody said it was going to be easy! The reward is the knowledge that this Weyl structure
is Einstein–Weyl if B satisfies the matrix Riccati equation and Φ is a generalized Nahm field on
this Riccati space.

The construction of spinor-vortex spaces from Riccati spaces is perhaps the most awkward
to make explicit, because of the gauge freedom in the bundle W on a spinor-vortex space. If Φ
is a generalized Nahm field on a Riccati space with values in Vect(Σ1) for a 1-manifold Σ1 with
coordinate t, then the only natural way to proceed is to take W to be the kernel of Φ in the
pullback of E to C×Σ1. This kernel is not preserved, in general, by the connection D on E , but
is preserved by the conformal connection

∇ = D +
Φr MΦdr + Φ̇MΦdt

|Φ|2
,

where an affine coordinate r and a D-parallel trivialization of E have been introduced. The
complex structure on W is given by cross product with Φ/|Φ|, while the holomorphic structure
is defined using the connection

∇+
〈BΦ,Φ〉 id
|Φ|2

dr

on W. The other two fields on the spinor-vortex space are

C = B − BΦ⊗ Φ + Φ⊗ BΦ

|Φ|2
+
〈BΦ,Φ〉

2|Φ|2

(
id +

Φ⊗ Φ

|Φ|2

)
,

ψ =
Φ× (2BΦ + Φ× Φ̇)

|Φ|2
.

These fields satisfy the spinor-vortex equations if Φ is a generalized Nahm field on a Riccati
space. (Since Φ/|Φ| is D-parallel, it is reasonably straightforward to check (2.6)–(2.7) directly,
although (2.8) is harder.)

8.2 Spinor-vortex space constructions

The approach here is the same as in the previous subsection, and the details are slightly less
complicated. For explicitness, introduce conformal coordinates z = x+ iy, z̃ = x− iy on N and
let ν be an area form on Σ2. First suppose that (Φ, Φ̃, αdz + α̃dz̃) is a generalized Hitchin field
with values in Vect(Σ2). Then the contravariant metric

4(∂z − α)(∂z̃ − α̃) + 4〈Φ, Φ̃〉 is dual to dzdz̃ + 〈η, η̃〉,

where

η =
ν(Φ, ·) + ν(Φ, α)dz + ν(Φ, α̃)dz̃

ν(Φ, Φ̃)
and η̃ =

ν(Φ̃, ·) + ν(Φ̃, α)dz + ν(Φ̃, α̃)dz̃

ν(Φ̃,Φ)
.
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Now suppose that (Φ⊗ ∂t, Φ̃⊗ ∂t, (αdz+ α̃dz̃)⊗ ∂t) is a generalized Hitchin field with values
in Vect(Σ1) and that (F∂θ, F̃ ∂θ, (βdz + β̃dz̃) ⊗ ∂θ) is an Abelian Hitchin field acting on R
with coordinate θ. Adding these together produces a generalized Hitchin field with values in
Vect(Σ1 × R) and dt ∧ dθ is an area form on Σ1 × R. Direct substitution gives

η =
F (dt+ αdz + α̃dz̃)− Φ(dθ + βdz + β̃dz̃)

F Φ̃− ΦF̃
,

η̃ =
F̃ (dt+ αdz + α̃dz̃)− Φ̃(dθ + βdz + β̃dz̃)

F̃Φ− Φ̃F
.

It is straightforward to rediagonalize 〈η, η̃〉 to obtain the metric

dzdz̃ +
(dt+ αdz + α̃dz̃)2

4ΦΦ̃

− ΦΦ̃

(F Φ̃− ΦF̃ )2

(
dθ + βdz + β̃dz̃ − F Φ̃ + ΦF̃

2ΦΦ̃
(dt+ αdz + α̃dz̃)

)2

.

As in the Riccati space construction, the conformal structure is easy to obtain, and is dual
to 4(∂z − α)(∂z̃ − α̃) + 4Φ2∂2

t , while more work is required to compute the Jones–Tod Weyl
structure ω. The result, again in an SDiff-gauge (i.e., the gauge given by dt) is reasonably
simple, however,

g = 4ΦΦ̃dzdz̃ + (dt+ αdz + α̃dz̃)2,

ω =

(
α̇− 2C̃Φ

Φ̃

)
dz +

(
˙̃α− 2CΦ̃

Φ

)
dz̃ − 1

2

(
ψ + Φ̇

Φ
+
ψ̃ +

˙̃
Φ

Φ̃

)
(dt+ αdz + α̃dz̃). (8.2)

This Weyl structure is Einstein–Weyl if (Φ, Φ̃, αdz + α̃dz̃) is a generalized Hitchin field on
a spinor-vortex space.

8.3 Einstein–Weyl constructions

For completeness, I record here the explicit form of the generalized Jones–Tod construction of
selfdual spaces from Einstein–Weyl spaces [36, 8]. The conformal structure on M is obtained
from the Diff(Σ1) monopole (A,Φ)∂t on B by the formula

c = cB + Φ−2(dt+A)2,

where t is a coordinate on Σ1. Compatible metrics for c are easily obtained by introducing
a compatible metric gB = µ−2cB on B and writing Φ = V µ−1. Then gB + V −2(dt + A)2,
V gB +V −1(dt+A)2 and V 2gB + (dt+A)2 are all possibilities. The latter may be written more
invariantly as Φ2cB + (dt+A)2: it is the SDiff-gauge determined by dt.

Addendum: null and non-null reductions

Unlike the preceding addenda, the main observation here is a negative one: the methods of this
section do not extend readily to relate nondegenerate background geometries to the α and β
surface reductions. One might hope to obtain closer links by considering intermediate null
reductions, in which the radical of VM is both proper and nontrivial. However, this is beyond
the scope of this paper.
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9 Interlude: the Diff(1) Hitchin equation

HyperCR Einstein–Weyl spaces

An important class of Einstein–Weyl spaces are the hyperCR Einstein–Weyl spaces [22]. In [56],
Paul Tod presented a way of reducing the hyperCR Einstein–Weyl equation to a single second-
order differential equation for a complex function of three variables. Since the equation is
expected to be integrable, he posed the problem of identifying it. In this section, I will follow
a similar approach to Tod and identify the hyperCR Einstein–Weyl equation with the Diff(S1)
Hitchin equation on a trivial spinor-vortex space.

An Einstein–Weyl structure (c, D) on B is said to be hyperCR if it admits an orthonormal
frame χ1, χ2, χ3 for the weightless (co)tangent bundle LT ∗B ∼= L−1TB such that Dχi = κ∗χi
for some section κ of L−1 and each i – indeed any χ in the unit sphere generated by χ1, χ2, χ3

satisfies the same equation; these χ’s are called the hyperCR congruences of B.

