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Abstract. We show that some modern geometric methods of Hamiltonian dynamics can be
directly applied to the nonholonomic Heisenberg type systems. As an example we present
characteristic Killing tensors, compatible Poisson brackets, Lax matrices and classical r-
matrices for the conformally Hamiltonian vector fields obtained in a process of reduction
of Hamiltonian vector fields by a nonholonomic constraint associated with the Heisenberg
system.
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1 Introduction

Hamiltonian mechanics emerged in 1833 as a convenient reformulation of classical Newtonian
mechanics and analytical Lagrangian mechanics. Over the next almost two centuries, it was
gradually realized that Hamiltonian formulation of a system of differential equations

d

dt
xk = Xk, X = PdH

has several advantages based on the main postulate that evolution of a physical system over
time is governed by a single Hamiltonian H of that system and a Poisson bivector P describing
geometry and topology of the phase space. Many different mathematical methods and concepts
are widely used in the Hamiltonian formalism. For instance, we can construct first integrals
of the Hamiltonian vector field X using Killing tensors (Riemannian geometry), compatible
Poisson brackets (bi-Hamiltonian geometry) or Lax matrices (algebraic geometry, Lie algebras
theory, classical r-matrix theory etc.).

It is natural to ask what happens to these mathematical methods when we impose nonholo-
nomic constraints on the Hamiltonian system and make a suitable reduction. Usually presence
of the constraints drastically modifies or destroys these geometric constructions even when one
gets a conformally Hamiltonian vector field

X̂ = µ(x)P̂ dĤ

after the reduction, see [2, 5, 7, 8, 9, 10, 11, 15, 22, 24] and references within. Here Ĥ and P̂ are
Hamiltonian and Poisson bivector on reduced phase space, whereas function µ(x) is the so-called
conformal factor.

The main aim of this note is to present a family of conformally Hamiltonian dynamical
systems for which all the geometric methods listed above can be applied without any addi-
tional modifications. The corresponding nonholonomic constraint is associated with the so-
called Heisenberg system or nonholonomic integrator, which plays an important role in both
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nonlinear control and nonholonomic dynamics [7]. We have to underline that the integrable
systems discussed in this note look quite artificial from the viewpoint of control theory and
mechanics but they provide an example of the standard geometric methods applicability to the
conformally Hamiltonian systems.

This paper is organized as follows. Section 1.1 recalls a brief description of the constrained
motion in three-dimensional Euclidean space. Section 2 contains the main results on reduced
motion of the nonholonomic Heisenberg type systems on the plane. We will show that integrable
potentials for this non Hamiltonian vector field satisfy to the Bertrand–Darboux type equation.
Solutions of this equation and the corresponding characteristic coordinates will be explicitly
determined. Section 3 deals with application of the standard Stäckel theory to the conformally
Hamiltonian vector field. We will discuss a construction of the Stäckel matrices, compatible
Poisson structures, Lax matrices and classical r-matrices.

1.1 Main definitions

According to [7, 18, 24] we take the standard Hamiltonian equations of motion in Euclidean
space R3

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, i = 1, 2, 3, (1.1)

where

H =
1

2

(
p21 + p22 + p23

)
+ V (q1, q2, q3). (1.2)

On the phase space M = T ∗R3 we can introduce coordinates x = (q, p) in which equations (1.1)
have form ẋi = Xi and to determine Hamiltonian vector field

X =
6∑
i=1

Xi
∂

∂xi
,

which is a linear operator on a space of the smooth functions on M that encodes the evolution
of any quantity

Ḟ = X(F ) =
6∑
i=1

Xi
∂F

∂xi
.

Let us impose the constraint of first order in momenta (velocities)

f = (b, p) = 0, (1.3)

where b = (b1, b2, b3) is a vector depending on coordinates q and (x, y) means an inner product
in R3. In this case equations of motion are written in the following form

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
+ λbi, i = 1, 2, 3, (1.4)

together with the constraint equation (1.3). The corresponding vector field looks like an additive
perturbation of the initial Hamiltonian vector field

X̂ = X
∣∣
b=0

+ λ

(
b1

∂

∂p1
+ b2

∂

∂p2
+ b3

∂

∂p3

)
,
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where unknown Lagrange multiplier λ has to be computed from the condition

ḟ = X̂(f) = X(f)
∣∣
b=0

+ λ(b, b) = 0,

such that

λ =
X(f)|b=0

(b, b)
. (1.5)

Here X(f)|b=0 denotes the vector field in the absence of constraint. Such equations and an
equivalence of Hamiltonian and Lagrangian reductions are carefully discussed in the book [7].

