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Abstract. By applying an idea of Borodin and Olshanski [J. Algebra 313 (2007), 40–60],
we study various scaling limits of determinantal point processes with trace class projection
kernels given by spectral projections of selfadjoint Sturm–Liouville operators. Instead of
studying the convergence of the kernels as functions, the method directly addresses the
strong convergence of the induced integral operators. We show that, for this notion of
convergence, the Dyson, Airy, and Bessel kernels are universal in the bulk, soft-edge, and
hard-edge scaling limits. This result allows us to give a short and unified derivation of the
known formulae for the scaling limits of the classical random matrix ensembles with unitary
invariance, that is, the Gaussian unitary ensemble (GUE), the Wishart or Laguerre unitary
ensemble (LUE), and the MANOVA (multivariate analysis of variance) or Jacobi unitary
ensemble (JUE).
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1 Introduction

We consider determinantal point processes on a (not necessarily bounded) interval Λ = (a, b)
with a correlation kernel given by a trace class projection kernel,

Kn(x, y) =
n−1∑
j=0

φj(x)φj(y), (1.1)

where φ0, φ1, . . . , φn−1 are orthonormal in L2(Λ); each φj may have some dependence on n that
we suppress from the notation. We recall (see, e.g., [2, Section 4.2]) that for such processes the
joint probability density of the n points is given by

pn(x1, . . . , xn) =
1

n!

n
det
i,j=1

Kn(xi, xj),

the mean counting probability is given by the density (note that trKn = n)

ρn(x) = n−1Kn(x, x),
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Random Growth Processes, Integrable Systems and Statistical Physics in honor of Percy Deift and Craig Tracy.
The full collection is available at http://www.emis.de/journals/SIGMA/Deift-Tracy.html

mailto:bornemann@tum.de
http://www-m3.ma.tum.de/bornemann
http://dx.doi.org/10.3842/SIGMA.2016.083
http://www.emis.de/journals/SIGMA/Deift-Tracy.html


2 F. Bornemann

and the gap probabilities are given, by the inclusion-exclusion principle, in terms of a Fredholm
determinant, namely

En(J) = P({x1, . . . , xn} ∩ J = ∅) = det(I − χJKnχJ).

The various scaling limits are usually derived from an appropriate convergence of the kernel
Kn(x, y) by considering the large n asymptotic of the eigenfunctions φj , which can be technically
quite involved1.

Borodin and Olshanski [4] suggested, for discrete point processes, a different, conceptually
and technically much simpler approach based on selfadjoint difference operators. We will show
that their method, generalized to selfadjoint Sturm–Liouville operators, allows us to give a short
and unified derivation of the various scaling limits for the random matrix ensembles with unitary
invariance that are based on the classical orthogonal polynomials (Hermite, Laguerre, Jacobi).

The Borodin–Olshanski method

The method proceeds along three steps: First, we identify the induced integral operator Kn as
the spectral projection (where we denote by χA the characteristic function of a Borel subset
A ⊂ R and by χA(Ln) the application of that function to the selfadjoint operator LN in the
sense of measurable functional calculus [17, Theorem VIII.6])

Kn = χ(−∞,0)(Ln)

of some selfadjoint ordinary differential operator Ln on L2(Λ). Any scaling of the point process
by x = σnξ + µn (σn 6= 0) yields, in turn, the induced rescaled operator

K̃n = χ(−∞,0)(L̃n),

where L̃n is a selfadjoint differential operator on L2(Λ̃n), Λ̃n = (ãn, b̃n).
Second, if Λ̃n ⊂ Λ̃ = (ã, b̃) with ãn → ã, b̃n → b̃, we aim for a selfadjoint operator L̃ on L2(Λ̃)

with a core C such that eventually C ⊂ D(L̃n) and

L̃nu→ L̃u, u ∈ C. (1.2)

The point is that, if the test functions from C are particularly nice, such a convergence is just
a simple consequence of the locally uniform convergence of the coefficients of the differential
operators L̃n – a convergence that is, typically, an easy calculus exercise. Now, given (1.2), the
concept of strong resolvent convergence (see Theorem A.1) immediately yields2, if 0 6∈ σpp(L̃),

K̃nχΛ̃n
= χ(−∞,0)

(
L̃n
)
χΛ̃n

s−→ χ(−∞,0)

(
L̃
)
.

Third, we take an interval J ⊂ Λ̃, eventually satisfying J ⊂ Λ̃n, such that the operator
χ(−∞,0)(L̃)χJ is trace class with kernel K̃(x, y) (which can be obtained from the generalized

eigenfunction expansion of L̃, see Section A.2). Then, we immediately get the strong convergence

K̃nχJ
s−→ K̃χJ .

Remark 1.1. Tao [20, Section 3.3] sketches the Borodin–Olshanski method, applied to the bulk
and edge scaling of GUE, as a heuristic device. Because of the microlocal methods that he uses
to calculate the projection χ(−∞,0)(L̃), he puts his sketch under the headline “The Dyson and
Airy kernels of GUE via semiclassical analysis”.

1Based on the two-scale Plancherel–Rotach asymptotic of classical orthogonal polynomials or, methodologically
more general, on the asymptotic of Riemann–Hilbert problems; see, e.g., Tracy and Widom [21, 22], Deift [6],
Lubinsky [16], Johnstone [12, 13], Collins [5], Forrester [8], Anderson et al. [2], and Kuijlaars [14].

2By “
s−→” we denote the strong convergence of operators acting on L2.
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Scaling limits and other modes of convergence

Given that one just has to establish the convergence of the coefficients of a differential operator
(instead of an asymptotic of its eigenfunctions), the Borodin–Olshanski method is an extremely
simple device to determine all the scalings x = σnξ+µn that would yield some meaningful limit
K̃nχJ → K̃χJ , namely in the strong operator topology. Other modes of convergence have been
studied in the literature, ranging from some weak convergence of k-point correlation functions
over convergence of the kernel functions to the convergence of gap probabilities, that is,

Ẽn(J) = det
(
I − χJK̃nχJ

)
→ det

(
I − χJK̃χJ

)
= Ẽ(J).

From a probabilistic point of view, the latter convergence is of particular interest and has been
shown in at least three ways:

1. By Hadamard’s inequality, convergence of the determinants follows directly from the locally
uniform convergence of the kernels Kn [2, Lemma 3.4.5] and, for unbounded J , from
additional large deviation estimates [2, Lemma 3.3.2]. This way, the limit gap probabilities
in the bulk and soft edge scaling limit of GUE can rigorously be established (see, e.g.,
Anderson et al. [2, Sections 3.5 and 3.7]). Johansson [11, Lemma 3.1] gives some general
conditions on a scaling of the Kn such that the determinant converges to the soft edge
of GUE.