Since the Weyl connection is torsion-free and conformal, it is easy to see that these equations
are implied by their skew parts

dDχ1 = 2κχ2 ∧ χ3, (9.1)

dDχ2 = 2κχ3 ∧ χ1, (9.2)

dDχ3 = 2κχ1 ∧ χ2. (9.3)

Tod noticed that χi satisfying (9.1)–(9.3) determine the Einstein–Weyl space: the conformal met-
ric is χ2

1 + χ2
2 + χ2

3 and the Einstein–Weyl equation follows from (9.1)–(9.3) – see also [10, 22].
Now introduce a gauge µ with Dµ = ωµ and define 1-forms αi = 2µ−1χi. Then the equa-
tions (9.1)–(9.3) may be rewritten in the form given by Tod [56]:

dα1 = −ω ∧ α1 + κα2 ∧ α3, (9.4)

dα2 = −ω ∧ α2 + κα3 ∧ α1, (9.5)

dα3 = −ω ∧ α3 + κα1 ∧ α2. (9.6)

These equations are easier to interpret after complexification, so that the conformal structure
is determined by its null lines, which form a bundle of conics in P (T ∗B). This bundle is trivial,
since T ∗B is trivialized by α1, α2, α3. The pullback of the tautological 1-form on P (T ∗B) by
a constant section is a constant linear combination of α1, α2 and α3, which is null for a section
of the bundle of conics. Then (9.4)–(9.6) are equivalent to the integrability of the distributions
defined by these null 1-forms, i.e., to the integrability of a rank 2 distribution H on the bundle
of conics. The integral surfaces are the null surfaces which motivated Cartan [12] to study
3-dimensional Einstein–Weyl geometry, and the quotient of the bundle of conics by H is the
minitwistor space S of B [29].

On a general Einstein–Weyl space, H is defined by the Weyl connection: the hyperCR case
is special in that there is a preferred trivialization of the bundle of conics with respect to which
the distribution is horizontal. Using this trivialization, the bundle of conics is B×P1, and after
choosing a projective coordinate ζ on P1, the null 1-forms are

αζ = α1 + iα2 + 2ζα3 − ζ2(α1 − iα2).

The system (9.4)–(9.6) is equivalent to αζ ∧ dαζ = 0 for all ζ. If X1, X2, X3 is the dual frame,
this means that the vector fields X1 + iX2 + ζX3 and X3 − ζ(X1 − iX2) span an integrable
distribution (tangent to the null surfaces) for each fixed ζ. This is the hyperCR analogue of the
Mason–Newman–Dunajski–Joyce description of hypercomplex structures.
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To see explicitly what this means, put ϕ = α1 + iα2 and ω = −τα3 + γ, with 〈γ, α3〉 = 0, so
that (9.4)–(9.6) become

dϕ =
(
(τ + iκ)α3 − γ

)
∧ ϕ, (9.7)

dα3 = −γ ∧ α3 + i
2κϕ ∧ ϕ. (9.8)

The first equation implies the integrability of the distribution defined by ϕ. Tod [56] uses (9.7)
to put ϕ = wdz. I will not repeat this here. Instead I want to analyse these equations from the
point of view of integrable background geometries. The idea is that the foliation determined
by χ3 is a generalized dimensional reduction. To see this, break the equations into horizontal
and vertical parts by writing α3 = dt + A for some fibre coordinate t so that A is horizontal
(i.e., in the span of α1 and α2). Then for any 1-form β,

dβ = dNβ + dt ∧ β̇ = dNβ −A ∧ β̇ + α3 ∧ β̇,

where dNβ is a multiple of α1 ∧ α2, β̇ = ∂tβ, α1(∂t) = 0 = α2(∂t), and dt(∂t) = 1. Hence (9.7)–
(9.8) become

dNϕ−A ∧ ϕ̇ = −γ ∧ ϕ, ϕ̇ = (τ + iκ)ϕ,

dNA−A ∧ Ȧ = i
2κϕ ∧ ϕ, Ȧ = γ.

The equations on the right simply define τ + iκ and γ, so after computing that ϕ̇∧ϕ−ϕ∧ ϕ̇ =
2iκϕ ∧ ϕ, the equations on the left reduce to

dNϕ+ Ȧ ∧ ϕ−A ∧ ϕ̇ = 0,

dNA+ Ȧ ∧A = 1
4

(
ϕ̇ ∧ ϕ− ϕ ∧ ϕ̇

)
.

The conformal structure on N has representative metric ϕϕ so the orientation can be chosen so
that ϕ has type (1, 0). It is now easy to see that these equations are Hitchin’s equations with
gauge group Diff(S1): ϕ and A are 1-forms on N with values in g = Vect(S1); ϕ is the Higgs
field and A is the connection 1-form, satisfying

FA = [ϕ,ϕ]g ∂Aϕ = 0.

These are equivalent to the (9.7)–(9.8) and hence to (9.4)–(9.6): since ϕ̇ has type (1, 0), one can
locally write ϕ̇ = (τ + iκ)ϕ and thus define α1, α2, α3, ω.

Theorem 9.1. Let (A,ϕ) be a solution of the Diff(S1) Hitchin equations (on a trivial spinor-
vortex space N). Then the Einstein–Weyl space defined by (A,ϕ) is hyperCR, and one of its
hyperCR congruences defines the foliation over N . Any hyperCR Einstein–Weyl space arises in
this way.

Tod’s simplification of the Diff(S1) Hitchin equations amounts to a fixing the Diff(S1) gauge
via e2it = ϕ/ϕ.

In order to obtain new examples of hyperCR Einstein–Weyl spaces, consider Hitchin fields
where the gauge group is a finite-dimensional subgroup of Diff(S1). The Abelian gauge
group U(1) yields only flat Einstein–Weyl spaces, but the affine and projective groups, Aff(R)
and PSL(2,R) are more interesting. The former is more tractable, since Aff(R) is a solvable
group, meaning that the nonlinear Hitchin equations can be solved by integrating a sequence of
linear equations. Indeed, writing ϕ = ϕ0 + ϕ1t and A = A0 +A1t gives

dϕ1 = 0, dϕ0 +A1 ∧ ϕ0 −A0 ∧ ϕ1 = 0,

dA1 = 0, dA0 +A1 ∧A0 = 1
4(ϕ1 ∧ ϕ0 − ϕ0 ∧ ϕ1).
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Locally, the affine gauge freedom can be used to eliminate the linear term A1 of the connection A,
while the conformal gauge freedom can be used to make the linear term ϕ1 of the Higgs field ϕ
equal to λdz with λ constant (without loss of generality λ = 1 unless it vanishes, which is the
Abelian case). Let ϕ0 = ifdz so that the equations reduce to

ifz̄dz̄ ∧ dz = λA0 ∧ dz, dA0 = −1
2ifdz ∧ dz̄.

For λ 6= 0, the general solution up to gauge transformation is therefore determined by a real
function f(z, z̄) satisfying ∆f + 2λ2f = 0: ϕ = (t + if)dz and A = −∗df/λ. Hence (local)
eigenfunctions of the Laplacian on R2 give rise to hyperCR Einstein–Weyl spaces.

