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Abstract. In this note, inspired by the proof of the Kirillov–Reshetikhin conjecture, we
consider tensor products of Kirillov–Reshetikhin modules of a fixed node and various level.
We fix a positive integer and attach to each of its partitions such a tensor product. We
show that there exists an embedding of the tensor products, with respect to the classical
structure, along with the reverse dominance relation on the set of partitions.
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1 Introduction

This note is inspired by two results on certain modules of simple, finite-dimensional complex
Lie algebras. The first one is an immediate consequence of the famous Clebsch–Gordan formula
on decompositions of tensor product of simple sl2(C)-modules. Namely let V (m) = SymmC2,
be the n-th symmetric power of the natural representation, then

V (n)⊗ V (m) ∼=sl2 V (n+m)⊕ V (n+m− 2)⊕ · · · ⊕ V (n+m− 2min{n,m}).

Which implies that for m1,m2 ≤ m there exists a surjective map of sl2-modules

V (m2)⊗ V (m−m2) � V (m1)⊗ V (m−m1)

if and only if min{m1,m−m1} ≤ min{m2,m−m2}. Using this inequality, we obtain an order �
on partitions of n of length 2, P(m, 2). By taking the point of view from symmetric functions,
sm being the character of V (m), we have

(m1,m−m1) � (m2,m−m2)⇔ sm2sm−m2 − sm1sm−m1 ∈
∑
k≥0

Z≥0sk.

As the characters are also known as Schur functions, this property of the left hand side is also
known as Schur positivity. A generalization of this order to sln(C) and further to a simple
finite-dimensional Lie algebra g of arbitrary type was investigated in [7] (resp. [3, 10]).

The other inspiration comes from certain character identities for classical limits of Kirillov–
Reshetikhin modules for Uq(ĝ), the untwisted quantum affine algebra associated to g, namely the

Q-systems. Kirillov–Reshetikhin modules W
(i)
m,a are indexed by a node of the Dynkin diagram,
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say i ∈ I, a positive level m and a parameter a ∈ C∗. For more details on Kirillov–Reshetikhin
modules and their importance in the category of finite-dimensional Uq(ĝ)-modules we refer to [4].

We denote by KR(mωi) the g-module obtained through the limit q → 1 of W
(i)
m,a, note that

the classical structure is independent of a. Further denote chargKR(mωi) the classical character
of KR(mωi), then the Q-system is the following character identity [14, 18]

chargKR(mωi) chargKR(mωi) = chargKR((m+ 1)ωi) chargKR((m− 1)ωi) + charg S
(i)
m ,

where S
(i)
m denotes the classical limit of a tensor product of certain Kirillov–Reshetikhin modules

(depending on i and m).
From the Q-system one has the immediate consequence, that there exists a surjective map

of g-modules

KR(mωi)⊗KR(mωi) � KR((m+ 1)ωi)⊗KR((m− 1)ωi).

Considering the partial order on partitions, we have (m − 1,m + 1) ≺ (m,m) ∈ P(2m, 2). So
for the maximal element and its predecessor this might be seen as a generalization of Schur
positivity (to Lie algebras of arbitrary type). Note that in [6] it is proved that there exists
a surjective map of modules for the current algebra of g, namely of fusion products of modules
of Kirillov–Reshetikhin modules for the partitions (m − 1,m + 1), (m,m). Their work is also
motivated by the Q-system.

Combining the partial order on P(m, 2) and this consequence of the Q-system relation was
the starting point of this paper. We have generalized the arguments in the proof of the Kirillov–
Reshetikhin conjecture, e.g. the character of the Kirillov–Reshetikhin modules satisfy the Q-
system. Using this, we have proved that for all g of arbitrary type and (m1,m−m1) � (m2,m−
m2) ∈ P(m, 2) there exists a surjective map of g-modules

KR(m2ωi)⊗KR((m−m2)ωi) � KR(m1ωi)⊗KR((m−m1)ωi).

This might be seen as a generalization of the sl2-case as well as of the consequence of the
Q-system property.

More generally, we associate to each partition (m1 ≥ m2 ≥ · · · ≥ mk > 0) of m a tensor
product of Kirillov–Reshetikhin modules

KR(m1ωi)⊗ · · · ⊗KR(mkωi).

By considering the reverse dominance relation on partitions of m, P(m), we can show further
(using that the cover relation is induced by the cover relations on the set of partitions of length 2)
that if (m1 ≥ · · · ≥ mk1 > 0) � (n1 ≥ · · · ≥ nk2 > 0), then there exists a surjective map of
g-modules

KR(n1ωi)⊗ · · · ⊗KR(nk2ωi) � KR(m1ωi)⊗ · · · ⊗KR(mk1ωi).

