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Abstract. Hopf algebroid structures on the Weyl algebra (phase space) are presented.
We define the coproduct for the Weyl generators from Leibniz rule. The codomain of the
coproduct is modified in order to obtain an algebra structure. We use the dual base to
construct the target map and antipode. The notion of twist is analyzed for κ-deformed
phase space in Hopf algebroid setting. It is outlined how the twist in the Hopf algebroid
setting reproduces the full Hopf algebra structure of κ-Poincaré algebra. Several examples
of realizations are worked out in details.

Key words: noncommutative space; κ-Minkowski spacetime; Hopf algebroid; κ-Poincaré
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1 Introduction

Motivation for studying noncommutative (NC) spaces is related to the fact that general theory
of relativity together with Heisenberg uncertainty principle leads to the uncertainty of position
coordinates itself 4xµ 4 xν > l2Planck [22, 23]. This uncertainty in the position can be reali-
zed via NC coordinates. There are also arguments based on quantum gravity [22, 23, 36], and
string theory models [20, 61], which suggest that the spacetime at the Planck length is quantum,
i.e. noncommutative.

We will consider a particular example of NC space, the so called κ-Minkowski spacetime [13,
17, 37, 40, 41, 49, 50, 51, 53, 54, 56, 57, 58], which is a Lie algebraic deformation of the usual
Minkowski spacetime. Here, κ is the deformation parameter usually interpreted as Planck mass
or the quantum gravity scale. Investigations of physical theories on κ-Minkowski spacetime
leads to many new properties, such as: modification of particle statistics [5, 18, 24, 27, 64, 65],
deformed electrodynamics [28, 29], NC quantum mechanics [3, 4, 31, 46, 47], and quantum
gravity effects [11, 21, 26, 30, 60]. κ-Minkowski spacetime is also related to doubly-special and
deformed relativity theories [1, 2, 10, 43, 44].

The symmetries of κ-Minkowski spacetime are described via Hopf algebra setting and they are
encoded in the κ-Poincaré–Hopf algebra (in the same sense as are the symmetries of Minkowski
spacetime encoded in the Poincaré–Hopf algebra). A Hopf algebra is a bialgebra equipped with
an antipode map satisfying the Hopf axiom. The bialgebra is an (unital, associative) algebra
which is also a (conunital, coassociative) coalgebra such that certain compatibility conditions
are satisfied. The antipode is an antihomomorphism of the algebra structure (an antialgebra
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homomorphism). Hopf algebras are used in various areas of mathematics and physics for fifty
years. See [8, 52] for some examples.

It turns out that the notion of the Hopf algebra is too restrictive and it has to be generalized.
For example, it is shown that the Weyl algebra (quantum phase space) can not have a structure
of a Hopf algebra. Namely, the whole phase space (Weyl algebra) generated by pµ and xµ
(or x̂µ) can not be equipped with the Hopf algebra structure, since one can not include 4xµ in
a satisfactory way, i.e. the notion of Hopf algebra is too restrictive for the whole phase space
(Weyl algebra). Several types of generalizations are possible: quasi-Hopf algebras, multiplier
Hopf algebras and weak Hopf algebras. Our construction is very similar to the structure of the
Hopf algebroid defined by Lu in [48].

Lu was inspired by the notion of the Poisson algebroid from the Poisson geometry. Namely,
some Hopf algebras are quantization of the Poisson groups. Now, Hopf algebroids can be con-
sidered as the quantization of the Poisson groupoids. Lu introduces two algebras: the base
algebra A and the total algebra H. One can consider the total algebra H as the algebra over the
base algebra A. The left and right multiplications are given by the source and the target maps.
Hence, the coproduct4 is defined on the total algebraH and the image lies inH⊗AH which is an
(A,A)-bimodule but not an algebra. Namely, H⊗AH is the quotient of H⊗H by the right ideal.
G. Böhm and K. Szlachányi in [9] considered the same structure as Lu did, but they changed
the definition of the antipode. For more comprehensive approach, see [8]. Let us mention that
some ideas existed before the definition of Lu in which the base algebra or both the base algebra
and the total algebra had to be commutative (see [8, 48] and references therein). Bialgebroid is
equivalent to the notion of ×A-bialgebra introduced much earlier by Takeuchi in [62].

One can analyze the structure of the Hopf algebra by twists. See [6, 7] for more details. P. Xu
in [63] applies the twist to the bialgebroid (which he calls Hopf algebroid although he does not
have the antipode). It is important to mention that Xu uses the definition of the bialgebroid
which is equivalent to the definition from [48].

In [40] κ-Minkowski spacetime and Lorentz algebra are unified in a unique Lie algebra.
Realizations and star products are defined and analyzed in general and specially, their relation
to coproduct of the momenta is pointed out.

The deformation of Heisenberg algebra and the corresponding coalgebra by twist is performed
in [57]. Here, the so called tensor exchange identities are introduced and coalgebras for the
generalized Poincaré algebras are constructed. The exact universal R-matrix for the deformed
Heisenberg (co)algebra is found.

The quantum phase space (Weyl algebra) and its Hopf algebroid structure is analyzed in [33].
Unification of κ-Poincaré algebra and κ-Minkowski spacetime is done via embedding into quan-
tum phase space. The construction of κ-Poincaré–Hopf algebra and κ-Minkowski spacetime
using Abelian twist in the Hopf algebroid approach has been elaborated.

Twists, realizations and Hopf algebroid structure of κ-deformed phase space are discussed
in [34]. It is shown that starting from a given deformed coalgebra of commuting coordinates
and momenta one can construct the corresponding twist operator.

In the present paper, the total algebra is the Weyl algebra Ĥ and the base algebra is the
subalgebra Â generated by noncommutative coordinates x̂µ. The construction of the target map
is obtained via dual realizations. The codomain of the coproduct is changed. We take a quotient
of the image of the coproduct instead of quotient of Ĥ ⊗ Ĥ. As a consequence, the right ideal
by which Lu [48] has taken the quotient is now two-sided and the codomain of the coproduct
has the algebra structure. The notion of the counit is related to realizations. Furthermore,
we manage to incorporate the twist in our construction, obtaining the Hopf algebroid structure
from the twist.