Einstein–Weyl spaces with a geodesic generalized symmetry

A shear-free geodesic congruence on an Einstein–Weyl space is a weightless unit vector field
χ ∈ C∞(B,L−1TB) such that

Dχ = τ(id−χ⊗ χ) + κ∗χ

and for sections τ , κ of L−1 called the divergence and twist of χ. On a hyperCR Einstein–
Weyl space, the hyperCR congruences are examples: they are also divergence-free and in fact
this characterizes them. In the previous subsection it was found that the foliation defined by
a hyperCR congruence is a generalized symmetry, so it is natural to ask, more generally, when
does a shear-free geodesic congruence define a generalized symmetry? Note that the weightless
unit vector field tangent to a generalized symmetry over a spinor-vortex space is always shear-
free, so this question can be rephrased: when is a generalized symmetry geodesic? Since the
Einstein–Weyl space B is completely explicit (8.2) in terms of the Hitchin field on the spinor-
vortex space N , this question is easily answered: the generalized symmetry is geodesic if and only
if C (and C̃, which is the complex conjugate in the Euclidean case) vanishes. The Einstein–Weyl
structure is then given by

g = 4ΦΦdzdz̄ + (dt+ αdz + αdz̄)2,

ω = α̇dz + α̇dz̄ − 1

2

(
ψ + Φ̇

Φ
+
ψ + Φ̇

Φ

)
(dt+ αdz + αdz̄). (9.9)

If ψ vanishes, then the spinor-vortex space is (locally) trivial and this is the case of the previous
subsection. Otherwise, ψ is a holomorphic trivialization ofW on the open set where it is nonzero,
and the spinor-vortex space is given by a spherical metric on N .

Two special cases of this construction have already been studied: the case that ∂t is a genuine
symmetry [10], and the case that the congruence is also twist-free [11]. The first class arises
by supposing that the gauge group reduces to U(1) or R and B is said to be Einstein–Weyl
with a geodesic symmetry. The Abelian Hitchin equations are easily solved on the spherical
spinor-vortex space yielding the explicit formula

g = |h|2gS2 + β2, ω = −i(h− h)

2|h|2
β, dβ = 1

2(h+ h) volS2 , (9.10)

where h is a holomorphic function on an open subset of S2.
The second class, the hyperCR-Toda spaces, are obtained by from some explicit solutions of

the affine Hitchin equations: the twist-free condition reduces the gauge group to Aff(R); the
connection is flat, the linear part of the Higgs field is constant, while the translational part of
the Higgs field is given by a holomorphic function h. The resulting Einstein–Weyl structure is

g = (t+ h)(t+ h)gS2 + dt2, ω = − 2t+ h+ h

(t+ h)(t+ h)
dt. (9.11)

In this case the twist of the geodesic generalized symmetry ∂t vanishes.
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Note that the general theory of this paper justifies the final remarks of [11], by explaining the
sense in which the spherical metric is the natural quotient geometry of both structures (9.10)
and (9.11).

In both cases, the Einstein–Weyl space is hyperCR, although the congruence generated by ∂t
is no longer one of the hyperCR congruences. The same holds in general.

Theorem 9.2. An Einstein–Weyl space with a geodesic generalized symmetry is hyperCR.

Proof. Gauduchon and Tod [22] show that an Einstein–Weyl space (B, c, D) is hyperCR with
twist κ̂ if and only if ∗Dκ̂ = 1

2F
D and κ̂2 = 1

6 scalD.

On an Einstein–Weyl space with a geodesic generalized symmetry, direct computation of dDχ
in the gauge (g, ω) for the Einstein–Weyl structure (9.9) yields

κ =
1

4i

(
Φ̇− ψ

Φ
− Φ̇− ψ

Φ

)
.

Now put

κ̂ =
1

2i

(
Φ̇

Φ
− Φ̇

Φ

)
− κ =

1

4i

(
Φ̇ + ψ

Φ
− Φ̇ + ψ

Φ

)
.

In the gauge (g, ω), the equation ∗(dκ̂−ωκ̂) = 1
2dω is a straightforward though tedious compu-

tation. The equation κ̂2 = 1
6 scalD also follows by direct computation, although the calculation

is greatly simplified by using the general formula −1
6 scalD = Dχτ + τ2 − κ2 for the scalar cur-

vature of an Einstein–Weyl space with a shear-free geodesic congruence χ [10, 48]. In this case
−2τ = ψ/Φ + ψ/Φ: the verification that τ̇ − ω(∂t)τ + τ2 = κ2 − κ̂2 is now easy. �

Conversely, twistor methods show that the foliation defined by any shear-free geodesic congruen-
ce on any hyperCR Einstein–Weyl space is a generalized dimensional reduction over a trivial or
spherical spinor-vortex geometry, although this is not easy to see by direct computation.

10 Riccati spaces

Riccati spaces form a foundation on which higher-dimensional geometries can be built, so al-
though the matrix Riccati equation is easy to solve, it is invaluable to understand the solutions
carefully. For this reason, I will begin by tackling the Riccati equation in an invariant way, with-
out choosing a conformal trivialization of E or a coordinate on C. Recall that ∧3E = (TC)3,
and it will be convenient to write TC = L, although the choice of orientation implicit in this
identification is not essential.

The matrix B is a section of L−1 Sym0 E and so, at each point of C, it has two obvious
invariants, of weight −2 and −3 respectively: x = 2

3 tr(B2) and y = 4 detB, normalized so that
the characteristic polynomial of B is 4λ3 − 3xλ− y. The discriminant of this polynomial is the
section y2 − x3 of L−6: more precisely, writing 4(y2 − x3) = −27c2 yields c = ψ1ψ2ψ3, where
ψ1 = 2

3(λ2−λ3), ψ2 = 2
3(λ3−λ1) and ψ3 = 2

3(λ1−λ2), {λi} being the eigenvalues of B; the sign
of c depends on the ordering of the eigenvalues. Note that

ψ1 + ψ2 + ψ3 = 0, ψ2
1 + ψ2

2 + ψ2
3 = 2x

and

(ψ1 − ψ2)(ψ2 − ψ3)(ψ3 − ψ1) = −8λ1λ2λ3 = −2y.
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Pencils of conics

In order to interpret this geometrically, complexify C and E so that the conformal structure c
on E is determined by its null lines, which form a bundle of conics S(E) in the bundle P (E) of
projective planes over C. The role of B is to determine a pencil of conics in each fibre, associated
to the two-dimensional family of bilinear forms c ◦ (s id +tB): c ◦ B is distinguished by being
traceless with respect to the fixed bilinear form c. Now, two distinct conics meet in four points,
counted with multiplicity, so there are six possible configurations: the generic case (I), where
the four points are distinct; the four degenerations (II, III, D, N), when two, three, two pairs,
or four points come together; and the trivial case (0), when B = 0 and the ‘pencil’ is constant.

The notation here follows the well-known application of this classification to Weyl tensors
in four dimensions. Only types (I, D, 0) are compatible with Euclidean reality conditions: in
this case B must be diagonalizable, and the eigenvalues are either distinct (λ1, λ2, λ3) with
λ1 + λ2 + λ3 = 0, or of the form (λ, λ,−2λ), or all zero.

