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Abstract. The fundamental tool in the classification of orthogonal coordinate systems in
which the Hamilton–Jacobi and other prominent equations can be solved by a separation of
variables are second order Killing tensors which satisfy the Nijenhuis integrability conditions.
The latter are a system of three non-linear partial differential equations. We give a simple
and completely algebraic proof that for a Killing tensor the third and most complicated of
these equations is redundant. This considerably simplifies the classification of orthogonal
separation coordinates on arbitrary (pseudo-)Riemannian manifolds.
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It is a natural problem to classify all coordinate systems in which a given partial differential
equation can be solved by a separation of variables – the so called separation coordinates. For
fundamental equations such as the Hamilton–Jacobi and the Schrödinger equation the theory
of separation of variables is built on a characterisation of orthogonal separation coordinates by
second order Killing tensors, i.e., solutions of the Killing equation

∇αKβγ +∇βKγα +∇γKαβ = 0, (1)

which are integrable in the sense that they have simple eigenvalues and the orthogonal comple-
ments of each eigenvector field form an integrable distribution. The relation between orthogonal
separation coordinates and integrable Killing tensors was observed in 1891 by Paul Stäckel in his
Habilitation thesis [10] and then used by Luther P. Eisenhart in 1934 to classify orthogonal se-
paration coordinates on 3-dimensional Euclidean space and on the 3-dimensional sphere [1]. His
results were generalised to arbitrary spaces of constant curvature of any dimension by Kalnins
and Miller in 1986 [3, 4].

The property of an endomorphism field to be integrable in the above sense has been cast into
the form of a system of three non-linear partial differential equations by Nijenhuis in 1950 [5].
Explicitly, an endomorphism K with simple eigenvalues is integrable if and only if it satisfies
the Nijenhuis integrability conditions

0 = N δ
[βγ gα]δ, (2a)

0 = N δ
[βγKα]δ, (2b)

0 = N δ
[βγKα]εK

ε
δ , (2c)

where the square brackets stand for antisymmetrisation and N denotes the Nijenhuis torsion
of K, defined by

N(X,Y ) := K2[X,Y ]−K[KX,Y ]−K[X,KY ] + [KX,KY ]
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and given in local coordinates by

Nα
βγ = Kα

δK
δ
[β;γ] +Kδ

[βK
α
γ];δ , (3)

where a semicolon denotes a covariant derivative.
Of course, these equations have not been known to Stäckel or Eisenhart. Neither did they

play any role in the complete classification of Kalnins and Miller. However, they reveal that the
classification of orthogonal separation coordinates is actually an algebraic geometric problem.
Indeed, the Nijenhuis integrability conditions (2) are algebraic in K and its derivatives and
hence constitute a set of homogeneous algebraic equations on the space of second order Killing
tensors. Note that, as the space of solutions to the overdetermined linear equation (1), this
space is a finite-dimensional vector space. Consequently, the set of Killing tensors satisfying
the Nijenhuis integrability conditions is a projective variety. Moreover, this variety comes along
with a natural group action, namely the isometry group of the manifold.

To be more precise, orthogonal separation coordinates are in one-to-one correspondence with
so-called Stäckel systems, i.e., n-dimensional spaces of integrable Killing tensors which mutually
commute in the algebraic sense. This leads to the following remarkable observation [8]:

For any (pseudo-)Riemannian manifold the set of orthogonal separation coordinates
carries a very rich structure: It is a projective variety isomorphic to a subvariety
in the Grassmannian of n-dimensional subspaces in the space of Killing tensors,
equipped with a natural action of the isometry group.

To the best of our knowledge, this point has never been made in the literature and the structure
of these varieties had never been elucidated. The reason is probably that a general solution of
the equations (2) was deemed intractable [2].

Recently it has been possible to rewrite the Nijenhuis integrability conditions explicitly as
algebraic equations for constant curvature manifolds [6] and to solve them in the least non-
trivial case, namely for the sphere of dimension three [7]. The outcome, a detailed algebraic
geometric description of the variety of integrable Killing tensors as well as the variety of Stäckel
systems, has lead to a surprising connection between separation coordinates on spheres on one
hand and algebraic curves on the other. More precisely, the set of orthogonal separation co-
ordinates modulo isometries on the n-dimensional sphere is naturally parametrised by the real
Deligne–Mumford moduli space M̄0,n+2(R) of stable algebraic curves of genus 0 with n + 2
marked points [9]. As a consequence, the well known classification of Kalnins and Miller can
be reinterpreted in terms of the geometry and combinatorics of Stasheff polytopes. This also
revealed a hitherto unknown operad structure on equivalence classes of separation coordinates
on spheres. To date, comparable results are unknown for manifolds other than spheres.

An important step in the explicit solution of the Nijenhuis equations has been the proof that
the third of the Nijenhuis conditions is redundant when applied to a Killing tensor. According
to a footnote in [2], this had previously been proven by Steve Czapor for Euclidean space in
dimension three using Gröbner bases. The author extended this to arbitrary constant curvature
manifolds [6]. The purpose of the present paper is to give a simple proof that this result holds
in full generality. This will considerably simplify the classification of orthogonal separation
coordinates on arbitrary manifolds.