In the sln-case, the last statement can be deduced from the results on row shuffles in [16]. Even
more general, in the case where ωi is minuscule, e.g. KR(mωi) is a simple g-module, this last
statement has been proved in [3]. The authors were constructing an explicit bijection of the
highest weight vectors in terms of LS-paths. Our approach avoids these combinatorics.

Since KR(mωi) can be also constructed as a module for g⊗C[t] (by using some “evaluation
parameter” a ∈ C), see Section 2.5, one might ask if there is a surjection also as g ⊗ C[t]-
modules. The natural object to be considered here is the fusion product introduced in [8]. This
is the associated graded module (with respect to the degree filtration on U(g ⊗ C[t])) of the
tensor product of the Kirillov–Reshetikhin modules with pairwise distinct evaluations. Can the
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surjection in Theorem 4.1 be actually obtained from a surjective map of the corresponding fusion
products?

We should remark here that a similar result on Schur positivity on tensor products of simple
g-modules of arbitrary highest weight λ was conjectured in [7] and [3] (see Section 3.5 for more
details). Our result suggests, that this generalized Schur positivity may hold along the partial
order on tensor products of q 7→ 1 limits of minimal affinizations of V (λ) (the “minimal” module
of the quantum affine algebra having a simple quotient whose limit is isomorphic to V (λ), see [5]
for more details).

In the sln-case, the restriction to sln of the limit of such a minimal affinization is nothing
but the simple sln-module V (λ), so this is the conjecture of Schur positivity by Lam, Postnikov
and Pylyavskyy, cited in [7]. For other types, the limit of a minimal affinization is not a sim-
ple g-module in general, for example Kirillov–Reshetikhin modules are minimal affinizations
of V (mωi). It might be interesting to investigate on minimal affinizations of other than rectan-
gular weights.

In Section 2 we briefly recall the reverse dominance relation on partitions and some basics on
Kirillov–Reshetikhin modules. In Section 3 we state the main theorem, while the proof follows
in Section 4.

2 Preliminaries

Let g be a finite-dimensional simple, complex Lie algebra of rank n and Cartan matrix C.
Let n+ ⊕ h ⊕ n− be a triangular decomposition. We denote the set of (positive) roots R (R+

resp), the (dominant) integral weights P (resp. P+). We denote the simple roots {α1, . . . , αn},
the fundamental weight {ω1, . . . , ωn}, I = {1, . . . , n}. For every α ∈ R+ we fix a sl2-triple
{eα, hα, fα}.

2.1 Partial order

We recall the reverse dominance order on partitions. For this, let m ≥ 1 be positive integer and
denote by P(m) the set of partitions of m:

P(m) = {(m1 ≥ · · · ≥ mk > 0) | mj ∈ Z and m1 + · · ·+mk = m}.

This is a finite set and the reverse dominance relation on P(m) is defined as follows:
Let λ = (m1 ≥ · · · ≥ mk1 > 0), µ = (n1 ≥ · · · ≥ nk2 > 0) ∈ P(m). Then

λ � µ :⇔ ∀ j = 1, . . . ,min{k1, k2} : m1 + · · ·+mj ≥ n1 + · · ·+ nj .

Obviously, this gives a partial order on P(m) with a smallest element (m > 0) and largest element
(1 ≥ 1 ≥ · · · ≥ 1 > 0). Moreover, if we consider partitions of a fixed length k only, P(m, k),
then there is also a unique maximal element. Namely if m = `k + p, where 0 ≤ p < k, then

λ = (`+ 1 ≥ · · · ≥ `+ 1 > ` ≥ · · · ≥ `)

is the unique maximal element in P(m, k).

2.2 Cover relation

We recall the notion of the cover relation induced by �, e.g. we say µ covers λ if

1) λ � µ and

2) λ � ν � µ implies ν = λ or ν = µ.
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Since P(m) is a finite set, we can find for each pair λ � µ partitions ν0, . . . ,ν` such that

λ = ν0 � ν1 � · · · � ν` = µ

and νi covers νi−1 for all i. To understand the partial order on P(m) it is therefore sufficient
to understand the cover relation on P(m). The following proposition was proved in [3, Proposi-
tion 3.5] (for simplicity of notation we assume that λ, µ have the same length by adding 0 parts
to at most one of the both).