A natural way to analyse a pencil of conics is to identify one of the conics with a projective
line P1. In the present situation, this is done by introducing a bundle of spinors U for E , i.e.,
with E = S2U , so that S(E) = P (U) and U inherits a connection from E . Trivializing U using
this connection identifies S(E) locally with C × P1, on which an affine coordinate r for C and
a projective coordinate ζ for P1 may be introduced. The isomorphism between sections of the
inner product bundle L−1E and vertical vector fields on S(E) may be described concretely using
the induced parallel orthonormal frame for L−1E : sections induce vector fields via their inner
product with the tautological null vector field eζ ⊗ ∂ζ where

eζ =
(

1
2

(
ζ2 + 1

)
, iζ, i2

(
ζ2 − 1

))
. (10.1)

The base locus of the pencil of conics (at each point of C) consists of the four zeros of the quartic
polynomial 〈B(eζ), eζ〉 ⊗ ∂2

ζ , which is a section of L−1 ⊗ O(4). It is now straightforward and
entirely classical [57] to analyse the zeros of this quartic in the various cases, and hence relate
the six types of pencil to properties of the matrix B. In particular, the generic case is given by
c 6= 0, when the four points are distinct.

Remark 10.1. Four distinct points on P1 are determined up to projective transformation by
their cross-ratio, and this freedom is often used to identify the points with 0, 1, ∞, t, with t
being the cross-ratio. However, as remarked by Yoshida in his wonderful book [64], “it is not
fair that only the fourth point is allowed to move freely”. The democratic cross-ratio used there
is the point [ψ1, ψ2, ψ3] on the line ψ1 + ψ2 + ψ3 = 0 in P2.

Solution of the Riccati equation

I shall now find the solutions of the Riccati equation DB = 2(B2)0. Here and elsewhere D
denotes differentiation with respect to the affine structure on C, and takes a section of a natural
bundle F to a section of L−1F . In naive terms, D is differentiation with respect to an affine
coordinate r (i.e., dr is a D-parallel section of L−1 = T ∗C, and L−1 is trivialized using this
section).

The Riccati equation shows that DB commutes with B, and so differentiating the Cayley–
Hamilton equation 4B3 − 3xB − y id = 0, gives

0 = 12(DB)B2 − 3xDB − 3DxB −Dy id = 24B4 − 18xB2 + 3x2 id−3DxB −Dy id

= 3(2y −Dx)B + (3x2 −Dy) id .
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HenceDx = 2y, Dy = 3x2, D2x = 6x2 and soD(y2−x3) = 0. In other words, the discriminant c2

is constant (D-parallel). The constancy of c means that if B has distinct eigenvalues at a point,
it has distinct eigenvalues everywhere, in which case it is diagonalizable, and can be assumed
diagonal, since DB commutes with B. I consider this first.

I. B has distinct eigenvalues.

Taking B diagonal, it is straightforward to compute the equation for the eigenvalues: Dλ1 =
2λ2

1 − 2
3(λ2

1 + λ2
2 + λ2

3) and similarly for λ2 and λ3. Hence Dψ1 = ψ1(ψ2 − ψ3) = −2λ1ψ1 and
similarly for ψ2 and ψ3. Now let χ1 = −ψ2ψ3 etc., so that χ1χ2χ3 = −c2 and Dχ1 = −χ1(ψ2 −
ψ3) = 2λ1χ1. Squaring this gives (Dχ1)2 = χ2

1(ψ2
2 + ψ2

3 − 2ψ2ψ3) = χ2
1(ψ2

1 − 4ψ2ψ3) = 4χ3
1 + c2,

since ψ1 + ψ2 + ψ3 = 0. Hence the χi all satisfy the equation

(Dχ)2 = 4χ3 + c2,

which is closely related to the equation for x, namely

(Dx)2 = 4x3 − 27c2.

Thus x and the χ’s are equianharmonic Weierstraß elliptic functions of an affine coordinate, the
period lattice for x being the barycentric subdivision of the lattice for the χ’s.

Remark 10.2. The advantage of an invariant description is the flexibility in the choice of
coordinates: one does not have to use the affine coordinate r. Indeed, in Section 3, a different
gauge choice was motivated: there is a natural projective structure D2 + 1

6 trB2 = D2 + 1
4x and

with respect to a projective coordinate t, D = ∂t + a, where ȧ− 1
2a

2 = −1
2x. Now ẋ = 2(ax+ y)

and ẏ = 3(ay + x2), so that ä = aȧ− 1
2 ẋ = aȧ− ax− y and

...
a = aä+ ȧ2 − ȧx− 5

2aẋ+
(

3
2aẋ− ẏ

)
= aä+ ȧ2 − ȧ(a2 − 2ȧ)− 5a(aȧ− ä) + 3(a2 − x)x

= 6aä+ 3ȧ2 − 6a2ȧ+ 6ȧ(a2 − 2ȧ) = 6aä− 9ȧ2,

which is the Chazy equation. Of course it is well-known that the Chazy equation arises in the
study of selfdual metrics in a scalar-flat gauge.

The generic solution, given by elliptic functions of the affine coordinate, may instead be
presented in terms of modular functions of the projective coordinate [1, 16].

I turn next to the degenerate cases, when c = 0, i.e., y2 = x3 = 64λ6, where the eigenvalues
of B are λ, λ and −2λ. Assume first that λ is not identically zero. Then, on an open set at
least, the (generalized) eigenspaces of B are constant (again using the fact that DB commutes
with B) and hence B can be assumed to take the the form

B =

λ+ µ iµ 0
iµ λ− µ 0
0 0 −2λ

 .
The matrix Riccati equation now yields

Dλ = −2λ2, Dµ = 4λµ.

Since λ is not identically zero, it is given (up to translation) by λ = 1/2r. This is defined for r
nonzero, and λ has no zeros. In this coordinate µ = br2 for constant b, which is either identically
zero, or nonzero for all nonzero r. There are thus two cases.

II. y2 = x3 is nowhere zero, and B is nowhere diagonalizable.

D. y2 = x3 is nowhere zero, and B is everywhere diagonalizable.

The notation is justified by noting that 〈B(eζ), eζ〉 is the quartic 1
4(ζ−1)2(µ(ζ−1)2 +3λ(ζ+1)2):

ζ = 1 is a repeated root, as is ζ = −1 when µ = 0.
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Remark 10.3. The type (D) solution is even simpler with respect to a projective coordinate.
Since 2B2

0 = −2λB, setting D = ∂t + 2λ gives ∂tB = 0, so that λ is constant in this gauge
and a = 2λ satisfies ȧ − 1

2a
2 = −2λ2 = −1

3 trB2 = −1
2x; thus t is a projective coordinate with

respect to the natural projective structure, and B and a are constant.

It remains to consider the case that y2 = x3 is identically zero, i.e., the eigenvalues of B are
all zero, so that B3 = 0. If B2 = 0 then B is constant, so that in any case the kernel and image
of B are constant; B may thus be assumed to take the form

B =

 µ iµ β
iµ −µ iβ
β iβ 0


and the matrix Riccati equation yields

Dβ = 0, Dµ = 2β2.