2. Since A 7→ det(I − A) is continuous with respect to the trace class norm [18, Theo-
rem 3.4], K̃nχJ → K̃χJ in trace class norm would generally suffice. Such a convergence
can be proved by factorizing the trace class operators into Hilbert–Schmidt operators and
obtaining the L2-convergence of the factorized kernels once more from locally uniform
convergence, see the work of Johnstone [12, 13] on the scaling limits of the LUE/Wishart
ensembles and on the limits of the JUE/MANOVA ensembles.

3. Since χJK̃nχJ and χJK̃χJ are selfadjoint and positive semi-definite, yet another way is by
observing that the convergence K̃nχJ → K̃χJ in trace class norm is, for continuous kernels,
equivalent [18, Theorem 2.20] to the combination of both, the convergence K̃nχJ → K̃χJ
in the weak operator topology and the convergence of the traces∫

J
K̃n(ξ, ξ)dξ →

∫
J
K̃(ξ, ξ)dξ. (1.3)

Once again, these convergences follow from locally uniform convergence of the kernels; see
Deift [6, Section 8.1] for an application of this method to the bulk scaling limit of GUE.

Since convergence in the strong operator topology implies convergence in the weak one, the
Borodin–Olshanski method would thus establish the convergence of gap probabilities if we were
only able to show condition (1.3) by some additional, similarly short and simply argument. Note
that, by the ideal property of the trace class, condition (1.3) implies the same condition for all
J ′ ⊂ J . We fall, however, short of conceiving a proof strategy for condition (1.3) that would be
independent of all the laborious proofs of locally uniform convergence of the kernels.

Remark 1.2. Contrary to the discrete case considered by Borodin and Olshanski, it is also not
immediate to infer from the strong convergence of the induced integral operators the pointwise
convergence of the kernels. In Section 2 we will need only a single such instance, namely

K̃n(0, 0)→ K̃(0, 0), (1.4)

to prove a limit law ρ̃n(t)dt
w−→ ρ̃(t)dt for the mean counting probability. Using mollified Dirac

deltas, pointwise convergence would generally follow, for continuously differentiable K̃n(ξ, η), if
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we were able to bound, locally uniform, the gradient of K̃n(ξ, η). Then, by dominated conver-
gence, criterion (1.3) would already be satisfied if we established an integrable bound of K̃n(ξ, ξ)
on J . Since the scalings laws are, however, maneuvering just at the edge between trivial cases
(i.e., zero limits) and divergent cases, it is conceivable that a proof of such bounds might not be
significantly simpler than a proof of convergence of the gap probabilities itself.

The main result

To prepare we recall how an integral kernel Kn(x, y) is getting covariantly transformed in the
presence of an affine coordinate change x = σnξ+µn, y = σnη+µn: by invariance of the 1-form

Kn(x, y)dy = K̃n(ξ, η)dη

the transformed kernel K̃ is given by

K̃n(ξ, η) = σnKn(σnξ + µn, σnη + µn). (1.5)

Using the Borodin–Olshanski method, we will prove the following general result for selfadjoint
Sturm–Liouville operators; a result that adds a further class of problems to the universality [14]
of the Dyson, Airy, and Bessel kernel3 in the bulk, soft-edge, and hard-edge scaling limits.

Theorem 1.3. Let Λ be one of the three domains Λ = (−∞,∞), Λ = (0,∞), or Λ = (0, 1), and
let Ln be a selfadjoint realization on L2(Λ) of the formally selfadjoint Sturm–Liouville operator4

− d

dx

(
p(x)

d

dx

)
+ qn(x)− λn

with coefficients p, qn ∈ C∞(Λ) such that p(x) > 0 for all x ∈ Λ. Assume that, for t ∈ Λ and
n→∞, there are asymptotic expansions

n−2κ′λn ∼ ω, n−2κ′qn(nκt) ∼ q∗(t), n2κ′′p(nκt) ∼ p∗(t) > 0, (1.6)

with a remainder that is of order O(n−1) locally uniform in t, and exponents normalized by

κ+ κ′ + κ′′ = 1, κ > 0, (1.7)

where κ < 2
3 if Λ = (0, 1). Further assume that these expansions can be differentiated5, that the

roots of q∗(t) − ω are simple, and that the spectral projection Kn = χ(−∞,0)(Ln) is normalized
by

trKn = n.

Let a scaling by x = σnξ + µn induce the transformed projection kernel K̃n according to (1.5).

Then, depending on particular choices of σn and µn, the following three scaling limits hold.

• Bulk scaling limit: given t ∈ Λ with q∗(t) < ω, the scaling parameters

σn =
nκ−1

ρ̃(t)
, µn = nκt,

3For the definitions of the kernels KDyson, KAiry, KBessel see (A.3), (A.4) and (A.5).
4Since, in this paper, we consider always a particular selfadjoint realization of a formal differential operator,

we will use the same letter to denote both.
5We say that an expansion fn(t)− f(t) = O(1/n) can be differentiated if f ′n(t)− f ′(t) = O(1/n).
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where

ρ̃(t) =
1

π

√
(ω − q∗(t))+

p∗(t)
, (1.8)

yield, for a bounded interval J , the strong limit

K̃nχJ
s−→ KDysonχJ .

At ξ = 0, the mean counting probability density ρn(x) = n−1Kn(x, x) transforms to the
new variable t as

ρ̃n(t) = nκρ(nκt).

Under condition (1.4), and if ρ̃ as defined in (1.8) has unit mass on Λ, there is the limit
law

ρ̃n(t)dt
w−→ ρ̃(t)dt.

• Soft-edge scaling limit: given t∗ ∈ Λ with q∗(t∗) = ω, the scaling parameters

σn = nκ−
2
3

(
p∗(t∗)

q′∗(t∗)

)1/3

, µn = nκt∗,

yield, for s ∈ R and a (not necessarily bounded) interval J ⊂ (s,∞), the strong limit

K̃nχJ
s−→ KAiryχJ .