Proposition 2.1. Let λ = (m1 ≥ · · · ≥ mk ≥ 0), µ = (n1 ≥ · · · ≥ nk ≥ 0) ∈ P(m) and nk or
mk 6= 0. Suppose µ covers λ. Then there exists i < j such that

n` =


m` if ` 6= i, j,

m` − 1 if ` = i,

m` + 1 if ` = j.

The cover relation on partitions P(m) is completely determined by the cover relation on partitions
of length 2.

2.3 Quantum affine algebras and their representations

We give a brief reminder on quantum affine algebras and their finite-dimensional representa-
tions. For more details we refer to [4, 14].

Let q ∈ C∗ which is not a root of unity. Let Uq(ĝ) be the untwisted quantum affine algebra
associated to g. The simple objects of the category C of (type 1) finite-dimensional represen-
tations of Uq(ĝ) are parametrized by dominant monomials of the ring Y = Z[Y ±1i,a ]1≤i≤n,a∈C∗ ,

that is for each such monomial m =
∏

i∈I,a∈C∗
Y
ui,a
i,a which is dominant (the ui,a ≥ 0), there is

a corresponding simple object L(m) in C. For example, for i ∈ I, m ≥ 0, a ∈ C∗, we have the
Kirillov–Reshetikhin module

W (i)
m,a = L

(
Yi,aYi,aq2i

· · ·Y
i,aq

2(m−1)
i

)
.

Here qi = qri where ri is the length of simple root αi.
The q-character morphism [12] is an injective ring morphism defined on the Grothendieck

ring Rep(Uq(ĝ)) of the tensor category C:

χq : Rep(Uq(ĝ))→ Y.

Theorem 2.1 ([11, 12]). For m a dominant monomial, we have

χq(L(m)) ∈ mZ≥0
[
A−1i,a

]
1≤i≤n,a∈C∗ ,

where

Ai,a = Yi,aq−1
i
Yi,aqi

∏
{j|Cj,i=−1}

Y −1j,a

∏
{j|Cj,i=−2}

Y −1
j,aq−1Y

−1
j,aq

∏
{j|Cj,i=−3}

Y −1
j,aq2

Y −1j,a Y
−1
j,aq−2 .

An element in Im(χq) is characterized by the multiplicity of its dominant monomials.

Note that we have a partial ordering on the monomials of Y: m � m′ if m′m−1 is a product
of monomials Ai,a. The first statement in the theorem can be reformulated by saying that all
monomials in χq(L(m)) are lower than m for this ordering, that is m is the highest monomial.
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As consequence of the second statement, if we know that the q-character of a simple module
has a unique dominant monomial, its q-character can be reconstructed (this is the Frenkel–
Mukhin algorithm [11]). This property has been proved in the important case of Kirillov–
Reshetikhin modules, which led to the proof of the Kirillov–Reshetikhin conjecture. It was first
proved by Nakajima [18] for ADE-types and in [14] with a different proof which can be extended
to the general case.

Theorem 2.2 ([14, 18]). The q-character of Kirillov–Reshetikhin module has a unique dominant
monomial. This implies the T -system in the Grothendieck ring Rep(Uq(ĝ)):[

W (i)
m,a ⊗W

(i)

m,aq2i

]
=
[
W

(i)
m+1,a ⊗W

(i)

m−1,aq2i

]
+
[
S(i)
m,a

]
,

where S
(i)
m,a is a tensor product of Kirillov–Reshetikhin modules. The representations S

(i)
m,a and

W
(i)
m+1,a ⊗W

(i)

m−1,aq2i
are simple.

2.4 The classical limit

Let KR(mωi) be the restriction of W
(i)
m,a as a Uq(g)-module (it is well known it does not depend

on a, see references in [14]). We denote by the same symbol its limit at q = 1 (that is we consider
the corresponding g-module).

KR(mωi) decomposes into a direct sum of finitely many simple g-modules. This decompo-
sition is computed for g of classical type, namely type A, B, C, D as well as for certain nodes
for exceptional types (see [2, Theorem 1] and [2, Chapter 3]). For more on decompositions of
Kirillov–Reshetikhin modules see [13].

2.5 Chari modules

For the readers convenience we should clarify the relation to Kirillov–Reshetikhin modules for
current algebras, although it is not used in this note at all:

Denote g⊗C[t] the current algebra of g. In [2], finite-dimensional modules for g⊗C[t] were
introduced. These are supposed to be classical analogs of Kirillov–Reshetikhin modules. Namely
for m ∈ Z≥0, a ∈ C, i ∈ I, C(mωi, a) is the g ⊗ C[t]-module generated by a non-zero vector w
subject to the relations

n+ ⊗ C[t].w = 0, (h⊗ 1).w = mωi(h)w, h⊗ (t− a)C[t].w = 0,

(fα)
mωi(hα)+1.w = 0, (fαi ⊗ (t− a)).w = 0.