Hence β is a constant, zero if and only if B is constant, and if β is nonzero, then in a suitably
translated affine coordinate µ = 2β2r. Thus there are three more cases.

III. B3 = 0 and B2 is nowhere zero.

N. B2 = 0 and B is constant and nonzero.

0. B = 0.

Again the notation is justified by computing 〈B(eζ), eζ〉 = 1
4(ζ − 1)3(µ(ζ − 1) + 2iβ(ζ + 1)).

Isomonodromic deformations

Recall that, for Φ ∈ C∞(C, E∗ ⊗ gC), the generalized Nahm equation (4.4) is

DΦ− ∗[Φ,Φ]g = B ·Φ.

I claim that this equation, for B not identically zero, is equivalent to the fact that

d +
Φ

B
= d +

Φ(eζ)dζ

〈B(eζ), eζ〉

is an isomonodromic family of connections on CP1 parameterized by C, with four poles along
the base locus of the pencil of conics, where I use the tautological null vector field eζ (10.1) to
clarify the meaning of the connection 1-form. More precisely, this follows from the fact that the
meromorphic connection

d +
Φ + 〈∗B,Φ〉

B
= d +

Φ(eζ)dζ + 〈∗eζ ∧ B(eζ),Φ〉dr
〈B(eζ), eζ〉

,

defined on the pullback of gC to the bundle of conics S(E) over the Riccati space C, is flat if
and only if Φ satisfies the generalized Nahm equation.

This is a straightforward verification. Equivalently, if the gauge algebra gC is represented as
a Lie algebra of vector fields, then this observation can be reformulated as the integrability of
a rank two distribution on a bundle over S(E), and the poles of the connection can be viewed
as points of S(E) over which the distribution is tangent to the fibres. Explicitly, in the above
coordinates, two vector fields generating this distribution are

〈B(eζ), eζ〉∂ζ + Φ(eζ),

∂r + 〈B(eζ), e
′
ζ〉∂ζ + Φ(e′ζ), (10.2)

where e′ζ = (ζ, i, iζ). One can easily check that the distribution is closed under Lie bracket.
An advantage of this vector field interpretation is that it also makes sense on the trivial

Riccati space B = 0, when (10.2) reduces to the standard Lax pair for the Nahm equation.
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Addendum: Riccati spaces and integrability
by the method of hydrodynamic reductions

In [74], Ferapontov et al. independently discover the integrability of a system of equations
equivalent to the generalized Nahm equations on Riccati spaces. Their study concerns equations
of the form

∂2(Aαβ(u))

∂xα∂xβ
= 0,

where u = u(x1, x2, x3) is a function of three variables, and Aαβ is a 3 × 3 symmetric matrix
of functions of one variable. (Here I use the summation convention on Greek indices; this may
also be viewed as abstract index notation.) Expanding one derivative yields the equivalent
formulation

∂

∂xα

(
V αβ(u)

∂u

∂xβ

)
= 0, (10.3)

where V αβ is the derivative of Aαβ (i.e., V = A′).
The approach in [74] characterizes integrability using the method of hydrodynamic reductions;

this tests for the existence of sufficiently many multi-phase solutions u = U(R1, R2, . . . RN ),
where the Rj(x1, x2, x3) are solutions to arbitrarily many commuting (1+1)-dimensional systems
of hydrodynamic type. The result of this analysis is that (10.3) is integrable in this sense if and
only if there is a scalar function k(u) of one variable such that

V ′′(u) = (log detV )′(u)V ′(u) + k(u)V (u) (10.4)

or equivalently (V ′/ det(V ))′ = kV .
The relation to the Riccati space equation is subtle, and involves introducing a u-dependent

triple of vectors θiα(u) (i = 1, 2, 3) such that

V = (det θ)θ−1(θT)−1, i.e., V αβ =

3∑
i=1

(det θ)
(
θ−1
)α
i

(
θ−1
)β
i
, (10.5)

where θ = (θiα) is assumed invertible. Now write Cij := (θ−1)αi (θjα)′ so that θiα =
3∑
j=1
Cijθjα.

There is a gauge freedom in the choice of θ, which may be used to suppose C is symmetric.
Substituting (10.5) into (10.4), straightforward computation, using the symmetry of C to-

gether with standard matrix identities such as (A−1)′ = −A−1A′A−1 and (detA)−1(detA)′ =
tr(A−1A′), then yields

C′ = 2C2 − (tr C)C + cI,

where c is an unknown scalar function of u (related to k).
Now decompose C = B + aI with B tracefree; then the trace part of the above equation

determines c, while the trace-free part is the Riccati equation for B. Thus, remarkably, the
hydrodynamic integrability condition agrees with the twistor-theoretic Riccati equation.

After classifying solutions of (10.4) (equivalently, solutions of the Riccati equation), Ferapon-
tov et al. compute the form of the equation (10.3) for u arising from each solution. They then
observe that the central quadric Ansatz

xαMαβ(u)xβ = 1

for u yields all Painlevé equations [74].
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It is this geometry that originally led to the identification of (10.4) with the Riccati equation.
The key observation is that (10.3) is a divergence form equation, meaning that u is in the kernel
of the Laplace–Beltrami operator of the metric gαβ(u) with g = adj(V ) = (detV )V −1 so that
V =

√
det gg−1. Hence the equations in this class have the form

d∗gdu = 0, (10.6)

where g = g(u), and ∗g is the associated Hodge star operator. Now θiα(u) has an interpretation,
as a framing of the metric g:

gαβ(u) =
3∑
i=1

θiα(u)θiβ(u).

In terms of the geometry of g, θ is thus an R3-valued 1-form: on vector fields X,Y , the metric
is g(u)(X,Y ) = 〈θ(u)X, θ(u)Y 〉. Thus there is a gauge freedom to rotate θ by an SO(3)-valued
function of u: this is the freedom used to make Cij symmetric above (which in turn fixes θ up
to a rigid rotation).

As will be explained in Section 11.2 (the last part of the next and final interlude), (10.3)
is a hodograph transformation of the generalized Nahm equation with gauge group SDiff(Σ2).
The central quadric Ansatz corresponds to a reduction of gauge group from SDiff(Σ2) to SU(2)
(which acts by area preserving diffeomorphisms on the 2-sphere). This in turn explains the
appearance of the Painlevé equations: generalized Nahm equations with gauge group G describe
isomonodromic deformation problems for G-connections on CP 1 with four poles, and, when
G = SU(2) (rank 2 bundles over CP 1), the connection between such isomonodromy problems
and the Painlevé equations is well known [35].

11 Interlude: the Diff(2) generalized Nahm equation

This interlude is devoted to Weyl structures of the form (8.1). It follows from the work of Sec-
tion 8, that these Weyl structures are Einstein–Weyl provided that B satisfies the matrix Riccati
equation and Φi = φi∂p + ψi∂q (i = 1, 2, 3) defines a generalized Nahm field on this Riccati
space, the gauge group being a subgroup of Diff(Σ2) where Σ2 is a surface with coordinates p,
q.

However, as details were omitted in Section 8, I present a self-contained study of these Weyl
structures in the following two cases:

(i) B = 0 (so the Riccati space is trivial);

(ii) the Φi are area preserving vector fields.