• Hard-edge scaling limit: given that Λ = (0,∞) or Λ = (0, 1) with

p(0) = 0, p′(0) > 0, qn(x) = q(x) = γ2x−1 +O(1), x→ 0, (1.9)

the scaling parameters

σn =
p′(0)

4ωn2κ′
, µn = 0,

yield, for a bounded interval J ⊂ (0,∞), the strong limit6

K̃nχJ
s−→ K

(α)
BesselχJ

∣∣∣
α=2γ/

√
p′(0)

. (1.11)

Remark 1.4. Whether the interval J in the strong operator limit K̃nχJ
s−→ KχJ can be

chosen unbounded or not depends on whether the limit operator KχJ is trace class or not (see
the explicit formulae of the traces given in the appendix for each of the three limits): only in the
former case we get a representation of the scaling limit in terms of a particular integral kernel,
cf. Theorem A.3. Note that it is impossible to use J = Λ since trKn = n→∞.

6Here, if 0 6 α < 1, the selfadjoint realization Ln is defined by means of the boundary condition

2xu′(x)− αu(x) = o
(
x−α/2

)
, x→ 0. (1.10)
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Outline of the paper

The proof of Theorem 1.3 is subject of Section 2. In Section 3 we apply it to the classical
orthogonal polynomials, which yields a short and unified derivation of the known formulae for
the scaling limits for the classical random matrix ensembles with unitary invariance (GUE,
LUE/Wishart, JUE/MANOVA). In fact, by a result of Tricomi, the only input needed is the
weight function w of the orthogonal polynomials; from there one gets in a purely formula based
fashion (by simple manipulations which can easily be coded in any computer algebra system),
first, to the coefficients p and qn as well as to the eigenvalues λn of the Sturm–Liouville opera-
tor Ln and next, by applying Theorem 1.3, to the particular scaling limits.

To emphasize that our main result and its application is largely independent of concretely
identifying the limit projection kernel K̃, we postpone this identification to Lemmas A.5, A.7
and A.9: there, using generalized eigenfunction expansions, we calculate the Dyson, Airy, and
Bessel kernels directly from the limit differential operator L̃.

2 Proof of the main result for Sturm–Liouville operators

We start the proof of Theorem 1.3 with some preparatory steps before we deal with the particular
scaling limits. Since Ln is a selfadjoint realization on L2(Λ) of the Sturm–Liouville operator

Ln = − d

dx

(
p(x)

d

dx

)
+ qn(x)− λn

with p, qn ∈ C∞(Λ) and p(x) > 0 for x ∈ Λ, we have C∞0 (Λ) ⊂ D(Ln).

Preparatory Step 1: transformation

The scaling

x = σnξ + µn, σn 6= 0,

maps x ∈ Λ bijectively to ξ ∈ Λ̃n. Since such an affine coordinate transform just induces
a unitary equivalence of integral and differential operators, the spectral projection relation

Kn = χ(−∞,0)(Ln)

is left invariant if the kernel Kn(x, y) is transformed according to (1.5) and the differential
operator Ln is transformed using d/dx = σ−1

n d/dξ as

− 1

σ2
n

d

dξ

(
p(σnξ + µn)

d

dξ

)
+ qn(σnξ + µn)− λn.

Since the spectral projection to the negative part of the spectrum of a differential operator is
left invariant if we multiply that operator by some positive constant τnσ

2
n, τn > 0, we see that

K̃n = χ(−∞,0)

(
L̃n
)
,

where the transformed differential operator is given finally by

L̃n = − d

dξ

(
p̃n(ξ)

d

dξ

)
+ q̃n(ξ)

with coefficients

p̃n(ξ) = τnp(σnξ + µn), q̃n(ξ) = τnσ
2
n (qn(σnξ + µn)− λn) . (2.1)
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Preparatory Step 2: strong operator limit

Suppose the transformed domain Λ̃n = (an, bn) satisfies an → a, bn → b. Then, with Λ̃ = (a, b)
we have that, eventually, C∞0 (Λ̃) ⊂ D(L̃n). Further, suppose that the coefficients of L̃n converge
locally uniform in Λ̃ as (where the limit of p̃n(ξ) can be differentiated)

p̃n(ξ)→ p̃(ξ), q̃n(ξ)→ q̃(ξ),

such that the limit coefficients p̃ > 0 and q̃ are smooth functions and

L̃ = − d

dξ

(
p̃(ξ)

d

dξ

)
+ q̃(ξ) (2.2)

defines a Sturm–Liouville operator that is essentially selfadjoint on C∞0 (Λ̃) ⊂ L2(Λ̃). Then, by
dominated convergence, we get the convergence L̃nu→ L̃u in L2(Λ̃) for each test function u in
the core C∞0 (Λ̃). Hence, by Theorem A.1 we have the strong operator convergence

K̃nχJ
s−→ χ(−∞,0)

(
L̃
)
χJ

if 0 6∈ σpp(L) and, eventually, J ⊂ Λ̃n. In the particular cases considered in the following limit
steps of the proof, the spectrum of L̃ is always absolutely continuous, that is, σpp(L) = ∅.
Finally, by Theorem A.3, under the finite trace condition mentioned already in Remark 1.4,
there is an integral kernel K̃ such that

χ(−∞,0)

(
L̃
)
χJ = K̃χJ ,

which finishes the proof of a strong operator convergence in general.

Preparatory Step 3: Taylor expansions of the coefficients

The case µn = nκt

Suppose that t ∈ Λ is fixed. The choice τn = 1/p(µn) > 0 is then admissible and we get, if

σn = o
(
nκ−1/2

)
,

from (1.6), (1.7), and (2.1) by a Taylor expansion

p̃n(ξ) = 1 + o(1), q̃n(ξ) =
σ2
nn

2−2κ

p∗(t)

(
q∗(t)− ω + σnn

−κq′∗(t) · ξ
)

+ o(1), (2.3)

which holds locally uniform in ξ ∈ Λ̃ (where the expansion of p̃n(ξ) can be differentiated).

The case µn = 0

Suppose that the assumptions in (1.9) are met. If σn → 0+, the choice τn = 4σn/p
′(0) > 0 is

admissible and we get from (2.1) by a Taylor expansion

p̃n(ξ) = 4ξ + o(1), q̃n(ξ) =
4γ2

p′(0)ξ
− 4σnλn

p′(0)
+ o(1), (2.4)

which holds locally uniform in ξ ∈ Λ̃ (where the expansion of p̃n(ξ) can be differentiated).
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Limit Step 1: bulk scaling limit

If q∗(t) 6= ω, by inserting

σn = σn(t) = πnκ−1

√
p∗(t)

|ω − q∗(t)|

we read off from (2.3) the limit coefficients p̃(ξ) = 1 and q̃(ξ) = −sπ2, where s = sign(ω−q∗(t));
that is, the limit differential operator (2.2) is given by

L̃ = − d2

dξ2
− sπ2.