For completeness and self-sufficiency of presentation we consider integrable constraint

f = p3 = 0, b = (0, 0, 1), (1.6)

when a third component of momenta is equal to zero, and non integrable constraint

f = p3 − (q2p1 − q1p2) = 0, b = (−q2, q1, 1), (1.7)

when third components of momenta and angular momenta coincide with each other.

If we assume that the potential V in R3 does not depend on q3, then Lagrange multipliers (1.5)
are equal to

λ = 0 and λ =
q1∂2V − q2∂1V

1 + q21 + q22
, ∂j =

∂

∂qj
,

respectively. Thus, the Hamiltonian system (1.2) with integrable constraint (1.6) represent
a Hamiltonian system on the plane R2 embedded in a three dimensional Euclidean space R3

in which there is no force acting on the third component. If we impose non integrable con-
straint (1.7), the equations for q3 also decouples from the rest of the system (1.4) and we obtain
a two-degrees of freedom non-Hamiltonian system on the plane. Following to [7, 18] we will call
dynamical system associated with X̂ as a Heisenberg type system.

Integrability of the Hamiltonian systems on the plane is the well-known problem of classical
mechanics considered by Bertrand [4] and Darboux [12]. Later on results of this investigation
due to Darboux were included in the textbook of Whittaker on analytical mechanics [25] almost
verbatim. In the next Section we compare classical Bertrand–Darboux theorem with its non-
Hamiltonian counterpart, which appears in the nonholonomic case.

2 Reduced systems on the plane

When V = V (q1, q2), substituting integrable constraint p3 = 0 (1.6) into (1.2) one gets

H1 =
1

2

(
p21 + p22

)
+ V (q1, q2) =

1

2
gijpipj + V (q1, q2), g =

(
1 0
0 1

)
(2.1)

with the summation convention in force; we regard the gij as components of the covariant form
of the metric tensor g on the plane, and use this metric freely to raise and lower indices.

After standard Hamiltonian reduction by cyclic third coordinate, the original Hamiltonian
vector field (1.1) in T ∗R3 becomes the Hamiltonian vector field in T ∗R2

ẋ = X, X = PdH1, P =

(
0 I
−I 0

)
, (2.2)



4 Yu.A. Grigoryev, A.P. Sozonov and A.V. Tsiganov

where x = (q1, q2, p1, p2). The Poisson bivector P in (2.2) defines canonical Poisson bracket

{qi, pi} = 1, {qi, pk} = {p1, p2} = 0, i 6= k. (2.3)

Of course, this vector field X preserves Poisson structure P , energy H1 and the standard volume
2-form Ω = dq ∧ dp.

Substituting non integrable constraint p3 = q2p1 − q1p2 (1.7) into (1.2) one gets

Ĥ1 =
1

2

(
p21 + p22 + (q2p1 − q1p2)2

)
+ V (q1, q2) =

1

2
ĝijpipj + V (q1, q2), (2.4)

ĝ =

(
1 + q22 −q1q2
−q1q2 1 + q21

)
.

The second order contravariant symmetric tensor field ĝ is a Killing tensor with respect to the
standard metric tensor g, i.e., it satisfies to the Killing equation

[[g, ĝ]] = 0,

where [[·, ·]] is a Schouten bracket. It allows us to construct conformal Killing tensor of second
order

G = ĝ − tr (ĝ) g = −
(

1 + q21 q1q2
q1q2 1 + q22

)
with vanishing Nijenhuis torsion and to define the standard Turiel deformation of the standard
symplectic form

ω̂ = d
(
Gijpidqj

)
,

see [21, 22] and references within. The corresponding Poisson bracket

{qi, pi}∧ = 1 + q2i , {qi, pj}∧ = q1q2, {p1, p2}∧ = q1p2 − q2p1, i 6= j (2.5)

is compatible with canonical bracket (2.3). Because the Turiel deformation is trivial deformation
in the Lichnerowicz–Poisson sense, there is a change of variables

p1 → π1 =
q1q2p2 −

(
1 + q22

)
p1

1 + x21 + x22
, p2 → π2 =

q1q2p1 −
(
1 + q21

)
p2

1 + x21 + x22
, (2.6)

which transforms this bracket to the canonical one (2.3), similar to other nonholonomic systems
with constraints of first order in momenta [6, 10, 20].