These examples have an interest that stretches beyond the proscenium of Einstein–Weyl geo-
metry, since they are closely related both to well-known integrable systems, and also to hyper-
complex, hyperkähler and scalar-flat Kähler structures in four dimensions.

11.1 HyperCR Einstein–Weyl spaces and the Diff(2) Nahm equation

In Section 9, hyperCR Einstein–Weyl spaces were related to the Diff(S1) Hitchin equation.
Now it is known [8, 22] that any solution of the Diff(S1) Einstein–Weyl Bogomolny equation on
a hyperCR Einstein–Weyl space gives rise to a hypercomplex 4-manifold (which is sometimes
hyperkähler).

This two step construction ties in with the construction of hypercomplex and hyperkähler
structures from the Diff(Σ2) Hitchin equation: see Section 7. On the other hand, also in Sec-
tion 7, hypercomplex and hyperkähler structures were related to the Diff(Σ3) Nahm equation,
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so it is natural to expect that hyperCR Einstein–Weyl spaces may be constructed from the
Diff(Σ2) Nahm equation.

In fact this is not hard to see. Suppose that D = Dg + ω is a Weyl structure given by

g = η2
1 + η2

2 + η2
3, ω = −

∑
i,j,k

εijkνi(φ
j
p + ψjq)ηk

ν2
1 + ν2

2 + ν2
3

,

where

ηi = νidr + φidq − ψidp,
ν1 = φ2ψ3 − φ3ψ2, ν2 = φ3ψ1 − φ1ψ3, ν3 = φ1ψ2 − φ2ψ1,

and

Φ =
(
φ1, φ2, φ3

)
∂p +

(
ψ1, ψ2, ψ3

)
∂q.

The Nahm equation expands to give

φ1
r = φ2φ3

p − φ3φ2
p + ψ2φ3

q − ψ3φ2
q , ψ1

r = φ2ψ3
p − φ3ψ2

p + ψ2ψ3
q − ψ3ψ2

q

and cyclic permutations. From this it follows easily that dη1 + ω ∧ η1 = κη2 ∧ η3 (and similarly
for the cyclic permutations), where

κ =
ν1

(
φ1
p + ψ1

q

)
+ ν2

(
φ2
p + ψ2

q

)
+ ν3

(
φ3
p + ψ3

q

)
ν2

1 + ν2
2 + ν2

3

.

Hence the Weyl structure is hyperCR Einstein–Weyl. Note that if the Nahm field preserves the
(a priori arbitrary) area form dp∧dq then κ = 0 and the Einstein–Weyl space is flat. Ward [60]
uses this fact to linearize the Nahm equation in this case.

In fact any hyperCR Einstein–Weyl space B arises locally from this construction. One way
to see this is to choose an Abelian monopole on B. This defines a hypercomplex structure with
a triholomorphic vector field K tangent to the fibres over B. For example, κ is an Abelian
monopole on any hyperCR Einstein–Weyl space and the corresponding hypercomplex structure
is hyperkähler with a triholomorphic homothetic vector field [22].

Now let r be a solution of ∆r = 0, which is constant on the fibres over B, where ∆ is the
Laplacian of the Obata connection. This defines a divergence-free coframe dr, Idr, Jdr, Kdr
and a dual frame of vector fields V0, V1, V2, V3. Since r is constant on the fibres over B, K is
tangent to the level surfaces of r, so it is in the span of V1, V2, V3 and commutes with them all
(since it is triholomorphic). Therefore the gauge group of the Nahm field defined by V1, V2, V3

reduces to the group of diffeomorphisms of Σ3 commuting with the flow of K. Taking the local
quotient by K gives a Nahm field with gauge group Diff(Σ2) for some surface Σ2, and this is
clearly a Nahm field giving rise to the Einstein–Weyl space B.

Theorem 11.1. Let Φ be a solution of the Nahm equation with gauge group Diff(Σ2) for some
surface Σ2. Then the Einstein–Weyl space defined by Φ is hyperCR, and any hyperCR Einstein–
Weyl space arises locally in this way. If there is a reduction to SDiff(Σ2), the Einstein–Weyl
space is flat.

There is a great deal more freedom in this construction than in the Diff(S1) Hitchin con-
struction of hyperCR Einstein–Weyl spaces, which can be an advantage or a drawback, since the
same hyperCR Einstein–Weyl space will arise in many ways. There are some interesting special
cases one could consider, such as the group SL(2,C) acting on CP1 (which does not preserve
an area form). The Nahm equations in this case reduce to a (complexified) Euler top equation,
solvable in terms of elliptic functions.
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11.2 The SDiff(2) generalized Nahm equation

In addition to hyperCR Einstein–Weyl spaces, another important class consists of the Einstein–
Weyl spaces arising from solutions of the SU(∞) Toda field equation uxx + uyy + (eu)zz = 0
[39, 55, 60]. The terminology originates by regarding the equation as a dispersionless limit of
the SU(N) Toda equation as N → ∞: the Toda equation is a two-dimensional system with
independent variables (x, y); the z variable is normally discrete, but becomes continuous in the
limit. The large N limit of SU(N) may be interpreted as the group SDiff(S1 × S1) of area
preserving diffeomorphisms of a torus, with its Lie algebra Z-graded by the Fourier components
in one of the circles. There is a potential source of confusion here, however, since the SU(∞) Toda
equation is related to area preserving diffeomorphisms in another way. Namely, each solution
gives rise to a hyperkähler metric with a Killing vector K [6], and hyperkähler metrics are in
turn obtained from the SDiff(Σ2) Hitchin equations on R2, as shown in Theorem 7.6 (cf. [62]).
Hence one expects the SU(∞) Toda equation to be equivalent to a symmetry reduction of the
SDiff(Σ2) Hitchin equations to one dimension.

The Einstein–Weyl structure on a Toda Einstein–Weyl space B3 is given by the metric and
Weyl 1-form

h = eu
(
dx2 + dy2

)
+ dz2, ωh = −uzdz.

In these geometric terms, the SU(∞) Toda equation may be written d∗hdu = 0, and so ∗hdu is
a closed 2-form, which is therefore locally of the form dp∧ dq. Now (p, q, u) will be functionally
independent unless 0 = du ∧ ∗hdu = ∗h|du|2. Hence (in Euclidean signature), (p, q, u) may be
used as coordinates, except in the trivial case (u constant). The solution of the Toda equation
is now given implicitly by the functions (x, y, z) of (p, q, u). These functions will turn out to
satisfy a generalized Nahm equation on the type (D) Riccati space with gauge group SDiff(Σ2).

In order to see this, and relate it to the work of Ferapontov et al. [74], consider the generalized
Nahm equation on any Riccati space with affine coordinate r, where the Higgs fields Φi =
φi∂p + ψi∂q preserve the area form dp ∧ dq on a surface Σ2 with coordinates (p, q). Motivated
by the general construction of Section 8, introduce the Weyl structure

g = η2
1 + η2

2 + η2
3, ω = 2

λ1ν1η1 + λ2ν2η2 + λ3ν3η3

ν2
1 + ν2

2 + ν2
3

,

where

ηi = νidr + φidq − ψidp,
ν1 = φ2ψ3 − φ3ψ2, ν2 = φ3ψ1 − φ1ψ3, ν3 = φ1ψ2 − φ2ψ1.