Note that, for the domains Λ and the values of κ considered, we have Λ̃ = (−∞,∞).
Lemma A.5 states that L̃ is essentially selfadjoint on C∞0 (Λ̃) and that its unique selfadjoint

extension has absolutely continuous spectrum: σ(L̃) = σac(L̃) = [−sπ2,∞). Thus, for s = −1,
the spectral projection χ(−∞,0)(L̃) is zero. For s = 1, the spectral projection can be calculated
by a generalized eigenfunction expansion, yielding the Dyson kernel (A.3).

We will see in the next step that the dichotomy between s = ±1 is also reflected in the
structure of the support of the limit law ρ̃.

Limit Step 2: limit law

The result for the bulk scaling limit allows, in passing, to calculate a limit law of the mean
counting probability density ρn(x) = n−1Kn(x, x): we observe that x = nκt transforms the
density ρn(x) into

ρ̃n(t) = nκ−1Kn(nκt, nκt) =
nκ−1

σn(t)
K̃n(0, 0) =

1

π

√
|ω − q∗(t)|
p∗(t)

K̃n(0, 0).

Thus, to get to a limit, we have to assume condition (1.4), so that a pointwise rendering of the
bulk scaling limit just considered yields7

K̃n(0, 0)→ [q∗(t) < ω]KDyson(0, 0) = [q∗(t) < ω].

This way we get

ρ̃n(t)→ ρ̃(t) =
1

π

√
(ω − q∗(t))+

p∗(t)
.

Hence, by Helly’s selection theorem, the probability measure ρ̃n(t)dt converges vaguely to ρ̃(t)dt,
which is, in general, just a sub-probability measure. If, however, it is checked that ρ̃(t)dt has
unit mass, the convergence is weak.

Limit Step 3: soft-edge scaling limit

If q∗(t∗) = ω, by inserting8

σn = σn(t∗) = nκ−2/3

(
p∗(t∗)

q′∗(t∗)

)1/3

7The Iverson bracket [S] stands for 1 if the statement S is true, 0 otherwise.
8Note that, by the assumption made on the simplicity of the roots of q∗(t)− ω, we have q′∗(t∗) 6= 0.
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we read off from (2.3) the limit coefficients p̃(ξ) = 1 and q̃(ξ) = ξ; that is, the limit differential
operator (2.2) is

L̃ = − d2

dξ2
+ ξ.

Note that, for the domains Λ and the values of κ considered, we have Λ̃ = (−∞,∞).
Lemma A.7 states that L̃ is essentially selfadjoint on C∞0 (Λ̃) and that its unique selfadjoint

extension has absolutely continuous spectrum: σ(L̃) = σac(L̃) = (−∞,∞). The spectral projec-
tion can be calculated by a generalized eigenfunction expansion, yielding the Airy kernel (A.4).

Limit Step 4: hard-edge scaling limit

For Λ = (0,∞) or Λ = (0, 1), we take a scaling

x = σnξ,

with σn → 0+ appropriately chosen, to explore the vicinity of the “hard edge” x = 0; note that
such a scaling yields Λ̃ = (0,∞). We make the assumptions stated in (1.9). By inserting

σn = n−2κ′ p
′(0)

4ω

we read off from (2.4), using (1.6), the limit coefficients p̃(ξ) = 4ξ and q̃(ξ) = α2ξ−1−1, where α
is defined as in (1.11); that is, the limit differential operator (2.2) is given by

L̃ = −4
d

dξ

(
ξ
d

dξ

)
+ α2ξ−1 − 1

∣∣∣∣
α=2γ/

√
p′(0)

.

If α > 1, Lemma A.9 states that the limit L̃ is essentially selfadjoint on C∞0 (Λ̃) and that the
spectrum of its unique selfadjoint extension is absolutely continuous: σ(L̃) = σac(L̃) = [−1,∞).
The spectral projection can be calculated by a generalized eigenfunction expansion, yielding the
Bessel kernel (A.5).

Remark 2.1. The theorem also holds in the case 0 6 α < 1 if the particular selfadjoint
realization Ln is defined by the boundary condition (1.10), see Remark A.10.

3 Application to classical orthogonal polynomials

In this section we apply Theorem 1.3 to the kernels associated with the classical orthogonal
polynomials, that is, the Hermite, Laguerre, and Jacobi polynomials. In random matrix theory,
the thus induced determinantal processes are modeled by the spectra of the Gaussian unitary
ensemble (GUE), the Wishart or Laguerre unitary ensemble (LUE), and the MANOVA (multi-
variate analysis of variance) or Jacobi unitary ensemble (JUE).

To prepare the study of the individual cases, we first discuss their common structure.
Let Pn(x) be the sequence of classical orthogonal polynomials belonging to the weight function
w(x) on the (not necessarily bounded) interval (a, b). We normalize Pn(x) such that 〈φn, φn〉 = 1,
where φn(x) = w(x)1/2Pn(x). The functions φn form a complete orthogonal set in L2(a, b); con-
ceptual proofs of the completeness can be found, e.g., in Andrews, Askey and Roy [3] (Section 5.7
for the Jacobi polynomials, Section 6.5 for the Hermite and Laguerre polynomials).

By a result of Tricomi [7, Section 10.7], the Pn(x) satisfy the eigenvalue problem

− 1

w(x)

d

dx

(
p(x)w(x)

d

dx
Pn(x)

)
= λnPn(x), λn = −n

(
r′ + 1

2(n+ 1)p′′
)
,
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where p(x) is a quadratic polynomial9 and r(x) a linear polynomial such that

w′(x)

w(x)
=
r(x)

p(x)
.

In terms of φn, a brief calculation shows that

− d

dx

(
p(x)

d

dx
φn(x)

)
+ q(x)φn(x) = λnφn(x), q(x) =

r(x)2

4p(x)
+
r′(x)

2
.

Therefore, by the completeness of the φn, the formally selfadjoint Sturm–Liouville operator
L = − d

dxp(x) d
dx + q(x) has a particular selfadjoint realization on L2(a, b) (which we continue to

denote by the letter L) with spectrum

σ(L) = {λ0, λ1, λ2, . . .}

and corresponding eigenfunctions φn. Hence, if the eigenvalues are, eventually, strictly increas-
ing, the projection kernel (1.1) defines an integral operator Kn with trKn = n such that,
eventually,

Kn = χ(−∞,0)(Ln), Ln = L− λn.

Note that this relation remains true if we choose to make some parameters of the weight w (and,
therefore, of the functions φj) to depend on n. For the scaling limits of Kn, we are now in the
realm of Theorem 1.3: given the weight w(x) as the only input all the other quantities can now
be obtained simply by routine calculations.