After the nonholonomic reduction, original Hamiltonian vector field (1.1) in T ∗R3 becomes
a conformally Hamiltonian vector field in T ∗R2

ẋ = X̂, X̂ = µP̂dĤ1, P̂ = ω̂−1, (2.7)

where conformal factor

µ =
(
1 + q21 + q22

)−1
is a nowhere vanishing smooth function on the plane. This vector field possesses energy Ĥ1 and
the volume 2-form Ω̂ = µdq ∧ dp, but it does not preserve the Poisson bivector P̂ .
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2.1 Bertrand–Darboux type equation

An existence of the integrals of second order in velocities for Hamiltonian vector field (2.2) is
described by a classical Bertrand–Darboux theorem [4, 12, 25].

Proposition 1. The function (2.1)

H1 =
1

2
gijpipj + V (q1, q2), g =

(
1 0
0 1

)
(2.8)

defines integrable Hamiltonian vector field X (2.2), which has an independent quadratic first
integral

H2 = Kijpipj + U(q1, q2), (2.9)

if the second order contravariant symmetric tensor field K obeys the Killing tensor equation

[[g,K]] = 0, (2.10)

and potential V satisfies the compatibility condition

d(KdV ) = 0, K = Kg−1, (2.11)

where K is the tensor field of (1, 1) type.
A characteristic coordinate system for (2.11) provides separation for the potential V and

can be taken as one of the following four orthogonal coordinate systems on the plane: elliptic,
parabolic, polar or Cartesian.

If a non-trivial solution exists, the Bertrand–Darboux equation (2.11) can be reduced to
canonical form by transforming to characteristic coordinates, which appear to be separation co-
ordinates for the Hamilton–Jacobi equation related to the natural Hamiltonian (see Bertrand [4],
Darboux [12], or Whittaker [25] and Ankiewicz and Pask [1] for a full proof of the BD theorem).
The modern proof of this classic statement may be found in [19].

In nonholonomic case we can also substitute the same ansatz (2.9) into the equation Ḣ2 = 0
and get the following generalisation of the Bertrand–Darboux result.

Proposition 2. The function (2.4)

Ĥ1 =
1

2
ĝijpipj + V (q1, q2), ĝ =

(
1 + q22 −q1q2
−q1q2 1 + q21

)
(2.12)

defines integrable conformally Hamiltonian vector field X̂ (2.7), which has an independent quad-
ratic first integral

Ĥ2 = Kijpipj + U(q1, q2), (2.13)

if the second order contravariant symmetric tensor field K is a Killing tensor

[[g,K]] = 0, g =

(
1 0
0 1

)
(2.14)

and potential V satisfies the compatibility condition

d
(
K̂dV

)
= 0, K̂ = Kĝ−1. (2.15)

A characteristic coordinate system for (2.15) provides separation for potential V (q1, q2).
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In this case existence of the second integral of motion guarantees integrability of the given
non Hamiltonian vector field X̂ according to the Euler–Jacobi theorem [17]. Equation (2.15)
was briefly discussed in [23] using coordinates q1,2 and momenta π1,2 (2.6).

Remark 1. In contrast with the standard Bertrand–Darboux theorem the Killing equa-
tion (2.14) and compatibility condition (2.15) include two different metrics g and ĝ. It happens
because the reaction force is entered in the second part of the vector field (1.4) only. Sequentially,
K is a Killing tensor with respect to the Euclidean metric g to the plane, which is an induced
metric associated with standard embedding R2 ⊂ R3 in Cartesian coordinates. However, K is
not a Killing tensor with respect to metric ĝ, which appears in the reduced Hamiltonian (2.4)
after nonholonomic reduction and then defines raising and lowering indices in the compatibility
condition (2.15).

2.2 Solutions of the Bertrand–Darboux type equation

In [12] Darboux proceeds to find the unknown potential V (q1, q2) by solving the compatibil-
ity condition (2.11) using method of characteristics. Solving the second compatibility condi-
tion (2.15) we can apply the same method.