This paper is structured as follows. In Section 2 we introduce the κ-Minkowski spacetime
and κ-deformed phase space, and we establish the connection between Leibniz rule and coproduct
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for the Weyl generators. Also, the dual basis is introduced and elaborated. The Hopf algebroid
structure of κ-deformed phase space Ĥ and undeformed phase space H is presented in Section 3.
In Section 4 we first discuss the realizations and then we provide the twist operator in the Hopf
algebroid approach. It is shown that the twisted Hopf algebroid structure of phase space H
is isomorphic to the Hopf algebroid structure of Ĥ. Finally, in Section 5 we consider the κ-
Poincaré–Hopf algebra in the natural realization (classical basis). It is outlined how the twist in
Hopf algebroid setting reproduces the full Hopf algebra structure of κ-Poincaré algebra. Also,
we discuss the existence and properties of twist in all types of deformations (space-, time- and
light-like).

2 κ-deformed phase space

2.1 κ-Minkowski spacetime

Let us denote coordinates of the κ-Minkowski spacetime by x̂µ. Latin indices will be used for
the set {1, . . . , n − 1} and Greek indices will be used for the set {0, . . . , n − 1}. The Lorentz
signature of the κ-Minkowski spacetime is defined by [ηµν ] = diag(−1, 1, . . . , 1). Let gκ be the
Lie algebra generated by x̂µ such that

[x̂µ, x̂ν ] = i (aµx̂ν − aν x̂µ) , (2.1)

where a ∈ Mn. The relation to κ mass parameter is aµ = 1
κuµ, uµ ∈ Mn (u2 = −1 time-like,

u2 = 1 space-like and u2 = 0 light-like). The enveloping algebra U(gκ) of gκ will be denoted
by Â.

2.2 Phase space

The momentum space T = C[[pµ]] is the commutative space generated by pµ such that

[pµ, x̂ν ] = −iϕµν(p) (2.2)

is satisfied for some set of real functions ϕµν (see [33, 34, 40] for details). Let us recall that
lim
a→0

ϕµν = ηµν1 and detϕ 6= 0. We also require that generators x̂µ and pµ satisfy Jacobi

identities. This gives the set of restrictions on functions ϕµν (see equation (11) in [40] or
equation (4) in [34]). The existence of such space T is analyzed in several papers [40, 54]. One
particularly interesting solution is the set {pLµ} which is related to the so called left covariant
realization [40, 54] where ϕµν = ηµνZ

−1, i.e. (2.2) leads to[
pLµ, x̂ν

]
= −iηµνZ−1. (2.3)

Here Z denotes the shift operator defined by

[Z, x̂µ] = iaµZ, [Z, pµ] = 0,

and for the left covariant realization is given by

Z−1 = 1 +
(
apL

)
,

where we used
(
apL

)
≡ aαpLα. The phase space Ĥ is generated as an algebra by Â and T such

that (2.1) and (2.2) are satisfied.

Let I be the unique action of Ĥ on Â, such that Â acts on itself by left multiplication and
t I f̂ = [t, f̂ ] I 1 for all t ∈ T and f̂ ∈ Â. Â can be considered as an Ĥ-module.
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2.3 Leibniz rule

We have already mentioned that Ĥ does not have the structure of the Hopf algebra, but it is
possible to construct the structure of the Hopf algebroid. In this subsection we do the preparation
for the coproduct which will be completely defined in Section 3. The formula for the coproduct
can be built from the action I and the Leibniz rule (see [40, Section 2.3] and [34]). In κ-
Poincaré–Hopf algebra Uκ(P) (where P is generated by momenta pµ and Lorentz generators
Mµν) the coproducts of momenta and Lorentz generators are unique and 4|Uκ(P) : Uκ(P) →
Uκ(P)⊗Uκ(P). However in the Hopf algebroid structure the coproduct of generators pµ and x̂µ
are not unique, modulo the right ideal K̂ in (2.10).

Let 4(ĥ) = ĥ(1) ⊗ ĥ(2) for ĥ(1), ĥ(2) ∈ Ĥ (using Sweedler notation). Then

ĥI
(
f̂ ĝ

)
= m

(
4
(
ĥ
)
I
(
f̂ ⊗ ĝ

))
=

(
ĥ(1)If̂

)(
ĥ(2)Iĝ

)
(2.4)

for f̂ , ĝ ∈ Â.
Now we recall the formula for the coproduct of pµ defined by 4|T : T → T ⊗ T . Then

pµI
(
f̂ ĝ

)
=

[
pµ, f̂ ĝ

]
I1 =

([
pµ, f̂

]
ĝ + f̂ [pµ, ĝ]

)
I1 =

[
pµ, f̂

]
Iĝ + f̂pµIĝ. (2.5)

For example let us write the coproduct of pLµ. One finds by induction, starting with (2.3) that[
pLµ, f̂

]
=

(
pLµ I f̂

)
Z−1, ∀ f̂ ∈ Â. Inserting this result in the r.h.s. of (2.5) and comparison with

r.h.s. of (2.4) for ĥ = pLµ gives

4
(
pLµ

)
= pLµ ⊗ Z−1 + 1⊗ pLµ.