Hermite polynomials

The weight is w(x) = e−x
2

on Λ = (−∞,∞); hence

p(x) = 1, r(x) = −2x, q(x) = x2 − 1, λn = 2n,

and, therefore,

κ = κ′ = 1
2 , κ′′ = 0, p∗(t) = 1, q∗(t) = t2, ω = 2.

Theorem 1.3 is applicable and we directly read off the following well-known scaling limits of the
GUE (see, e.g., [2, Chapter 3]):

• bulk scaling limit: if −
√

2 < t <
√

2, the transformation

x =
πξ

n1/2
√

2− t2
+ n1/2t

induces K̃n with a strong limit given by the Dyson kernel ;

• limit law: the transformation x = n1/2t induces the mean counting probability density ρ̃n
with a weak limit given by the Wigner semicircle law

ρ̃(t) =
1

π

√
(2− t2)+;

• soft-edge scaling limit: the transformation

x = ±
(
2−1/2n−1/6ξ +

√
2n
)

induces K̃n with a strong limit given by the Airy kernel.

9With the sign chosen such that p(x) > 0 for x ∈ (a, b).
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Laguerre polynomials

The weight is w(x) = xαe−x on Λ = (0,∞); hence

p(x) = x, r(x) = α− x, q(x) =
(α− x)2

4x
− 1

2
, λn = n.

In random matrix theory, the corresponding determinantal point process is modeled by the
spectra of complex n × n Wishart matrices with a dimension parameter m > n; the Laguerre
parameter α is then given by α = m − n > 0. Of particular interest in statistics [12] is the
simultaneous limit m,n→∞ with

m

n
→ θ > 1,

for which we get

κ = 1, κ′ =
1

2
, κ′′ = −1

2
, p∗(t) = t, q∗(t) =

(θ − 1− t)2

4t
, ω = 1.

Note that

ω − q∗(t) =
(t+ − t)(t− t−)

4t
, t± =

(√
θ ± 1

)2
.

Theorem 1.3 is applicable and we directly read off the following well-known scaling limits of the
Wishart ensemble [12]:

• bulk scaling limit: if t− < t < t+,

x =
2πtξ√

(t+ − t)(t− t−)
+ nt

induces K̃n with a strong limit given by the Dyson kernel ;

• limit law: the scaling x = nt induces the mean counting probability density ρ̃n with a weak
limit given by the Marchenko–Pastur law

ρ̃(t) =
1

2πt

√
((t+ − t)(t− t−))+;

• soft-edge scaling limit: with signs chosen consistently as either + or −,

x = ±n1/3θ−1/6t
2/3
± ξ + nt± (3.1)

induces K̃n with a strong limit given by the Airy kernel.

Remark 3.1. The scaling (3.1) is better known in the asymptotically equivalent form

x = σξ + µ, µ =
(√
m±

√
n
)2
, σ =

(√
m±

√
n
)( 1√

m
± 1√

n

)1/3

,

which is obtained from (3.1) by replacing θ with m/n, see [12, p. 305].

In the case θ = 1, which implies t− = 0, the lower soft-edge scaling (3.1) breaks down and
has to be replaced by a scaling at the hard edge:

• hard-edge scaling limit: if α = m−n is a constant10, x = ξ/(4n) induces K̃n with a strong

limit given by the Bessel kernel K
(α)
Bessel.

10By Remark 2.1, there is no need to restrict ourselves to α > 1: since φn(x) = xαφ̃n(x) with φ̃n(x) extending
smoothly to x = 0, we have, for α > 0,

xα/2(2xφ′n(x)− αφn(x)) = 2x1+αφ̃′n(x) = O(x), x→ 0.

Hence, the selfadjoint realization Ln is compatible with the boundary condition (1.10).
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Jacobi polynomials

The weight is w(x) = xα(1− x)β on Λ = (0, 1); hence

p(x) = x(1− x), r(x) = α− (α+ β)x, q(x) =
(α− (α+ β)x)2

4x(1− x)
− α+ β

2
,

and

λn = n(n+ α+ β + 1).

In random matrix theory, the corresponding determinantal point process is modeled by the
spectra of complex n × n MANOVA matrices with dimension parameters m1,m2 > n; the
Jacobi parameters α, β are then given by α = m1 − n > 0 and β = m2 − n > 0. Of particular
interest in statistics [13] is the simultaneous limit m1,m2, n→∞ with

m1

m1 +m2
→ θ ∈ (0, 1),

n

m1 +m2
→ τ ∈ (0, 1/2],

for which we get

κ = κ′′ = 0, κ′ = 1, p∗(t) = t(1− t), q∗(t) =
(θ − τ − (1− 2τ)t)2

4τ2t(1− t)
, ω =

1− τ
τ

.

Note that

ω − q∗(t) =
(t+ − t)(t− t−)

4τ2t(1− t)
, t± =

(√
θ(1− τ)±

√
τ(1− θ)

)2
.

Theorem 1.3 is applicable and we directly read off the following (less well-known) scaling limits
of the MANOVA ensemble [5, 13]:

• bulk scaling limit: if t− < t < t+,

x =
2πτt(1− t)ξ

n
√

(t+ − t)(t− t−)
+ t

induces K̃n with a strong limit given by the Dyson kernel ;

• limit law: (because of κ = 0 there is no transformation here) the mean counting probability
density ρn has a weak limit given by the law [23]

ρ(t) =
1

2πτt(1− t)
√

((t+ − t)(t− t−))+;

• soft-edge scaling limit: with signs chosen consistently as either + or −,

x = ±n−2/3 (τt±(1− t±))2/3

(τθ(1− τ)(1− θ))1/6
ξ + t± (3.2)

induces K̃n with a strong limit given by the Airy kernel.

Remark 3.2. Johnstone [13, p. 2651] gives the soft-edge scaling in terms of a trigonometric
parametrization of θ and τ . By putting

θ = sin2 φ

2
, τ = sin2 ψ

2
,
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we immediately get

t± = sin2 φ± ψ
2

and (3.2) becomes

x = ±σ±ξ + t±, σ± = n−2/3

(
τ2 sin4(φ± ψ)

4 sinφ sinψ

)1/3

.

In the case θ = τ = 1/2, which is equivalent to m1/n,m2/n→ 1, we have t− = 0 and t+ = 1.
Hence, the lower and the upper soft-edge scaling (3.2) break down and have to be replaced by
a scaling at the hard edges:

• hard-edge scaling limit: if α = m1−n, β = m2−n are constants11, x = ξ/(4n2) induces K̃n

with a strong limit given by the Bessel kernel K
(α)
Bessel; by symmetry, the Bessel kernel

K
(β)
Bessel is obtained for x = 1− ξ/(4n2).