In both cases characteristic coordinates for (2.11) and (2.15) consist of eigenvalues of the
corresponding (1, 1) tensor field K or K̂. In order to describe these coordinates we can start
with a well-known generic solution of the common Killing tensor equations (2.10) and (2.14)

K =

(
c1q

2
2 + 2c2q2 + c3 −c1q1q2 − c2q1 − c4q2 + c6

−c1q1q2 − c2q1 − c4q2 + c6 c1q
2
1 + 2c4q1 + c5

)
, (2.16)

which depends on six constants of integration c1, . . . , c6.
Substituting this generic solution into the standard compatibility condition (2.11) one gets(

A∂11 +B∂22 + C∂12 + a∂1 + b∂2
)
V (q1, q2) = 0, (2.17)

where ∂i = ∂/∂qi, ∂ik = ∂2/∂qi∂qk and polynomials of second order read as

A = c1q1q2 + c2q1 + c4q2 − c6, B = −A, C = c1q
2
2 − c1q21 + 2c2q2 − 2c4q1 + c3 − c5,

whereas polynomials of the first order are

a = 3(c1q2 + c2), b = −3(c1q1 + c4).

The linear PDE (2.17) of second order was obtained by Bertrand [4] and studied by Darboux [12].
Thus, it was later called the Bertrand–Darboux equation [19, 25].

Solving (2.17) for V (q1, q2) amounts to finding admissible potentials of the Hamiltonian
systems defined by H (2.1), which integrability is afforded by the existence of first integrals (2.9)
which are quadratic in the momenta. Second potential U(q1, q2) in (2.9) is a solution of the
equation

d(KdU) = V.

In nonholonomic case, substituting the same generic solution (2.16) into the compatibility
condition (2.15) one gets similar linear PDE(

1 + q21 + q22
)(
Â∂11 + B̂∂22 + Ĉ∂12

)
V (q1, q2) +

(
â∂1 + b̂∂2

)
V (q1, q2) = 0, (2.18)

with coefficients

Â =
(
1 + q21

)
(q1c2 − c6) + q2

(
1− q21

)
c4 + q1q2(c1 − c5),
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B̂ = −
(
1 + q22

)
(q2c4 − c6)− q1

(
1− q22

)
c2 − q1q2(c1 − c3),

Ĉ = −
(
q21 − q22

)
c1 +

(
1 + q21

)
(2q2c2 + c3)−

(
1 + q22

)
(2q1c4 + c5),

and

â =
(
q21 + q22 + 3

)(
c1q2 + 2c2q

2
1 − 2c4q1q2

)
− q2

(
2
(
q21 + 1

)
c3 −

(
q21 − q22 − 1

)
c5
)

+ q1
(
q21 − 3q22 + 1

)
c6 −

(
q21 + q22 − 3

)
c2,

b̂ = −
(
q21 + q22 + 3

)(
c1q1 + 2c4q

2
2 − 2c2q1q2

)
+ q1

(
2
(
q22 + 1

)
c5 +

(
q21 − q22 + 1

)
c3
)

+ q2
(
3q21 − q22 − 1

)
c6 +

(
q21 + q22 − 3

)
c4.

Solutions V (q1q2) of this Bertrand–Darboux type equation (2.18) determine all the admissible
Jacobi integrals (2.4), which define integrable conformally Hamiltonian vector fields (2.7) with
first integrals (2.13) of second order in momenta. In this case potential U(q1, q2) in (2.13) is
a solution of the equation

d
(
K̂dU

)
= V.

Remark 2. Before solving the PDE (2.17), Darboux ingeniously observes that it can be sim-
plified without loss of generality [12]. Indeed, by rotating and translating the axes, one can
simplify the general solution of the Killing tensor equation, thus bringing it to a certain canoni-
cal form. In modern language solving the equivalence and canonical forms problem for the Killing
tensor equations (2.10), (2.14) is equivalent to analysing the orbits of the six-dimensional vector
space of solutions under the action of the Lie group of orientation-preserving isometries.

It is well known that there are four types of orbits generated by the following canonical Killing
tensors:

Cartesian: K(1) =

(
1 0
0 0

)
,

polar: K(2) =

(
q22 −q1q2
−q1q2 q21

)
,

parabolic: K(3) =

(
0 −q2
−q2 2q1

)
,

elliptic: K(4) =

(
κ2 + q22 −q1q2
−q1q2 q21

)
, κ ∈ R, (2.19)

associated with Cartesian, polar, parabolic and elliptic coordinate systems on the plane, respec-
tively.