Now, let us consider elements x̂µ. It is clear that

4(x̂µ) = x̂µ ⊗ 1 (2.6)

since x̂µI(f̂ ĝ) = (x̂µf̂)ĝ. Formula (33) from [40] shows that

x̂µI
(
f̂ ĝ

)
=

(
Z−1If̂

)
(x̂µIĝ)− aµ

(
pLαIf̂

)
(x̂αIĝ)

and1

4′(x̂µ) = Z−1 ⊗ x̂µ − aµpLα ⊗ x̂α. (2.7)

It is convenient to write (2.7) in the form

4′(x̂µ) = Oµα ⊗ x̂α,

where

Oµα = Z−1ηµα − aµpLα. (2.8)

Hence, elements

R̂µ = x̂µ ⊗ 1−Oµα ⊗ x̂α (2.9)

satisfy m(R̂µI(f̂ ⊗ ĝ)) = 0 for all f̂ , ĝ ∈ Â where m denotes the multiplication (m(f̂ ⊗ ĝ) = f̂ ĝ)

and (a⊗ b)I(f̂ ⊗ ĝ) = (aIf̂)⊗ (bIĝ). Then

K̂ = U+(R̂µ)Ĥ ⊗ Ĥ (2.10)

1In Section 3.1, the coproduct will be defined and (2.6) and (2.7) will be equal, since both choices of coproducts
of x̂µ belong to the same congruence class.
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is the right ideal in Ĥ ⊗ Ĥ. Here we used that U+(R̂µ) is the universal enveloping algebra
generated by R̂µ but without the unit element.

It is important to emphasize that such derived coproduct is an algebra homomorphism

4
(
ĥ1ĥ2

)
= 4

(
ĥ1

)
4

(
ĥ2

)
for any ĥ1, ĥ2 ∈ Ĥ which enables us to define the formula for the coproduct for all elements
of Ĥ.

2.4 Dual basis

In [40] we have introduced the notion of the dual basis. Let us recall some basic facts since it
will be used for the definition of the target map. We define elements

ŷµ = x̂αO−1µα , (2.11)

where

O−1µα =
(
ηµα + aµp

L
α

)
Z (2.12)

(it would be more precise to write (O−1)µα). They have some interesting properties. Since

x̂µ = ŷαOµα, (2.13)

ŷµ and pµ form a basis of Ĥ (it would be more correct to say that power series in ŷµ and pµ
form a basis of Ĥ). Elements ŷµ satisfy commutation relations similar to (2.1):

[ŷµ, ŷν ] = −i(aµŷν − aν ŷµ).

We call this basis the dual basis.
It is easy to check that x̂µ and ŷν commute, i.e.

[x̂µ, ŷν ] = 0. (2.14)

Also, the straightforward calculation shows that Oµν and Oλρ commute. It remains to consider
commutation relations among Oµν , x̂µ and ŷµ. The definition of Oµν yields [Oµν , x̂λ] = i(aµηλν−
aληµν)Z−1 = i(aµOλν − aλOµν) and it shows that

[Oµν , x̂λ] = iC α
µλ Oαν , (2.15)

where Cµλα = aµηλα − aληµα stands for structure constants. One can easily obtain[
O−1µν , x̂λ

]
= i

(
−aµηλν + aλO

−1
µν

)
, [Oµν , ŷλ] = i(aµηλν − aλOµν)

and [
O−1µν , ŷλ

]
= i

(
−aµO−1λν + aλO

−1
µν

)
= −iCµλα

(
O−1

)αν
.

The commutation relation [O−1µν , x̂λ] can be also obtained from (2.15) multiplying by O−1µα
and O−1βν and using aαO−1µα = aµ. Let us mention that elements Oµν satisfy

Oµν = ηµν + Cαµνp
L
α. (2.16)

One can easily check that ŷµI1 = x̂µ. Using (2.14) and (2.16), it is easy to obtain that
ŷµIx̂ν = x̂ν x̂µ and

f̂(ŷ)Iĝ(x̂) = ĝ(x̂)f̂op(x̂).

Here f̂op stands for the opposite polynomial ((x̂µx̂ν)op = x̂ν x̂µ). Hence, the action I of f̂(ŷ) can

be understood as a multiplication from the right with f̂op(x̂). One can show that4(ŷµ) = 1⊗ŷµ.
Note that the same construction as for κ-Minkowski space (2.1) could be generalized to arbitrary
Lie algebra defined by structure constants Cµνλ.
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3 Hopf algebroid

3.1 Hopf algebroid structure of Ĥ

We define the source map, target map, coproduct, counit and antipode such that Ĥ has the
structure of the Hopf algebroid.

In Hopf algebroid, the unit map is replaced by the source and target maps. In our case Ĥ is
the total algebra and Â is the base algebra. The source map α̂ : Â → Ĥ is defined by

α̂
(
f̂(x̂)

)
= f̂(x̂).

The target map β̂ : Â → Ĥ is defined by

β̂
(
f̂(x̂)

)
= f̂op(ŷ).

Let us recall that the source map is the homomorphism while the target map is the antihomo-
morphism. Relation (2.14) shows that

α̂
(
f̂(x̂)

)
β̂(ĝ(x̂)) = β̂(ĝ(x̂))α̂

(
f̂(x̂)

)
.

In order to define the coproduct on Ĥ, we consider the subspace B̂ of Ĥ ⊗ Ĥ:

B̂ = U
(
R̂µ

)(
Â ⊗ C

)
4 T ,

where U(R̂µ) denotes the universal enveloping algebra generated by R̂µ (see (3.1)). Here, 4T
denotes the subalgebra of Ĥ ⊗ Ĥ generated by 1⊗ 1 and elements 4(pµ). For example, we can
consider pLµ and then 4T is generated by 1⊗ 1 and pLµ ⊗ Z−1 + 1⊗ pLµ. Since[

R̂µ, R̂ν
]

= i
(
aµR̂ν − aνR̂µ

)
= iCµναR̂α, (3.1)[

x̂µ ⊗ 1, R̂ν
]

= i
(
aµR̂ν − aνR̂µ

)
, (3.2)[

Oµα ⊗ x̂α, R̂ν
]

= 0, (3.3)[
4 pLµ, R̂ν

]
= 0

and [
x̂µ ⊗ 1, pLν ⊗ Z−1 + 1⊗ pLν

]
= iηµνZ

−1 ⊗ Z−1 ∈ 4T , (3.4)

B̂ is a subalgebra of Ĥ ⊗ Ĥ. It is obvious that (3.3) is a consequence of (3.1) and (3.2) but we
write it for completeness. Now, let us consider the subspace Î of B̂ defined by

Î = U+
(
R̂µ

)(
Â ⊗ C

)
4 T ,

where U+(R̂µ) is the universal enveloping algebra generated by R̂µ but without the unit element.