Theorem 1. For a Killing tensor on an arbitrary Riemannian manifold the third of the Nijen-
huis equations (2) is redundant. The same holds true on a pseudo-Riemannian manifold.

Remark 1. For a Killing tensor the first two Nijenhuis equations are in general independent [7].

Remark 2. Note that a Stäckel system contains Killing tensors whose eigenvalues are not
simple (the metric for instance). This is why we did not impose simple eigenvalues in the above
theorem.
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Remark 3. Instead of the Nijenhuis conditions (2), the vanishing of the Haantjes tensor

H(X,Y ) := K2N(X,Y )−KN(KX,Y )−KN(X,KY ) +N(KX,KY )

is often used as a criterion for integrability. Being of order four in K, this condition is of the
same complexity as the third of the Nijenhuis equations, while the first two are only of order
two and three. Our result therefore shows that for Killing tensors the Nijenhuis conditions are
better suited than the Haantjes tensor.

The proof

We will prove the statement pointwise. That is, we fix an arbitrary point p in the manifold and
consider the restrictions Kαβ(p) and (∇αKβγ)(p) of the Killing tensor field and its covariant
derivative to the tangent space at p. The statement then becomes a purely algebraic statement on
these two tensors. For ease of notation we omit to indicate the dependence on the chosen point p.

A Killing tensor is symmetric by definition. Hence at the fixed point we can choose an
orthonormal basis of the tangent space in which the Killing tensor is diagonal, i.e., Kα

β = λαδ
α
β

(no sum). In this basis, the Nijenhuis torsion (3) reads

Nαβγ = β
γ

(λα − λγ)Kαβ;γ ,

where the Young projector β
γ

stands for antisymmetrisation in β and γ. Substituted into the

Nijenhuis integrability conditions (2) we get

0 = N δ
[βγ gα]δ =

α
β
γ
Nαβγ =

α
β
γ

(λα − λγ)Kαβ;γ ,

0 = N δ
[βγKα]δ =

α
β
γ
λαNαβγ =

α
β
γ
λα(λα − λγ)Kαβ;γ ,

0 = N δ
[βγKα]εK

ε
δ =

α
β
γ
λ2αNαβγ =

α
β
γ
λ2α(λα − λγ)Kαβ;γ ,

where the Young projector

α
β
γ

denotes a complete antisymmetrisation in the indices α, β and γ. Using that Kαβ;γ is symmetric
in α, β and that a complete antisymmetrisation over α, β, γ can be split into an antisymmetri-
sation in α, β and a subsequent sum over the cyclic permutations of α, β, γ, we can rewrite the
preceding equations as

0 = (λα − λβ)Kαβ;γ + cyclic, (4a)

0 = (λα − λβ)(λα + λβ − λγ)Kαβ;γ + cyclic, (4b)

0 = (λα − λβ)
(
(λα + λβ)2 − λαλβ − λβλγ − λγλα

)
Kαβ;γ + cyclic, (4c)

where “+ cyclic” stands for a summation over the cyclic permutations of α, β, γ. These equations
are one by one equivalent to the Nijenhuis integrability conditions (2). In the same way we can
write the Killing equation as

0 = Kαβ;γ + cyclic. (5)
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Adding appropriate multiples of (4a) to (4b) and (4c), we can simplify (4) to

0 = (λα − λβ)Kαβ;γ + cyclic, (6a)

0 = (λα − λβ)(λα + λβ)Kαβ;γ + cyclic, (6b)

0 = (λα − λβ)(λα + λβ)2Kαβ;γ + cyclic. (6c)

We want to prove that (5) together with (4a) and (4b) imply (4c), which is equivalent to prove
that (5) together with (6a) and (6b) imply (6c). To this end we write the first three equations
in matrix form as 1 1 1

λα − λβ λβ − λγ λγ − λα
λ2α − λ2β λ2β − λ2γ λ2γ − λ2α

Kαβ;γ

Kβγ;α

Kγα;β

 = 0.

The determinant of the coefficient matrix is an antisymmetric cubic polynomial in λα, λβ, λγ
and hence a multiple of the Vandermode determinant. If the eigenvalues λα, λβ, λγ are pairwise
different, this implies that Kαβ;γ = Kβγ;α = Kγα;β = 0. If exactly two of the eigenvalues are
equal, say λα 6= λβ = λγ , then we have Kαβ;γ = −1

2Kβγ;α = Kγα;β. For three equal eigenvalues
the only restriction on Kαβ;γ is the Killing equation (5). In all three cases we see that the
equation (6c) is also satisfied.

For a pseudo-Riemannian manifold the statement follows from the above and the fact that
in the space of symmetric tensors the (complex) diagonalisable ones are dense. Indeed, the
above reasoning for Cαβ = Kαβ(p) remains true even if Cαβ is (complex) diagonalisable, but
not necessarily the restriction of a Killing tensor to the tangent space at p. By continuity, it
is therefore also true if Cαβ is not diagonalisable and therefore also for the restriction of an
arbitrary Killing tensor.
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[8] Schöbel K., Are orthogonal separable coordinates really classified?, SIGMA 12 (2016), to appear,
arXiv:1510.09028.

[9] Schöbel K., Veselov A.P., Separation coordinates, moduli spaces and Stasheff polytopes, Comm. Math.
Phys. 337 (2015), 1255–1274, arXiv:1307.6132.
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