Let us consider these characteristic coordinate systems associated with the Killing ten-
sors (2.19).

Elliptic coordinates. Substituting Killing tensor K(4) into the (1,1) tensor K = K(4)g−1 and
calculating its eigenvalues one gets elliptic coordinates

ξ1,2 = κ+ q21 + q22 ±
√
κ2 − 2

(
q21 − q22

)
κ+

(
q21 + q22

)2
up to the constant factor. In nonholonomic case, substituting the same tensor K(4) into the
characteristic tensor K̂ = K(4)ĝ−1, one gets the following eigenvalues

ξ̂1,2 =

(
1 + q21

)
κ+ q21 + q22 ±

√(
1 + q21

)2
κ2 − 2

(
q21
(
q21 + q22

)
+ q21 − q22

)
κ+

(
q21 + q22

)2
1 + q21 + q22

.



8 Yu.A. Grigoryev, A.P. Sozonov and A.V. Tsiganov

Solutions of the compatibility equations (2.11) and (2.15) are labelled by two arbitrary func-
tions F1 and F2 on these coordinates:

V (q1, q2) =
F1(u1)− F2(u2)

u1 − u2
, u1,2 = ξ1,2 or u1,2 = ξ̂1,2.

Parabolic coordinates. In Hamiltonian case eigenvalues of the characteristic tensor K =
K(3)g−1 are standard parabolic coordinates

ζ1,2 = q1 ±
√
q21 + q22, (2.20)

whereas in nonholonomic case eigenvalues of the characteristic tensor K̂ = K(3)ĝ−1 read as

ζ̂1,2 =
q1 ±

√
q22 + 1

√
q21 + q22

1 + q21 + q22
. (2.21)

It is easy to express new characteristic coordinates via standard ones

ζ̂1,2 =
2
(
ζ1 + ζ2 ± (ζ1 − ζ2)

√
1− ζ1ζ2

)
(ζ1 − ζ2)2 + 4

.

In both cases the desired separable potentials are equal to

V (q1, q2) =
F1(u1)− F2(u2)

u1 − u2
, u1,2 = ζ1,2 or u1,2 = ζ̂1,2.

Polar coordinates. Using one nontrivial eigenvalue of characteristic tensors K = K(2)g−1 and
K̂ = K(2)ĝ−1 we can introduce only one coordinate

r =
√
q21 + q22, or r̂ =

√
q21 + q22

1 + q21 + q22
.

The second coordinate is a function on q1/q2, for instance, it could be an angle ϕ = arctan q1/q2,
because solutions of the compatibility equations (2.11) and (2.15) have the following form

V (q1, q2) = F1(ρ) +
F2(ϕ)

ρ2
, ρ = r or ρ = r̂.

Cartesian coordinates. Separable in the Cartesian coordinates solution of the compatibility
condition (2.11) reads as

V (q1, q2) = F1(q1) + F2(q2). (2.22)

In nonholonomic case characteristic tensor K̂ = K(1)ĝ−1 yields only one coordinate

%̂ =

√
1 + q21

1 + q21 + q22

and the separable solution of the compatibility condition (2.15) looks like

V (q1, q2) = F1(%̂) +
F2(φ̂)

%̂2
, φ̂ = arctan q1.

Thus, after nonholonomic reduction one gets separable potential, which is different, even in the
form of standard potential (2.22) separable in Cartesian coordinates.

Summing up, we have found four characteristic coordinate systems for the Bertrand–Darboux
type equation (2.18) associated with the integrable non-Hamiltonian vector field X̂ (2.7). Ad-
ditional first integral of this field X̂ is a polynomial of the second order in momenta defined
by the standard Killing tensor on the plane. Consequently, we can directly apply the standard
Stäckel theory to the nonholonomic Heisenberg type systems.
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3 Stäckel systems

In Hamiltonian case there is a one-to-one correspondence between the so-called Stäckel systems,
integrable Killing tensors which mutually commute in the algebraic sense and separation of
variables [3, 14].