A Appendices

A.1 Generalized strong convergence

The notion of strong resolvent convergence [24, Section 9.3] links the convergence of differential
operators, tested for an appropriate class of smooth functions, to the strong convergence of
their spectral projections. We recall a slight generalization of that concept, which allows the
underlying Hilbert space to vary.

Specifically we consider, on an interval (a, b) (not necessarily bounded) and on a sequence of
subintervals (an, bn) ⊂ (a, b) with an → a and bn → b, selfadjoint operators

L : D(L) ⊂ L2(a, b)→ L2(a, b), Ln : D(Ln) ⊂ L2(an, bn)→ L2(an, bn).

By means of the natural embedding (that is, extension by zero) we take L2(an, bn) ⊂ L2(a, b);
the multiplication operator induced by the characteristic function χ(an,bn), which we will denote
by the same symbol, constitutes the orthogonal projection of L2(a, b) onto L2(an, bn). Following
Stolz and Weidmann [19, Section 2], we say that Ln converges to L in the sense of generalized
strong convergence (gsc), if for some z ∈ C \ R, and hence, a forteriori, for all such z,

Rz(Ln)χ(an,bn)
s−→ Rz(L), n→∞,

in the strong operator topology of L2(a, b).12

Theorem A.1 (Stolz and Weidmann [19, Theorem 4/5]). Let the selfadjoint operators Ln and L
satisfy the assumptions stated above and let C be a core of L such that, eventually, C ⊂ D(Ln).

(i) If Lnu→ Lu for all u ∈ C, then Ln
gsc−→ L.

(ii) If Ln
gsc−→ L and if the endpoints of the interval ∆ ⊂ R do not belong to the pure point

spectrum σpp(L) of L, the spectral projections to ∆ converge as

χ∆(Ln)χ(an,bn)
s−→ χ∆(L).

11For the cases 0 6 α < 1 and 0 6 β < 1, see the justification of the limit given in footnote 10.
12We denote by Rz(L) = (L− z)−1 the resolvent of an operator L.
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A.2 Generalized eigenfunction expansion of Sturm–Liouville operators

Let L be a formally selfadjoint Sturm–Liouville operator on the interval (a, b),

Lu = −(pu′)′ + qu,

with smooth coefficient functions p > 0 and q. We have the limit point case (LP) at the
boundary point a if there is some c ∈ (a, b) and some z ∈ C such that there exists at least one
solution of (L− z)u = 0 in (a, b) for which u 6∈ L2(a, c); otherwise, we have the limit circle case
(LC) at a. According to the Weyl alternative [24, Theorem 8.27], in the LP case there exists
actually for all c ∈ (a, b) and all z ∈ C at least one solution of (L − z)u = 0 in (a, b) for which
u 6∈ L2(a, c); yet, if z ∈ C \R, there is a one-dimensional space of solutions u of (L− z)u = 0 for
which there is nevertheless u ∈ L2(a, c). The same structure and notion applies to the boundary
point b.

Theorem A.2. Let L be a formally selfadjoint Sturm–Liouville operator on the interval (a, b)
as defined above. If there is the LP case at a and b, then L is essentially self-adjoint on the
domain C∞0 (a, b) and, for z ∈ C \ R, the resolvent Rz(L) = (L − z)−1 of its unique selfadjoint
extension (which we continue to denote by the letter L) is of the form

Rz(L)φ(x) =
1

W (ua, ub)

(
ub(x)

∫ x

a
ua(y)φ(y)dy + ua(x)

∫ b

x
ub(y)φ(y)dy

)
. (A.1)

Here ua and ub are the non-vanishing solutions of the equation (L−z)u = 0, uniquely determined
up to a factor by the conditions ua ∈ L2(a, c) and ub ∈ L2(c, b) for some c ∈ (a, b), and W denotes
the Wronskian

W (ua, ub) = p(x)(u′a(x)ub(x)− ua(x)u′b(x)),

which is a constant for x ∈ (a, b).

A more general formulation of this theorem, which includes also the LC case, can be found,
e.g., in [24, Theorem 8.26/8.29]; see [25, pp. 41–42] for a proof that C∞0 (a, b) is a core of L if
the coefficients are smooth. In the following, we write (A.1) briefly in the form

Rz(L)φ(x) =

∫ b

a
Gz(x, y)φ(y)dy

with the Green’s kernel

Gz(x, y) =
1

W (ua, ub)

{
ub(x)ua(y), x > y,

ua(x)ub(y), otherwise.

If the imaginary part of Gz(x, y) has finite boundary values as z approaches the real line from
above, there is a simple formula for the spectral projection associated with L that often applies
if the spectrum of L is absolutely continuous.

Theorem A.3.

(i) Assume that there exits, as ε→ 0+, the limit

π−1 ImGλ+iε(x, y)→ Kλ(x, y),

locally uniform in x, y ∈ (a, b) for each λ ∈ R except for some isolated points λ for which
the limit is replaced by

ε ImGλ+iε(x, y)→ 0.
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Then the spectrum is absolutely continuous, σ(L) = σac(L), and, for a Borel set ∆,

〈χ∆(L)φ, ψ〉 =

∫
∆
〈Kλφ, ψ〉dλ, φ, ψ ∈ C∞0 (a, b). (A.2)

(ii) Assume further, for some (a′, b′) ⊂ (a, b), that∫ b′

a′

∫ b′

a′

(∫
∆
|Kλ(x, y)|dλ

)2

dxdy <∞.

Then χ∆(L)χ(a′,b′) is a Hilbert–Schmidt operator on L2(a, b) with kernel

χ(a′,b′)(y)

∫
∆
Kλ(x, y)dλ.

If
∫

∆Kλ(x, y)dλ is a continuous function of x, y ∈ (a′, b′), χ∆(L)χ(a′,b′) is a trace class
operator with trace

trχ∆(L)χ(a′,b′) =

∫ b′

a′

∫
∆
Kλ(x, x)dλdx.

Proof. With E denoting the spectral resolution of the selfadjoint operator L, we observe
that, for a given φ ∈ C∞0 (a, b), the Borel–Stieltjes transform of the positive measure µφ(λ) =
〈E(λ)φ, φ〉 can be simply expressed in terms of the resolvent as follows, see [15, Section 32.1]:∫ ∞

−∞

dµφ(λ)

λ− z
= 〈Rz(L)φ, φ〉.