Using (3.1)–(3.4) one can check that Î = K̂ ∩ B̂ and Î is the twosided ideal in B̂.

Remark. We could also define the subalgebra B̂3 in Ĥ ⊗ Ĥ ⊗ Ĥ by

B̂3 = U
[(
R̂µ

)
1,2
,
(
R̂µ

)
2,3

](
Â ⊗ C⊗ C

)
(4⊗ 1)(4T ),

where U [(R̂µ)1,2, (R̂µ)2,3] denotes the universal enveloping algebra generated by 1 ⊗ 1 ⊗ 1,
(R̂µ)1,2 = R̂µ ⊗ 1 and (R̂µ)2,3 = 1 ⊗ R̂µ and we have that (4 ⊗ 1)(4T ) = (1 ⊗ 4)(4T )
since T is a Hopf algebra. Similarly, we can define B̂n and then B̂ would correspond to B̂2.
Also, K̂n and În = K̂n ∩ B̂n can be defined. See [48] for the similar discussion.



κ-Deformed Phase Space, Hopf Algebroid and Twisting 7

Now, we define the coproduct 4 : Ĥ → B̂/Î = 4Ĥ by

4(x̂µ) = x̂µ ⊗ 1 + Î = Z−1 ⊗ x̂µ − aµpLα ⊗ x̂α + Î = Oµα ⊗ x̂α + Î, (3.5)

4
(
pLµ

)
= pLµ ⊗ Z−1 + 1⊗ pLµ + Î.

Notice that B̂/Î is the “restriction” of Lu’s Ĥ ⊗ Ĥ/K̂, or in other words an (Â, Â)-submodule
of Ĥ⊗ Ĥ/K̂ that turns out to be an algebra, which, in turn, allows us to define 4 as an algebra
homomorphism

4
(
f̂ ĝ

)
= 4

(
f̂
)
4 (ĝ).

The coproduct of ŷµ is given by 4(ŷµ) = 1⊗ ŷµ + Î = ŷα ⊗O−1µα + Î. One can check that such
defined coproduct is coassociative.

The counit ε̂ : Ĥ → Â is defined by

ε̂
(
ĥ
)

= ĥI1.

This map is not a homomorphism. It is easy to check that m(α̂ε̂⊗1)4 = 1 and m(1⊗ β̂ε̂)4 = 1.
In order to check the first identity, we write elements of Ĥ in the form f̂(x̂)g(p) and for the
second identity in the form f̂(ŷ)g(p).

The antipode S : Ĥ → Ĥ is defined by

S(ŷµ) = x̂µ and S
(
pLµ

)
= −pLµZ.

The antipode S(x̂µ) can be calculated from (2.13). One obtains that

S(x̂µ) = ŷµ + iaµ(1− n). (3.6)

It follows that S2(ŷµ) = ŷµ + iaµ(1 − n) (and S2(x̂µ) = x̂µ + iaµ(1 − n)) and S2(pµ) = pµ.

Previous two formulas can be written also as S2(ĥ) = Z1−nĥZn−1. It is enough to check it for
the elements x̂µ and pµ since S2 is a homomorphism. The expression of S2(x̂µ) can be written
in terms of structure constants:

S2(x̂µ) = x̂µ + iC α
αµ . (3.7)

A nice way to check the consistency of the antipode is to start with (2.13) and apply the
antipode S (note that S(Oµα) = O−1µα):

S(x̂µ) = O−1µα x̂
α = O−1µα ŷβO

αβ.

It produces

S2(x̂µ) =
(
O−1

)αβ
x̂βOµα.

It remains to apply expressions for (O−1)αβ and Oµα (see (2.12) and (2.8)), use the abbreviation
AL = −aαpLα = −(apL) and recall the identity Z = (1−AL)−1 (see [40]).

Let P ⊂ Ĥ be the enveloping algebra of the Poincaré algebra p. It is possible to define the
Hopf algebra structure on the subalgebra P [40]. It is interesting to note that the coproduct
and the antipode map defined above on Ĥ and restricted to P coincides with the coproduct and
the antipode map on the Hopf algebra P [33]. For more details see Section 5.

It is easy to check that

Sβ̂ = α̂, m(1⊗ S)4 = α̂ε̂, m(S ⊗ 1)4 = β̂ε̂S. (3.8)
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The first identity is obvious, the second one can be easily checked for the base elements and the
third identity can be easily checked using the dual basis.

In [48], Lu analyzes the right ideal K̂ generated by Q̂µ = ŷµ ⊗ 1 − 1 ⊗ x̂µ (right ideal K̂ is
denoted by I2 in [48]). These elements are equal to R̂α((O−1)µα⊗1). It is important to mention
that the identity m(1 ⊗ S)4 = α̂ε̂ is not satisfied in [48], because m(1 ⊗ S)K̂ 6= 0 and this is
why the section γ is needed. In our approach, since we have 4 : Ĥ → B̂/Î = 4Ĥ and

m(1⊗ S)Î = 0,

it is easy to see that (3.8) holds ∀h ∈ Ĥ.

Let us point out that [R̂µ, Q̂ν ] = 0 and [Q̂µ, Q̂ν ] = i(−aµQ̂ν +aνQ̂µ). Also, it is easy to check
that [Q̂µ,4pLν ] = 0 and [Q̂µ, x̂ν ⊗ 1] = 0.

3.2 Hopf algebroid structure of H

Now, let us consider the case when the deformation vector aµ is equal to 0. Then (2.1) trans-
forms to

[x̂µ, x̂ν ] = 0,

the algebra Ĥ becomes the Weyl algebra which we denote by H and write xµ instead of x̂µ. We
have already mentioned that it is not possible to construct the Hopf algebra structure on H.
Let us repeat the Hopf algebroid structure on H and set the terminology.