The nondegenerate n× n Stäckel matrix S, which j column depends only on variable uj

detS 6= 0,
∂Skj
∂um

= 0, j 6= m

defines n functionally independent integrals of motion

Hk =

n∑
j=1

Cjk
(
p2uj + Uj(uj)

)
, C = S−1, (3.1)

which are in involution with respect to canonical Poisson brackets

{ui, puj} = δij , {ui, uj} = {pui , puj} = 0.

The common level surface of the first integrals H1 = α1, . . . ,H2 = αn is diffeomorphic to the
n-dimensional real torus and one immediately gets

p2uj =

n∑
k=1

αkSkj(uj)− Uj(uj).

It allows us to calculate quadratures for the corresponding Hamiltonian vector field X = PdH1:

n∑
j=1

∫ γj(puj ,uj)

γ0(p0,q0)

Skj(u)du√
n∑
k=1

αkSkj(u)− Uj(u)

= βk, k = 1, . . . , n, (3.2)

where β1 = t and β2, . . . , βn are constants of integration. Solution of the problem is thus
reduced to solving a sequence of one-dimensional problems, which is the essence of the method
of separation of variables [3].

3.1 Stäckel matrices for reduced systems

In the definition of the Stäckel integrals of motion (3.1) momenta pu have to be canonically
conjugated to eigenvalues u of the characteristic (1, 1) tensor K. For instance, if we take ten-
sor K(3) (2.19) the eigenvalues of K are parabolic coordinates ζ1,2 (2.20) and the corresponding
momenta read as

pζ1,2 =
p1
2
±
√
q21 + q22 ∓ q1

2q2
p2.

In nonholonomic case the eigenvalues of K̂ are given by ζ̂1,2 (2.21) and the conjugated momenta
have the following form

pζ̂1,2 =
q22 + 1± q1

√
1 + q22

√
q21 + q22

2
(
1− q21

) p1 −
q1 ∓

√
1 + q22

√
q21 + q22

2q2
p2.

In similar manner we can calculate all the canonical variables associated with tensors K(j) (2.19)
and to obtain standard Stäckel matrices in Hamiltonian case

S(1) =

(
1 1
1 −1

)
, S(2) =

(
0 1
1 −r−2

)
, S(3) =

(
1 1

−ζ−11 −ζ−12

)
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and

S(4) =


1

ξ1 − κ2
1

ξ2 − κ2
−1

ξ1(ξ1 − κ2)
−1

ξ2(ξ2 − κ2)

 .

For the nonholonomic Heisenberg type systems associated with tensors K(j) (2.19) Stäckel mat-
rices are equal to

Ŝ(1) =

0
1

%̂2(1− %̂2)

1
−1

%̂4(1− %̂2)

 , Ŝ(2) =

0
1

1− r̂2

1
−1

r̂2(1− r̂2)


and

Ŝ(3) =


1

1− ζ̂1
1

1− ζ̂2
−1

ζ̂1(1− ζ̂1)
−1

ζ̂2(1− ζ̂2)

 ,

Ŝ(4) =


1

(ξ̂1 − κ2)(1− ξ̂1)
1

(ξ̂2 − κ2)(1− ξ̂2)
−1

ξ̂1(ξ̂1 − κ2)(1− ξ̂1)
−1

ξ̂2(ξ̂2 − κ2)(1− ξ̂2)

 .

It is easy to see, that imposing linear, non integrable constraint (1.7) in polar, parabolic and ellip-
tic cases we have to multiply j column of the standard Stäckel matrices on the function (1−uj),
where uj is the eigenvalue of K̂. Similar transformations of the Stäckel matrices for nonholomic
systems on a two-dimensional sphere are discussed in [22].

Using a new time variable τ defined by

dt = µ−1dτ ≡
(
1 + q21 + q22

)
dτ

we can rewrite the conformally Hamiltonian vector field X̂ (2.7) in the Hamiltonian form and
obtain quadratures similar to (3.2).

Thus, in nonholonomic case solution of the problem is reduced to solving a sequence of
one-dimensional problems after suitable change of time.