The following was proven for g of classical type, namely of type A, B, C, D in [2, Corol-
lary 2.1]. The general case (e.g., an arbitrary simple, finite-dimensional complex Lie algebra)
can be deduced as the special case of a single tensor factor of [15, Corollary 5.1], this has been
proved by using a pentagram of identities see [15, Section 1.2].

Theorem 2.3. For i ∈ I and m ≥ 0 we have

C(mωi, a) ∼=g KR(mωi).

3 Main result

3.1. Main theorem. For λ = (m1 ≥ · · · ≥ mk > 0) ∈ P(m) and i ∈ I we denote the tensor
product of the associated KR modules as:

KR(λ, i) := KR(m1ωi)⊗ · · · ⊗KR(mkωi).
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Note that KR(0, ωi) ∼= C is the trivial representation. We are mainly interested in the g-structure
of these modules. Since this is the tensor product of finite-dimensional g-modules, it decomposes
into the direct sum of simple modules. Due to the structure of the Kirillov–Reshetikhin modules,
we see immediately that the maximal weight occurring ismωi and that the corresponding weight
space has dimension 1.

The main purpose is of this paper is the study of the g-structure of these modules along the
partial order and the main theorem is the following

Theorem 3.1. Let m ≥ 1, i ∈ I and λ � µ ∈ P(m), then

dim(Homg(KR(λ, i), V (τ))) ≤ dim(Homg(KR(µ, i), V (τ)))

for all τ ∈ P+.

In other words, there exists a surjective map of g-modules

KR(µ, i) −→ KR(λ, i).

Proof. Let λ � µ ∈ P(m). We denote µ = (n1 ≥ · · · ≥ nk2 ≥ 0). It is sufficient to prove the
statement for the case where µ covers λ. In this case, we know by Proposition 2.1 there exists
p < q such that n` = m` for all ` 6= p, q. This implies that

KR(µ, i) = KR((mp − 1)ωi)⊗KR((mq + 1)ωi)⊗
⊗
` 6=p,q

KR(m`ωi).

So to prove the statement it is enough to give a proof for partitions of m of length 2. So let
m1 ≥ m2 > 0, we have to show that we have a surjective map of g-modules

KR(m1ωi)⊗KR(m2ωi) � KR((m1 + 1)ωi)⊗KR((m2 − 1)ωi).

This will be proven in the next section, Theorem 4.1. �

3.2. Before proving the last ingredient in the proof (Theorem 4.1), we shall make a couple of
remarks. First of all, Theorem 3.1 was proved in [3, Theorem ii)] for the special case where ωi
is a minuscule weight. In this case, KR(mωi) ∼= V (mωi) as a g-module (see, e.g., [2]). This case
covers the sln+1 case as well as certain special cases for other types. The proof given there uses
the combinatorics of LS paths. Namely, an injection on the level of paths in the tensor product
is given. This proof does not extend to other cases since the combinatorics of LS-paths are more
complicated for non-minuscule weights.

3.3. It would be interesting to study the kernel of the map (λ � µ ∈ P(m))

KR(µ, i) −→ KR(λ, i).

In the formerly studied case of Q-systems, this kernel turns out to be a tensor product of
Kirillov–Reshetikhin modules again (Theorem 2.2). This is not true in general: for sln, i = 2
and the quotient

KR(5, 2)⊗KR(1, 2) −→ KR(6, 2),

the kernel is not a (non-trivial) tensor product at all. It is also not a minimal affinization as
they are all simple sln-modules.

3.4. The partial order on P(m) is a special case of the more general poset P(λ) introduced
in [3]. Here λ ∈ P+ is a dominant weight and the elements in the set are partitions of λ, namely
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λ = (λ1, . . . , λk ≥ 0), with λi ∈ P+ and λ1 + · · · + λk = λ. Then the partial order on P(λ) is
given by: λ � µ if and only if for all α ∈ R+ and ` ≥ 1:

min
i1<···<i`

{(λi1 + · · ·+ λi`)(hα)} ≤ min
i1<···<i`

{(µi1 + · · ·+ µi`)(hα)}.

Then [3, Theorem 1(i)] gives for λ � µ

dim(V (λ1)⊗ · · · ⊗ V (λk1)) ≤ dim(V (µ1)⊗ · · · ⊗ V (µk2)).