Now, ϕµν = Oµν = ηµν , Z = 1 and ŷµ = xµ. Let A (the base algebra) be the subalgebra
of H generated by 1 and xµ. We define the action � of H on A in the same way as we did it
in Section 2.2: f(x) � g(x) = f(x)g(x), pµ � 1 = 0 and pµ � g(x) = [pµ, g(x)] � 1 = pµg(x) � 1.
Then A can be considered as an H-module. It is clear that the action I transforms to the
action � when the vector a is equal to 0.

The source and the target map are now equal α0 = β0 and α0;β0 : A → H reduces to the
natural inclusion.

The counit ε0 : H → A is defined by

ε0(h) = h� 1.

In order to define the coproduct, let us define relations (R0)µ by

(R0)µ = xµ ⊗ 1− 1⊗ xµ.

Let U [(R0)µ] be the universal enveloping algebra generated by 1 ⊗ 1 and (R0)µ, U+[(R0)µ] be
the universal enveloping algebra generated by (R0)µ but without the unit element, and 40T be
the algebra generated by 1 ⊗ 1 and pµ ⊗ 1 + 1 ⊗ pµ. Note that T is isomorphic to 40T . Now,
we define B0, the subalgebra of H⊗H of the form

B0 = U [(R0)µ](A⊗ C)40 T

and twosided ideal I0 of B0 by

I0 = U+[(R0)µ](A⊗ C)40 T .

The coproduct 40 : H → B0/I0 = 40H is a homomorphism defined by

40(xµ) = xµ ⊗ 1 + I0, 40(pµ) = pµ ⊗ 1 + 1⊗ pµ + I0.
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One checks that the coproduct 40 and the counit ε0 satisfy m(α0ε0 ⊗ 1)40 = 1 and m(1 ⊗
β0ε0)40 = 1.

The antipode S0 : H → H transforms to

S0(xµ) = xµ, S0(pµ) = −pµ. (3.9)

It is easy to check that

m(1⊗ S0)40 = α0ε0, m(S0 ⊗ 1)40 = β0ε0S0. (3.10)

Similarly as in the deformed case, the expression m(1⊗S0)40 is not well defined in [48], because
m(1⊗ S0)K0 6= 0 and this is why the section γ is needed. In our approach, since

m(1⊗ S0)I0 = 0

holds, one can check (3.10) ∀h ∈ H.

4 Twisting Hopf algebroid structure

4.1 Realizations

The phase space satisfying (2.1) and (2.2) can be analyzed by realizations (see [40, 42, 56]). In
Section 3.2, we have analyzed the Weyl algebra H generated by pµ and commutative coordinates
xµ satisfying

[pµ, xν ] = −iηµν1.

Then, the noncommutative coordinates x̂µ are expressed in the form

x̂µ = xαϕαµ(p) (4.1)

such that (2.1) and (2.2) are satisfied. It is important to observe that the space H is isomorphic
to Ĥ as an algebra. Hence, we set Ĥ = H and treat sets {xµ, pν} and {x̂µ, pν} as different bases
of the same algebra. However, we will use both symbols, Ĥ and H in order to emphasize the
basis. The action �, defined in Section 3.2 corresponds to H. However, H and Ĥ, considered
as Hopf algebroids are different.

The restriction of the counit ε0|Â, introduced in Section 3.2, defines the bijection of vector

spaces Â and A. By the abuse of notation, we denote it by ε0 or �. Let us mention that the
inverse map is simply ε̂|A. Then, the star product ? on A is defined by (f?g)(x) = f̂(x̂)ĝ(x̂)�1 =
f̂(x̂)�g(x) where f = f̂�1 and g = ĝ�1. The algebra A equipped with the star product instead
of pointwise multiplication will be denoted by A? and the map ε0 : Â → A? is an isomorphism
of algebras.

It is possible to construct the dual realization ϕ̃µν and the dual star product ?ϕ̃ such that

(f ?ϕ g)(x) = (g ?ϕ̃ f)(x)

is satisfied (see [40, Section 5]). Now, elements ŷµ are given by

ŷµ = xαϕ̃αµ(p).

It is easy to check the following properties:

x̂µ � f(x) = xµ ?ϕ f(x) = f(x) ?ϕ̃ xµ

and

ŷµ � f(x) = xµ ?ϕ̃ f(x) = f(x) ?ϕ xµ.
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4.1.1 Similarity transformations

The relation between realizations is given by the similarity transformations [34]. Let us consider
two realizations. The first one is denoted by xµ and pµ and given by the set of functions {ϕµν}
(and (2.2) or (4.1)). The second realization is denoted by Xµ, Pµ and Φµν (x̂µ = XαΦαµ(P )).
The similarity transformation E is given by E = exp{xαΣα(p)} such that lim

a→0
Σα = 0. Now, the

relation between realizations is given by

Pµ = EpµE−1, Xµ = ExµE−1.

It is easy to see that Pµ = Pµ(p). Since [Pµ, x̂ν ] = −iΦµν(P ),

∂Pµ
∂pα

ϕαν = Φµν(P (p)) and ϕαν =

[
∂P

∂p

]−1
αµ

Φµν(P (p)).

It follows that the set of functions ϕµν can be obtained from the set of functions Φµν and the
expressions of P in terms of p. Since Oµν = Oµν(P (p)), it is easy to express Oµν in the realization
determined by xµ and pµ.

4.1.2 Examples

Let us consider three examples of realizations. The noncovariant λ-family of realizations is
given by

x̂0 = x
(λ)
0 − a0 (1− λ)x

(λ)
k p

(λ)
k , x̂k = x

(λ)
k Z−λ, (4.2)

and

ŷ0 = x̂0Z − ia0 + a0
(
x̂pL

)
Z, ŷj = x̂jZ, (4.3)

where Z = eA
(λ)

and λ ∈ R. For this family we assume that a = (a0, 0, . . . , 0). Here, (λ)
denotes the label. Generic realizations are denoted without the label. It is easy to obtain

pL0 = 1
a0

(1 − Z−1) and pLk = p
(λ)
k Zλ−1. Now, one calculates Oµν (see (2.8)) in terms of p

(λ)
µ :

Okν = Z−1ηkν , O00 = −1 and

O0k = Z−1η0k − a0pLk =
(
η0k − a0p

(λ)
k Zλ

)
Z−1.