The metric g can be simplified considerably using the fact that area preserving vector fields
are locally hamiltonian: this means one can write φi = F iq and ψi = −F ip for some functions
F 1, F 2, F 3 of (p, q, r). The (r-dependent) constants of integration for the hamiltonians may
be chosen so that the F i satisfy the generalized Nahm equation in the Lie algebra of functions
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under Poisson bracket: F 1
r − {F 2, F 3} =

∑
j
B1jF

j and so on. (The system pir −
∑
j
Bijpi = qi

has local solutions for any qi(r), and these can be added to F i. However, if the Φi take values
in a Lie subalgebra of the area preserving vector fields, then the F i may take values in a central
extension of this Lie subalgebra.) The metric now reduces to

g =
∑
i

dF i −
∑
j

BijF jdr

2

=
∑
i

θiα(r)θiβ(r)dxαdxβ,

where θiα is a basis of solutions to the linear system θir =
∑
j
Bijθj and, using the summation

convention on Greek indices, F i = θiαx
α, for some functions xα(p, q, r) (α = 1, 2, 3). The

equation F ir − 1
2

∑
j,k

εijk{F j , F k} =
∑
j
BijF j is immediately equivalent to

θiαx
α
r =

∑
j,k

εijkθ
j
αθ

k
β

{
xα, xβ

}
. (11.1)

Now for any functions xα(p, q, r) direct calculations yield the general jacobian identities

{x2, x3}dx1 + {x3, x1}dx2 + {x1, x2}dx3 = J(x)dr,

x1
rdx

2 ∧ dx3 + x2
rdx

3 ∧ dx1 + x3
rdx

1 ∧ dx2 = J(x)dp ∧ dq,

where J(x) is the determinant of the jacobian of (x1, x2, x3) with respect to (p, q, r). Hence (11.1)
holds if and only if ∗gdr = dp ∧ dq.

This argument was carried out using an affine coordinate r. However, any coordinate t can be
used, simply by writing ∂t = ∂r + a. The following result summarizes the general construction.

Proposition 11.2. Consider the 3-dimensional metric

g =
∑
i

(
θiα(t)dxα

)2
,

where θiα is a basis of solutions of the linear system θit − aθi =
∑
j
Bijθj for some symmetric

traceless matrix Bij(t), and xα(p, q, t) are arbitrary functions. Then ∗gdt = dp ∧ dq if and only
if the functions F i = θiαx

α satisfy

F it − aF i −
1

2

∑
j,k

εijk
{
F j , F k

}
=
∑
j

BijF j .

Remark 11.3. We pause briefly to reiterate (conversely) the link between this analysis and the
work of Ferapontov et al. [74]. The framing θiα of the metric g appearing in d ∗g du = 0, i.e., the
formulation (10.6) of (10.3), provides a diagonalization

gαβdxαdxβ =
3∑
i=1

(
θiαdxα

)2
=

3∑
i=1

(
dF i − (CF )idu)2,

where F i = θiαx
α, (CF )i =

3∑
i=1
CijF j . Writing ∗gdu = dp ∧ dq yields

(F i)′ − 1

2

∑
i,j,k

εijk
{
F j , F k

}
=
∑
j

CijF j ,

which reduces to the generalized Nahm equation after splitting C into its tracefree and tracelike
parts.
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Returning to the SU(∞) Toda equation, (θiα) is now a diagonal matrix with eigenvalues
(eu/2, eu/2, 1). The case that u is constant (so that B = 0) is the overlap with the previous
subsection, and this construction recovers Ward’s linearization of the SU(∞) Nahm equation [61].
On the other hand if u is not constant, t = u can be used as a coordinate, so that a = 1/3
and Bij is diagonal with constant eigenvalues 1/6, 1/6, −1/3. This is the type (D) solution of
the matrix Riccati equation with λ = 1/6 (see Remark 10.3).

There is another class of Einstein–Weyl spaces, governed by the dKP equation [18]. The
Weyl structure in this case is Lorentzian:

h = dy2 − 4dxdt− 4udt2, ωh = 2uxdt.

The Einstein–Weyl condition may again be written d∗hdu = 0, which now reduces to the dKP
equation uyy = (ut − uux)x. If the solutions (θiα) are taken to be (1 + u, 2iu, 0), (2iu, 1 − u, 0)
and (0, 0, 1), then h =

∑
i,α,β

θiα(r)θiβ(r)dxαdxβ with −
√

2t = x1 + ix2, 2
√

2x = x1 − ix2, y = x3,

whereas B is the type (N) solution of the Riccati equation. The equivalence works as long as
|du|h 6= 0.

Theorem 11.4. The SU(∞) Toda and dKP equations are generically locally equivalent to
SDiff(Σ2) generalized Nahm equations, on the type (D) and (N) Riccati space respectively.

The equivalence in each case is obtained by a “hodograph transformation”, i.e., dependent
and independent variables are exchanged. The beauty of such transformations is that they
interchange coordinate-invariance and gauge-invariance, which is why they are potentially useful
for studying geometric differential equations, where the independent variables are often not well
defined.

This result was first obtained in for the SU(∞) Toda equation and type (D) Nahm equation.
The extension to more general Nahm equations resulted from discussions with Maciej Dunajski.
Together with Paul Tod, he has given a detailed discussion of the dKP case [20].

Solutions of the SU(∞) Toda equation may be divided into two classes according to whether
they are most easily presented explicitly or implicitly: in the former class, there are very few
examples – to the best of my knowledge, the only examples are the separable solutions [6, 23]
and the hyperCR-Toda solutions [11] (the latter were discussed in Section 9).

The class of implicit solutions is much richer and all of them (that I know of) are obtained
by the above hodograph transformation. There are two general classes.

Solutions with a Killing vector [10, 60]

Suppose that the generalized Nahm field is invariant under a one-dimensional symmetry group
of Σ2, generated by a hamiltonian vector field X, with momentum map η, and let ψ be a function
on Σ2 with dψ(X) = 1. Then ψ, η can be used as coordinates on Σ2, X = ∂ψ and the area form
is dψ ∧ dη. The Lie algebra of hamiltonian vector fields commuting with ∂ψ consists of vector
fields of the form b∂η+W (η)∂ψ, where b is constant (on Σ2), and the hamiltonian is −bψ+V (η)
where Vη = W . The solutions found by Ward [60] are given by the metric

h = ρ2
(
d(Uη)

2 + dψ2
)

+ d(ρUρ)
2,

where U(ρ, η) satisfies (ρUρ)ρ + ρUηη = 0, the equation for axisymmetric harmonic functions
on R3. In this case one of the hamiltonians is simply ψ. The general solutions were found in [10]
following similar ideas.
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Solutions constant on central ellipsoids [55]

Motivated by the Pedersen–Poon Ansatz for scalar-flat Kähler metrics [47], Tod [55] observed
that solutions of the Toda equation which are constant on central ellipsoids may be obtained from
an ordinary differential equation, namely Painlevé’s third equation. Painlevé III is equivalent
to the isomonodromic deformation problem for an SU(2) connection with two double poles, and
hence to the generalized Nahm equation with gauge group SU(2) on the type (D) Riccati space.
Tod’s solutions are obtained by reducing to the gauge algebra so(3) of infinitesimal isometries
of S2. Solutions constant on central ellipsoids arise in this way because ellipsoids are precisely
the quotients of left invariant metrics on S3 = SU(2) by a U(1) subgroup.