If we take z = λ+iε and let ε→ 0+, we obtain by the locally uniform convergence of the integral
kernel of Rz that there exits either the limit

π−1 Im〈Rλ+iε(L)φ, φ〉 → 〈Kλφ, φ〉

or, at isolated points λ,

ε Im〈Rλ+iε(L)φ, φ〉 → 0.

By a theorem of de la Vallée–Poussin [18, Theorem 11.6(ii/iii)], the singular part of µφ va-
nishes, µφ,sing = 0; by Plemelj’s reconstruction the absolutely continuous part satisfies [18,
Theorem 11.6(iv)]

dµφ,ac(λ) = 〈Kλφ, φ〉dλ.

Since C∞0 (a, b) is dense in L2(a, b), approximation shows that Esing = 0, that is, σ(L) = σac(L).
Since 〈χ∆(L)φ, φ〉 =

∫
∆ dµφ(λ), we thus get, by the symmetry of the bilinear expressions, the

representation (A.2), which finishes the proof of (i). The Hilbert–Schmidt part of part (ii) follows
using the Cauchy–Schwarz inequality and Fubini’s theorem and yet another density argument;
the trace class part follows from [9, Theorem IV.8.3] since χ(a′,b′)χ∆(L)χ(a′,b′) is a selfadjoint,
positive-semidefinite operator. �

We apply this theorem to the spectral projections used in the proof of Theorem 1.3. The
first two examples could have been dealt with by Fourier techniques [20, Section 3.3]; applying,
however, the same method in all the examples renders the approach more systematic.
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Example A.4 (Dyson kernel). Consider Lu = −u′′ on (−∞,∞). Since u ≡ 1 is a solution
of Lu = 0, both endpoints are LP; for a given Im z > 0 the solutions ua (ub) of (L − z)u = 0
being L2 at −∞ (∞) are spanned by

ua(x) = e−ix
√
z, ub(x) = eix

√
z.

Thus, Theorem A.2 applies: L is essentially selfadjoint on C∞0 (−∞,∞), the resolvent of its
unique selfadjoint extension is represented, for Im z > 0, by the Green’s kernel

Gz(x, y) =
i

2
√
z

{
ei(x−y)

√
z, x > y,

e−i(x−y)
√
z, otherwise.

For λ > 0 there is the limit

π−1 ImGλ+i0(x, y) = Kλ(x, y) =
cos
(
(x− y)

√
λ
)

2π
√
λ

,

for λ < 0 the limit is zero; both limits are locally uniform in x, y ∈ R. For λ = 0 there would be
divergence, but we obviously have

ε ImGiε(x, y)→ 0, ε→ 0+,

locally uniform in x, y ∈ R. Hence, Theorem A.3 applies: σ(L) = σac(L) = [0,∞) and (A.2)
holds for each Borel set ∆ ⊂ R. Given a bounded interval (a, b), we may estimate for the specific
choice ∆ = (−∞, π2) that∫ b

a

∫ b

a

(∫ π2

−∞
|Kλ(x, y)|dλ

)2

dxdy

=

∫ b

a

∫ b

a

(∫ π2

0

∣∣∣∣∣cos
(
(x− y)

√
λ
)

2π
√
λ

∣∣∣∣∣ dλ
)2

dxdy 6

(∫ b

a

∫ π2

0

dλ

2π
√
λ

)2

= (b− a)2.

Therefore, Theorem A.3 yields that χ(−∞,π2)(L)χ(a,b) is Hilbert–Schmidt with the Dyson kernel∫ π2

−∞
Kλ(x, y)dλ =

∫ π2

0

cos
(
(x− y)

√
λ
)

2π
√
λ

dλ =
sin(π(x− y))

π(x− y)
,

restricted to x, y ∈ (a, b). Here, the last equality is simply obtained from

(x− y)

∫ π2

0

cos
(
(x− y)

√
λ
)

2
√
λ

dλ =

∫ π2

0

d

dλ
sin
(
(x− y)

√
λ
)
dλ = sin(π(x− y)).

Since the resulting kernel is continuous for x, y ∈ (a, b), Theorem A.3 gives that χ(−∞,π2)(L)χ(a,b)

is a trace class operator with trace

trχ(−∞,π2)(L)χ(a,b) = b− a.

To summarize, we have thus obtained the following lemma.

Lemma A.5. The operator Lu = −u′′ is essentially selfadjoint on C∞0 (−∞,∞). The spectrum
of its unique selfadjoint extension is

σ(L) = σac(L) = [0,∞).

Given (a, b) bounded, χ(−∞,π2)(L)χ(a,b) is trace class with trace b− a and kernel

KDyson(x, y) =

∫ π2

0

cos
(
(x− y)

√
λ
)

2π
√
λ

dλ =
sin(π(x− y))

π(x− y)
. (A.3)
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Example A.6 (Airy kernel). Consider the differential operator Lu = −u′′ + xu on (−∞,∞).
Since the specific solution u(x) = Bi(x) of Lu = 0 is not locally L2 at each of the endpoints,
both endpoints are LP. For a given Im z > 0 the solutions ua (ub) of (L − z)u = 0 being L2

at −∞ (∞) are spanned by [1, equation (10.4.59-64)]

ua(x) = Ai(x− z)− iBi(x− z), ub(x) = Ai(x− z).

Thus, Theorem A.2 applies: L is essentially selfadjoint on C∞0 (−∞,∞), the resolvent of its
unique selfadjoint extension is represented, for Im z > 0, by the Green’s kernel

Gz(x, y) = iπ

{
Ai(x− z) (Ai(y − z)− iBi(y − z)) , x > y,

Ai(y − z) (Ai(x− z)− iBi(x− z)) , otherwise.

For λ ∈ R there is thus the limit

π−1 ImGλ+i0(x, y) = Kλ(x, y) = Ai(x− λ) Ai(y − λ),

locally uniform in x, y ∈ R. Hence, Theorem A.3 applies: σ(L) = σac(L) = R and (A.2) holds
for each Borel set ∆ ⊂ R. Given s > −∞, we may estimate for the specific choice ∆ = (−∞, 0)
that (∫ ∞

s

∫ ∞
s

(∫
∆
|Kλ(x, y)|dλ

)2

dxdy

)1/2

6
∫ ∞
s

∫ ∞
0

Ai(x+ λ)2dλdx = τ(s)

with

τ(s) =
1

3

(
2s2 Ai(s)2 − 2sAi′(s)2 −Ai(s) Ai′(s)

)
.