The left covariant realization is defined by

x̂µ = xLµ
(
1−AL

)
,

where Z = (1 − AL)−1. The element pL that we have mentioned in Section 2.2 corresponds to
the left covariant realization. It is easy to obtain that

ŷµ = xLµ + aµ
(
xLpL

)
(see (2.11) for the definition of ŷµ).

The right covariant realization is defined by

x̂µ = xRµ − aµ
(
xRpR

)
,

where Z = 1 +AR. The relation between pLµ and pRµ is given by pRµ = pLµZ. Now,

ŷµ = xRµ
(
1 +AR

)
.

Also, it easy to calculate Oµν in terms of pRµ :

Oµν = Z−1ηµν − aµpLν =
(
ηµν − aµpRν

)
Z−1.

One should notice the duality between the left covariant and the right covariant realizations.
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4.2 Twist and Hopf algebroid

For each realization, there is the corresponding twist and vice versa [34]. The relation between
the star product and twist is given by

f ? g = m
(
F−1 � (f ⊗ g)

)
for f, g ∈ A. It follows that F−1 ∈ H ⊗ H/K0. Now, we will use twists to reconstruct the
Hopf algebroid structure described in Section 3.1, from the Hopf algebroid structure analyzed
in Section 3.2. That is we will show that by twisting the Hopf algebroid structure of H one
can obtain the Hopf algebroid structure of Ĥ. Hence, we will consider twists F such that
F : 40H → 4H. Here I ∼= Î and 4H ∼= 4Ĥ. More precisely, I is the twosided ideal generated
by elements Rµ which are defined by

Rµ = F(R0)µF−1.

Let us mention that the relation between R̂µ and Rµ is given by

R̂µ = Rα 4 (ϕαµ).

Also, it is easy to rebuild the realization from the twist. For the given twist F , the corresponding
realization is obtained by

x̂µ = m
(
F−1(�⊗ 1)(xµ ⊗ 1)

)
.

Similarly,

ŷµ = m
(
F̃−1(�⊗ 1)(xµ ⊗ 1)

)
,

where F̃−1 is given by F̃−1 = τ0F−1τ0 (τ0 stands for the flip operator with the property
τ0(h1 ⊗ h2) = h2 ⊗ h1, ∀h1, h2 ∈ H).

The noncovariant λ-family of realizations have twists of the form

F (λ) = exp
(
i
(
λx

(λ)
k p

(λ)
k ⊗A

(λ) − (1− λ)A(λ) ⊗ x(λ)k p
(λ)
k

))
. (4.4)

These twists belong to the family of Abelian twists (see [24]). The left covariant and the right
covariant realizations, respectively, have twists of the form

FL = exp
(
i
(
xLpL

)
⊗ lnZ

)
and FR = exp

(
− lnZ ⊗ i

(
xRpR

))
.

These two twists belong to the family of Jordanian twists (see [13]).

Let us reconstruct the source and the target maps from the twist. First, we define α and β,
α : A? → U(x̂µ) ⊂ H, β : A? → U(ŷµ) ⊂ H by

α(f(x)) = m
(
F−1(�⊗ 1)(α0(f(x))⊗ 1)

)
, α0(f(x)) = f(x),

and

β(f(x)) = m
(
F̃−1(�⊗ 1)(β0(f(x))⊗ 1)

)
, β0(f(x)) = f(x).

Now, the source and the target maps are given by

α̂ = αε0|Â and β̂ = βε0|Â.
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The counit ε̂ : H → Â is given by

ε̂(h) = m
(
F−1(�⊗ 1)(ε0(h)⊗ 1)

)
.

The coproduct can be calculated by the formula:

4(h) = F(40(h))F−1.

For the noncovariant λ-family of realizations

4
(
x
(λ)
j

)
= x

(λ)
j ⊗ Z

λ = Zλ−1 ⊗ x(λ)j , (4.5)

4
(
x
(λ)
0

)
= x

(λ)
0 ⊗ 1 + a0(1− λ)⊗ x(λ)k p

(λ)
k = 1⊗ x(λ)0 − a0λx

(λ)
k p

(λ)
k ⊗ 1, (4.6)

4
(
p
(λ)
j

)
= p

(λ)
j ⊗ Z

−λ + Z1−λ ⊗ p(λ)j , (4.7)

and

4
(
p
(λ)
0

)
= p

(λ)
0 ⊗ 1 + 1⊗ p(λ)0 . (4.8)

It is a nice exercise to express x̂µ in terms of x
(λ)
α and p

(λ)
α (see (4.2)), use (4.5)–(4.8) and

obtain (3.5).
Similarly,

4
(
xLµ

)
= xLµ ⊗ Z = 1⊗

(
xLµ + iaµZ

)
and 4

(
pLµ

)
= pLµ ⊗ Z−1 + 1⊗ pLµ

for the left covariant realization and

4
(
xRµ

)
=

(
xRµ − iaµZ

)
⊗ 1 = Z−1 ⊗ xRµ and 4

(
pRµ

)
= pRµ ⊗ 1 + Z ⊗ pRµ

for the right covariant realization.
It remains to consider the antipode. Let

χ−1 = m(S0 ⊗ 1)F−1,

then

S(h) = χ(S0(h))χ−1 (4.9)

where S0 denotes the undeformed antipode map defined by (3.9) (S0(xµ) = xµ and S0(pµ) =
−pµ). For the similar approach regarding Hopf algebras, see [7, 6].

For the noncovariant λ-family of realizations, χ has the form

χ(λ) = exp
(
i(1− 2λ)A(λ)x

(λ)
k p

(λ)
k + λ(1− n)A(λ)

)
.