Similar reductions are known in the dKP case – see [18, 20] – and the latter construction is
the context for the central quadric Ansatz and Painlevé equations of [74].

12 Further speculations

The integrable background geometries discussed in this paper are those arising from the selfdu-
ality equation for conformal structures in four dimensions. Roughly speaking, they are characte-
rized as geometries associated to a twistor space containing rational curves with degree 2 normal
bundle, although this requires some interpretation for the one or two-dimensional geometries,
where the twistor space is not Hausdorff and has dimension zero or one respectively.

Null reductions lead to twistor spaces with lower degree normal bundles. For instance, a sur-
face with a projective structure may be viewed as a moduli space of rational curves in a complex
surface with normal bundle O(1) (see Hitchin [32] and LeBrun [38]).

These considerations lead to the idea of extending the integrable background geometry con-
cept to higher degree normal bundles. This would encompass the Einstein–Weyl and selfdual
hierarchies (where the normal bundle is O(n) or O(n)⊗C2 respectively), as well as quaternionic
geometry (normal bundle O(1)⊗ C2k).

In the language of integrable systems, the concept of a background geometry appears to be
related to Lax systems involving a derivative with respect to the spectral parameter ζ. The zeros
of the coefficient of ∂ζ are associated with poles of the Lax system: the prototype here is the
one-dimensional case (isomonodromic deformations). In its most general form, the background
geometry idea might be regarded as a study of these extra ∂ζ terms: general principles for the
introduction of such terms have been developed by Burtsev–Zakharov–Mikhailov [7]. At the very
least, it is desirable to know when these terms can be eliminated. For the geometries studied in
this paper, this question has an answer: they can be eliminated provided that the background
geometry is a trivial Riccati space, a trivial or spherical spinor-vortex space, a hyperCR Einstein–
Weyl space, or a hypercomplex selfdual space.

Returning to the general context of this paper, recent work of Ferapontov and Kruglikov [75]
suggest deep links between selfduality (hence twistor theory) and integrability in low dimensions,
going beyond the inspirational analysis by Mason and Woodhouse. For example, in the particular
case of equations of the form (10.6), the Einstein–Weyl structure may be recovered from the
linearization d∗g(u)dv + d(v∗g ′(u)du) = 0. The leading term in v is

gαβ(u)
∂2v

∂xα∂xβ
,

so the symbol of the linearized equation is the inverse metric g−1 (up to a conformal factor) of
the Einstein–Weyl structure. Ferapontov and Kruglikov also show how to recover (the 1-form
of) the Weyl structure. They obtain a similar result for several classes of PDEs, relating the
integrability of such equations (by the method of hydrodynamic reductions) to Einstein–Weyl
or selfdual conformal structures on their moduli spaces.
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A Table of integrable background geometries

The following table summarizes the background equations and gauge field equations in each
dimension (given in Euclidean signature for convenience).

In this table, I indicate the data defining the background geometry, starting with the con-
formal manifold Q and the conformal vector bundle V = L,W, or E (which has rank 1, 2, or 3
respectively) followed by the other data: D is a conformal connection on V, ∂a a holomorphic
structure, whereas C, ψ, B are sections of W∗ ⊗C W∗ ⊗C TN , W∗ ⊗C TN and T ∗C ⊗ Sym0 E
respectively.

The gauge field equations are for a pair (A,Φ), where A is a G-connection and the Higgs
field Φ is an gQ-valued section of V∗, except that in four dimensions there is no Higgs field, and
in one dimension, the connection A can be assumed trivial.

Dimension Data Background equations Gauge field equations

4 Selfdual M W− = 0 ∗FA = FA

3 Einstein–Weyl (B,L), D rD0 = 0 ∗DAΦ = FA

2 Spinor-vortex (N,W), ∂aC = 0, FA − [Φ,Φ]g = ψ ∧ Φ + ψ ∧ Φ,

(∂a, C, ψ) ∂aψ = −3Cψ, ∂a,AΦ = CΦ
sW−1TN = ψψ − 2CC

1 Riccati (C, E), (D,B) DB = 2
(
B2
)

0
. DAΦ− ∗[Φ,Φ]g = B ·Φ

Finally, I summarize the background geometry constructions in an SDiff(Σ)-gauge, i.e., using
an arbitrarily chosen volume form ν on Σ (ν = dt on Σ1).

Selfdual spaces

• From Einstein–Weyl spaces:

g = Φ2cB + (dt+A)2.

• From spinor-vortex spaces (with conformal coordinate z):

g =
∣∣ν(Φ,Φ)

∣∣2dzdz̄ + 〈ν(Φ, ·) + ν(Φ, A), ν(Φ, ·) + ν(Φ, A)〉.

• From Riccati spaces (with affine coordinate r):

g =
∣∣ν(Φ× Φ× Φ)

∣∣2dr2 +
∣∣ν(Φ× Φ, ·)

∣∣2.
Einstein–Weyl spaces

• From spinor-vortex spaces (with conformal coordinate z):

g = 4ΦΦdzdz̄ + (dt+ αdz + αdz̄)2,

ω = Ȧ− 2CΦ
Φ

dz − 2CΦ
Φ

dz̄ − 1

2

(
ψ + Φ̇

Φ
+
ψ + Φ̇

Φ

)
(dt+ αdz + αdz̄).

• From Riccati spaces (with affine coordinate r):

g =
∣∣ν(Φ× Φ)dr + ν(Φ, ·)

∣∣2,
ω =

〈
2B
(
ν(Φ× Φ)

)
− ν(Φ× Φ)× divν Φ, ν(Φ× Φ)dr + ν(Φ, ·)

〉
|ν(Φ× Φ)|2

.
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Spinor-vortex spaces from Riccati spaces

W is the kernel of Φ in the pullback of E to C × Σ1 with complex structure given by cross
product with Φ/|Φ| and holomorphic structure induced by the conformal connection

D +
(Φr MΦ + 〈BΦ,Φ〉 id)dr + Φ̇MΦdt

|Φ|2
,

the conformal structure is represented by g = |Φ|2dr2 + dt2 and the other two fields are

C = B − BΦ⊗ Φ + Φ⊗ BΦ

|Φ|2
+
〈BΦ,Φ〉

2|Φ|2

(
id +

Φ⊗ Φ

|Φ|2

)
,

ψ =
Φ× (2BΦ + Φ× Φ̇)

|Φ|2
.
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