3.5. It is conjectured [3, Conjecture 1] that if (λ1, λ2) � (µ1, µ2) ∈ P(λ, 2) then

dim(Homg(V (λ1)⊗ V (λ2), V (τ))) ≤ dim(Homg(V (µ1)⊗ V (µ2), V (τ)))

for all τ ∈ P+.
This conjecture was made before for sln+1 by Lam, Postnikov, Pylyavskyy (cited in [7, Conjec-

ture 1]). In this case, the conjecture is equivalent to the following statement on the level of
characters:

sµ1sµ2 − sλ1sλ2 =
∑
τ∈P+

cτsτ , and cτ ≥ 0 ∀ τ ∈ P+,

where sλ is the Schur function corresponding to λ, e.g. the character of the simple sln+1-modu-
le V (λ). In other words, it is conjectured that the difference of the products of the corresponding
Schur functions is Schur positive.

A big step forward in proving this conjecture has been made with [7, Theorem 1]:

dim(Homg(V (λ1)⊗ V (λ2), V (τ))) ≥ 1⇒ dim(Homg(V (µ1)⊗ V (µ2), V (τ))) ≥ 1.

Further, in [3, Theorem 1(iii)] the conjecture was proved for sl3. Further evidence to this
conjecture is due the link between fusion products and certain PBW graded modules as provided
in [9].

3.6. Besides some numerical evidence and the partial cases stated above, the conjectures
remain open. With the result of the current paper one may tempt to replace the simple modu-
les V (λ) in the tensor product by minimal affinizations of V (λ) (see [5] for more details on these)
and still conjecture a surjective map of g-modules. Note that for classical types, KR(mωi) is
the minimal affinization of V (mωi) [1, 5]. Some evidence to this conjecture can be found in [17]
where the Q-system relations are extended to minimal affinizations.

4 Proof of the main theorem

Theorem 4.1. Let i ∈ I and m1 > m2 > 0. Then there exists an embedding of g-modules

KR(m1ωi)⊗KR(m2ωi)→ KR((m1 − 1)ωi)⊗KR((m2 + 1)ωi)

The proof uses arguments of the proofs of [14, Theorems 1.3 and 6.1]. We explain below the
main differences between our present situation and the results proved in [14].

Proof. For m1 = m2 + 1 it is clear as the two g-modules are isomorphic. Let us suppose
that m1 ≥ m2 + 2. It follows directly from the following statement that we establish. The
Uq(ĝ)-module

V =W
(i)

m1,q
−2(m1−m2−1)
i

⊗W (i)
m2,1
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is simple and occurs as a composition factor in Rep(Uq(ĝ)) of

V ′ =W
(i)

m1−1,q
−2(m1−m2−1)
i

⊗W (i)
m2+1,1.

For m1 = m2 + 2 this is a direct consequence of the T -system in Theorem 2.2 which gives the

decomposition of W
(i)

m1−1,q−2
i

⊗W (i)
m1−1,1 in simple modules in Rep(Uq(ĝ)).

For a general m1 > m2 + 2, the two modules V and V ′ have the same highest monomial

M = Y
i,q

2m2
i

(
Y
i,q

2(m2−1)
i

Y
i,q

2(m2−2)
i

· · ·Yi,1
)2(

Yi,q−2
i
Yi,q−4

i
· · ·Y

i,q
−2(m1−m2−1)
i

)
.

Hence it suffices to prove that V is simple, that is V ' L(M). To prove it, we write a proof as
for [14, Theorem 6.1(2)]:

(1) We list the dominant monomials occurring in χq(V ), and we get as in [14, Lemma 5.6(2)]
the following set:{

M,MA−1
i,q

2m2−1
i

,MA−1
i,q

2m2−1
i

A−1
i,q

2m2−3
i

, . . . ,MA−1
i,q

2m2−1
i

A−1
i,q

2m2−3
i

· · ·A−1i,aqi
}
.

All of them occur with multiplicity 1.
(2) We prove with the same argument as in [14, Section 6.1] that these monomials do occur

in χq(L(M)): otherwise, we would have a monomial

M ′ =MA−1
i,q

2m2−1
i

A−1
i,q

2m2−3
i

· · ·A−1
i,aq

2m2−1−2r
i

< M

in this list such that L(M ′) is a simple constituent of V . But then all monomials of χq(L(M
′))

should occur in χq(L(M)), in particular M ′A−1
i,aq

2m2−1−2r
i

, which is not as explained in [14, Sec-

tion 6.1]. �
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