Then

S
(
p
(λ)
j

)
= −p(λ)j Z2λ−1, (4.10)

S
(
p
(λ)
0

)
= −p(λ)0 , (4.11)

S
(
x
(λ)
j

)
= x

(λ)
j Z1−2λ, (4.12)

S
(
x
(λ)
0

)
= x

(λ)
0 − (1− 2λ)a0x

(λ)
k p

(λ)
k + λia0(1− n). (4.13)

Again, it is an exercise to express x̂µ in terms of x
(λ)
α and p

(λ)
α (see (4.2)), use (4.10)–(4.13) and

obtain (3.6). The antipode is given by

S(x̂j) = x̂jZ (4.14)
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and

S(x̂0) = x̂0 + a0x
(λ)
k p

(λ)
k + ia0(1− n). (4.15)

Let us recall that for the noncovariant λ-family of realizations we set aµ = (a0, 0, ..., 0). Now,
one can compare (4.14) and (4.15) with (3.6). The formula for the antipode of x̂µ can be also
obtained from the formula S(ŷµ) = x̂µ, formulas for the realization of x̂µ and ŷµ, (4.2) and (4.3)
and formulas for S(pµ). For all examples, it is easy to check that S(ŷµ) = χ(S0(ŷµ))χ−1 = x̂µ.

For the left covariant realization(
χL

)−1
= exp

(
i
(
pLxL

)
AL

)
.

For the right covariant realization(
χR

)−1
= exp

(
−iAR

(
xRpR

))
.

There is a natural question if the antipode map on the Hopf algebroid Ĥ defined by (4.9)
and the antipode map defined on the Hopf algebra U(igl(n)) coincide (see [38] for the formulas
of the antipode). They coincide for h ∈ Ĥ for which αε(h) = βεS0(h). For elements h for which
αε(h) 6= βεS0(h), the antipode maps do not coincide. For example, S0(xjpj) = −xjpj + i in the
Hopf algebroid, while S0(xjpj) = −xjpj in the Hopf algebra (here no summation is assumed).
See also [33].

Using (4.9), it is easy to obtain the expression for S−1:

S−1(h) = S0(χ)S0(h)S0
(
χ−1

)
.

One can show that S0(χ) = Zn−1χ. Then S−1(h) = Zn−1S(h)Z1−n and S2(h) = Z1−nhZn−1.
For example, S2(pµ) = pµ, S2(x̂µ) = x̂µ+iaµ(1−n) and S2(ŷµ) = ŷµ+iaµ(1−n). This coincides
with results in Section 3 (see (3.6) and (3.7)).

5 κ-Poincaré Hopf algebra from κ-deformed phase space
and twists

Let us consider the κ-Poincaré Hopf algebra in natural realization [54, 55, 56] (or classical
basis [15, 44]). We start with the undeformed Poincaré algebra generated by Lorentz genera-
tors Mµν and translation generators (momentum) Pµ

[Mµν ,Mλρ] = ηνλMµρ − ηµλMνρ − ηνρMµλ + ηµρMνλ,

[Pµ, Pν ] = 0, [Mµν , Pλ] = ηνλPµ − ηµλPν .

The corresponding κ-deformed Poincaré–Hopf algebra can be written in a unified covariant
way [25, 35, 40, 54, 56]. The coproduct 4 is given by

4Pµ = Pµ ⊗ Z−1 + 1⊗ Pµ − aµpLαZ ⊗ Pα,
4Mµν = Mµν ⊗ 1 + 1⊗Mµν − aµ

(
pL

)α
Z ⊗Mαν + aν

(
pL

)α
Z ⊗Mαµ, (5.1)

as well as the antipode S and counit ε

S(Pµ) =
(
−Pµ − aµpLαPα

)
Z,

S(Mµν) = −Mµν − aµ
(
pL

)α
Mαν + aν

(
pL

)α
Mαµ,

ε(Pµ) = ε(Mµν) = 0, (5.2)
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where the momentum Pµ is related to pLµ via Pµ = pLµ −
aµ
2 (pL)2Z. The above Hopf algebra

structure unifies all three types of deformations aµ, i.e. time-like (a2 < 0), space-like (a2 > 0)
and light-like (a2 = 0).

Using the action I and coproduct 4 we can get the whole algebra {x̂µ,Mµν , Pµ} (for details
see [32, 33])

[Mµν , x̂λ] = ηνλx̂µ − ηµλx̂ν − iaµMνλ + iaνMµλ,

[Pµ, x̂ν ] = −i
(
ηµνZ

−1 − aµPν
)
, (5.3)

where Z−1 = (aP ) +
√

1 + a2P 2 and from (5.3) it follows that the NC coordinates x̂µ can
be written in terms of canonical Xα and Pα ([Xα, Xβ] = 0, [Pµ, Xν ] = −iηµν1) via x̂µ =
XµZ

−1 − (aX)Pµ and satisfies (2.1).
Now we will discuss the realization of κ-Poincaré–Hopf algebra via phase space Ĥ and discuss

the issue of the twist in the Hopf algebroid approach. Realization ofMµν in terms of canonicalXα

and Pα is given by Mµν = i(XµPν −XνPµ) which for κ-deformed phase space variables x̂µ, Pµ
reads

Mµν = i(x̂µPν − x̂νPµ)Z ∈ Ĥ.

This is a unique realization in Ĥ (see [54]). Using 4Pµ (5.1), 4x̂µ (3.5), 4Z = Z ⊗ Z and
relations R̂µ (2.9) we obtain coproduct 4Mµν as in Hopf algebra (5.1). Note that the result

for 4Mµν is unique in the κ-Poincaré–Hopf algebra Uκ(P) since Uκ(P)⊗Uκ(P)∩ K̂ = 0 (which
is obvious). Similarly we find S(Mµν) within Hopf algebroid which coincides with S(Mµν) in
Hopf algebra (5.2) (for details see [33, 57]).

There is a question whether 4Pµ and 4Mµν could be obtained from twist F expressed in
terms of Poincaré generators only.