Therefore, Theorem A.3 yields that χ(−∞,0)(L)χ(s,∞) is Hilbert–Schmidt with the Airy kernel∫ 0

−∞
Kλ(x, y)dλ =

∫ ∞
0

Ai(x+ λ) Ai(y + λ)dλ =
Ai(x) Ai′(y)−Ai′(x) Ai(y)

x− y
,

restricted to x, y ∈ (s,∞). Here, the last equality is obtained from a Christoffel–Darboux type
of argument: First, we use the underlying differential equation,

xAi(x+ λ) = Ai′′(x+ λ)− λAi(x+ λ),

and partial integration to obtain

x

∫ ∞
0

Ai(x+ λ) Ai(y + λ)dλ =

∫ ∞
0

Ai′′(x+ λ) Ai(y + λ)dλ−
∫ ∞

0
λAi(x+ λ) Ai(y + λ)dλ

= −Ai′(x) Ai(y)−
∫ ∞

0
Ai′(x+ λ) Ai′(y + λ)dλ−

∫ ∞
0

λAi(x+ λ) Ai(y + λ)dλ.

Next, we exchange the roles of x and y and substract to get the assertion. Since the resulting
kernel is continuous, Theorem A.3 gives that χ(−∞,0)(L)χ(s,∞) is a trace class operator with
trace

trχ(−∞,0)(L)χ(s,∞) = τ(s)→∞, s→ −∞.

To summarize, we have thus obtained the following lemma.
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Lemma A.7. The differential operator Lu = −u′′+xu is essentially selfadjoint on C∞0 (−∞,∞).
The spectrum of its unique selfadjoint extension is

σ(L) = σac(L) = (−∞,∞).

Given s > −∞, the operator χ(−∞,0)(L)χ(s,∞) is trace class with kernel

KAiry(x, y) =

∫ ∞
0

Ai(x+ λ) Ai(y + λ)dλ =
Ai(x) Ai′(y)−Ai′(x) Ai(y)

x− y
. (A.4)

Example A.8 (Bessel kernel). Given α > 0, take Lu = −4(xu′)′ + α2x−1u on (0,∞). Since
a fundamental system of solutions of Lu = 0 is given by u(x) = x±α/2, the endpoint x = 0 is
LP for α > 1 and LC otherwise; the endpoint x =∞ is LP in both cases. Fixing the LP case at
x = 0, we restrict ourselves to the case α > 1.

For a given Im z > 0 the solutions ua (ub) of (L− z)u = 0 being L2 at 0 (∞) are spanned by
[1, equations (9.1.7-9) and (9.2.5-6)]

ua(x) = Jα
(√
xz
)
, ub(x) = Jα

(√
xz
)

+ iYα
(√
xz
)
.

Thus, Theorem A.2 applies: L is essentially selfadjoint on C∞0 (0,∞), the resolvent of its unique
selfadjoint extension is represented, for Im z > 0, by the Green’s kernel

Gz(x, y) =
iπ

4

{
Jα(
√
xz)
(
Jα
(√
yz
)

+ iYα
(√
yz
))
, x > y,

Jα(
√
yz)
(
Jα
(√
xz
)

+ iYα
(√
xz
))
, otherwise.

For λ > 0 there is the limit

π−1 ImGλ+i0(x, y) = Kλ(x, y) =
1

4
Jα
(√
xλ
)
Jα
(√
yλ
)
,

for λ 6 0 the limit is zero; both limits are locally uniform in x, y ∈ R. Hence, Theorem A.3
applies: σ(L) = σac(L) = [0,∞) and (A.2) holds for each Borel set ∆ ⊂ R. Given 0 6 s < ∞,
we may estimate for the specific choice ∆ = (−∞, 1) that(∫ s

0

∫ s

0

(∫
∆
|Kλ(x, y)|dλ

)2

dxdy

)1/2

6
1

4

∫ s

0

∫ 1

0
Jα
(√
xλ
)2
dλdx = τα(s).

Therefore, Theorem A.3 yields that χ(−∞,1)(L)χ(0,s) is Hilbert–Schmidt with the Bessel kernel∫ 1

−∞
Kλ(x, y)dλ =

1

4

∫ 1

0
Jα
(√
xλ
)
Jα
(√

yλ
)
dλ

=
Jα(
√
x)
√
yJ ′α(

√
y)−

√
xJ ′α(

√
x)Jα(

√
y)

2(x− y)
,

restricted to x, y ∈ (0, s). Here, the last equality is obtained from a Christoffel–Darboux type
of argument: First, we use the underlying differential equation,

xJα
(√
xλ
)

= −4
d

dλ

(
λ
d

dλ
Jα
(√
xλ
))

+ α2λ−1Jα
(√
xλ
)
,

and partial integration to obtain

x

4

∫ 1

0
Jα
(√
xλ
)
Jα
(√

yλ
)
dλ
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= −
∫ 1

0

d

dλ

(
λ
d

dλ
Jα
(√
xλ
))

Jα
(√

yλ
)
dλ+

α2

4

∫ 1

0
λ−1Jα

(√
xλ
)
Jα
(√

yλ
)
dλ

= −1

2

√
xJ ′α

(√
x
)
Jα
(√
y
)

+

∫ 1

0
λ

(
d

dλ
Jα
(√
xλ
))( d

dλ
Jα
(√

yλ
))

dλ+
α2

4

∫ 1

0
λ−1Jα

(√
xλ
)
Jα
(√

yλ
)
dλ.

Next, we exchange the roles of x and y and substract to get the assertion. Since the resulting
kernel is continuous, Theorem A.3 gives that χ(−∞,1)(L)χ(0,s) is a trace class operator with trace

trχ(−∞,1)(L)χ(0,s) = τα(s)→∞, s→∞.

To summarize, we have thus obtained the following lemma.

Lemma A.9. Given α > 1, the differential operator Lu = −4(xu′)′ + α2x−1u is essentially
selfadjoint on C∞0 (0,∞). The spectrum of its unique selfadjoint extension is

σ(L) = σac(L) = [0,∞).

Given 0 6 s <∞, the operator χ(−∞,1)(L)χ(0,s) is trace class with kernel

K
(α)
Bessel(x, y) =

1

4

∫ 1

0
Jα
(√
xλ
)
Jα
(√

yλ
)
dλ =

Jα(
√
x)
√
yJ ′α(

√
y)−

√
xJ ′α(

√
x)Jα(

√
y)

2(x− y)
.(A.5)

Remark A.10. Lemma A.9 extends to 0 6 α < 1 if we choose the particular selfadjoint
realization of L that is defined by the boundary condition (1.10), cf. [10, Example 10.5.12].
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