1. For aµ light-like, a2 = 0, such cocycle twist within Hopf algebra approach exists [35]

F = exp

{
aαP β

ln[1 + (aP )]

(aP )
⊗Mαβ

}
. (5.4)

The cocycle condition for twist F (5.4) can be checked using the results by Kulish et
al. [45] in the Hopf algebra setting (see also [16]).

2. For aµ time- and space-like such twist does not exist within Hopf algebra. Namely, starting
from 4Pµ = F 40 PµF−1 and 4Mµν = F 40 MµνF−1 one can construct an operator
F = ef , where f = f1 + f2 + · · · is expanded in aµ and expressed in terms of Poincaré
generators and dilatation only. In the first order we found that the result is not unique,
namely we have a one parameter family of solutions

f1 = aαP β ⊗Mαβ + u
(
Mαβ ⊗ aαP β − aαP β ⊗Mαβ −D ⊗ (aP ) + (aP )⊗D

)
,

where u ∈ R is a free parameter. However there is one solution (u = 0) that can be ex-
pressed in terms of Poincaré generators only. Also up to first order in aµ cocycle condition
is satisfied and one obtains the correct classical r-matrix (see equation (65) in [25]). In
the second order for f2 we found a two parameter family of solutions. Here there is no
solution without including dilatation, that is the operator F can not be expressed in terms
of Poincaré generators only. We have checked that the corresponding quantum R-matrix
obtained using f1 and f2 is correct up to the second order. The cocycle condition is no
longer satisfied in the Hopf algebra approach, that is F is not a twist in the Drinfeld sense.
However, after using tensor exchange identities [33, 34, 57] the cocycle condition is satis-
fied and F is a twist in Hopf algebroid approach. It also reproduces the κ-Poincaré–Hopf
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algebra (when applied to Poincaré generators) (see [34]). In [34], we have developed a ge-
neral method for calculating operator F for a given coproducts of xµ and pµ. In Section 3
of [34] the operator F is constructed up to the third order for natural realization (classi-
cal basis) and it is shown that this operator F gives the correct coproduct for Mµν (see
equation (59) in [34]) and R-matrix (see equation (61) in [34]). We also stated that this
operator F can not be expressed in terms of κ-Poincaré generators only (see [34, p. 16]).
From the results for f1, f2 and f3 (see equations (42), (46), (49) in [34]) one can show that
they could be rewritten in terms of Poincaré generators and dilatation only (after using
tensor exchange identities). For alternative arguments on nonexistence of cocycle twist
for κ-Poincaré–Hopf algebra see [12, 14].

The main point that we want to emphasize is that the twist operator exists within Hopf
algebroid approach, that the cocycle condition is satisfied [33, 34, 57] and that this twist gives
the full κ-Poincaré–Hopf algebra (when applied to the generators of Poincaré algebra).

General statements on associativity of star product, twist and cocycle condition in Hopf
algebroid approach are:

1. Lorentz generators Mµν can be written in terms of x(λ) and p(λ) (4.5)–(4.8). This defines
the family of basis labeled by λ. The momenta p(λ) do not transform as vectors under Mµν .
The star product is associative for all λ ∈ R. The corresponding twist F (λ) given in (4.4)
is Abelian and satisfies the cocycle condition for all λ ∈ R. Applying F (λ) to primitive
coproduct 40Mµν leads to κ-deformed igl(n) Hopf algebra (see [17, 25, 32, 38, 41]). How-

ever, if we apply conjugation by F (λ) to 4(λ)
0 M

(λ)
µν (which is not primitive coproduct) we

obtain, in the Hopf algebroid approach [57], the correct coproduct4(λ)M
(λ)
µν corresponding

to λ basis (for λ = 0 see [33]). Similarly for the antipode S. Hence, the κ-Poincaré–Hopf
algebra can be obtained by twist F in the more generalized sense, i.e. in the Hopf algebroid
approach.

2. If star product is associative in one base, then it is associative in any other base obtained
by similarity transformations [34].

3. If star product is associative, then the corresponding twist F satisfies cocycle condition in
the Hopf algebroid approach, and vice versa. Note that, there exist star products which are
associative but the corresponding twist operator F does not satisfy the cocycle condition
in the Hopf algebra approach.

6 Final remarks

It is important to note that the work presented in this paper is not genuinely different from
Lu’s construction of Hopf algebroid [48] and that we use a particular choice of the algebra which
makes it easier to construct the coproduct as an algebra homomorphism to the subalgebra B̂/Î.
By this particular choice of algebra we are able to satisfy

m(1⊗ S)4 = α̂ε̂, m(S ⊗ 1)4 = β̂ε̂S,

while in [48] m(1 ⊗ S)4 is not well defined (for the version of coproduct in [48]) because
m(1⊗S)K̂ 6= 0, while in our case m(1⊗S)Î = 0. Therefore we do not need the section γ in the
first identity for the antipode. In our approach, since we have 4 : Ĥ → B̂/Î = 4Ĥ and

m(1⊗ S)Î = 0,

it is easy to see that (3.8) holds ∀h ∈ Ĥ. We are doing this in order to explain the structure of
quantum phase space, i.e. Weyl algebra Ĥ.
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An axiomatic treatment of the Hopf algebroid structure on general Lie algebra type non-
commutative phase spaces, involving completed tensor products, has recently been proposed
in [59].

The construction of QFT suitable for κ-Minkowski spacetime is still under active research [19,
39, 55]. We plan to apply κ-deformed phase space, Hopf algebroid approach and twisting to
NCQFT and NC (quantum) gravity.
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[6] Aschieri P., Blohmann C., Dimitrijević M., Meyer F., Schupp P., Wess J., A gravity theory on noncommu-
tative spaces, Classical Quantum Gravity 22 (2005), 3511–3532, hep-th/0504183.
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[56] Meljanac S., Samsarov A., Stojić M., Gupta K.S., κ-Minkowski spacetime and the star product realizations,
Eur. Phys. J. C 53 (2008), 295–309, arXiv:0705.2471.

[57] Meljanac S., Samsarov A., Štrajn R., κ-deformation of phase space; generalized Poincaré algebras and
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