3.2 Compatible Poisson brackets

Riemannian geometry is not, a priori, concerned with symplectic or Poisson structures. Never-
theless, it is known that any tensor field L with vanishing Nijenhuis torsion on the Riemannian
manifold Q yields trivial deformation of the canonical Poisson bracket {·, ·} on its cotangent
bundle T ∗Q

{qi, qj}L = 0, {qi, pj}L = −Lij , {pi, pj}L =

(
∂Lkj

∂qi
− ∂Lki

∂qj

)
pk, (3.3)

where (pi, qi) are fibered coordinates. This Poisson bracket is compatible with the canonical
one, so that there is a recursion operator N = PLP

−1, which allows us to construct a whole

family of compatible brackets associated with Poisson bivectors P
(m)
L = NmP on T ∗Q [21, 22].
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According to [3] generic solution of the Killing equation K (2.16) determines a conformal
Killing tensor with vanishing Nijenhuis torsion

L = K − tr(K)g

and Turiel’s deformation (3.3) of the canonical Poisson bracket [21, 22]. The eigenvalues of
the corresponding recursion operator N = PLP

−1 are characteristic coordinates. Integrals of
motion H1 (2.8) and H2 (2.9) are in involution with respect to the compatible Poisson brackets

{H1, H2} = {H1, H2}L = 0

and to other polynomial Poisson brackets associated with the Poisson bivectors P
(m)
L . Indeed,

we can find such L-tensors directly from the Hamilton function H1 using modern software [16].
For the Heisenberg type systems, we have to solve the same Killing equation (2.14) and

second equation on potential with (1, 1) tensor K̂ = Kĝ. This tensor does not appear in the
Turiel construction of the Poisson bracket and we can directly prove the following proposition.

Proposition 3. Integrals of motion Ĥ1 (2.12) and Ĥ2 (2.13) are in involution{
Ĥ1, Ĥ2

}∧
=
{
Ĥ1, Ĥ2

}
L

= 0

with respect to the compatible Poisson brackets {·, ·}∧ (2.5) and {·, ·}L (3.3). The eigenvalues of
the recursion operator

N̂ = PLP̂
−1,

where P̂ is given by (2.7), are characteristic coordinates discussed in the previous Section.

The proof consists of the straightforward calculations.
Thus, starting with a common Poisson bivector PL we can construct two recursion opera-

tors N and N̂ and two families of the Poisson brackets on T ∗R2.

3.3 Lax matrices

We can construct Lax representations for the Stäckel systems with uniform rational and poly-
nomial potentials Uj = U in (3.1), see [13] and references within. For the sake of brevity we
consider only systems associated with tensor K(3) (2.19).

If V (q1, q2) = 0, we can introduce a well-known 2× 2 Lax matrix for the geodesic motion on
the plane

L(u) =

(
h e
f −h

)
(u) ≡


1

2

de(u)

dt
e(u)

−1

2

d2e(u)

dt2
−1

2

de(u)

dt

 , (3.4)

which satisfies to the Lax equation

d

dt
L = [L,A] ≡ LA−AL, with A =

(
0 1
0 0

)
. (3.5)

This equation guarantees that the eigenvalues of L are conserved quantities in the involution.
In our case function e(u) depends on the so-called spectral parameter u

e(u) =
(u− ζ1)(u− ζ2)

u
= u− 2q1 −

q22
u
,
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which is completely defined by the eigenvalues of the characteristic tensor K = K(3)g−1 or
parabolic coordinates ζ1,2 on the plane.

The involution property of eigenvalues of the Lax matrix L is equivalent to existence of
a classical r-matrix r12, that as

{L1(u),L2(v)} = [r12(u, v),L1(u)]− [r21(u, v),L2(v)].

Here we use the familiar notation for tensor product of L and unit matrix I

L1(u) = L(u)⊗ I, L2(v) = I⊗ L(v), r21(u, v) = Πr12(v, u)Π,

whereas Π is the permutation operator: Πx ⊗ y = y ⊗ x, ∀x, y. Evaluating canonical Poisson
brackets (2.3) between entries of the Lax matrix L(u) (3.4) we obtain a constant r-matrix

r12(u, v) =
2

v − u
Π ≡ 2

v − u


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (3.6)

If we want to consider separable in parabolic coordinates potentials V (q1, q2), we have to add
some items to the initial Lax matrix L(u) (3.4). For instance, we can take the following additive
perturbation

LV (u) = L(u) +

(
0 0

∆f 0

)
, ∆f =

[
φ(u)e−1(u)

]
,

where φ(u) is an arbitrary constant function and [g(u)] is a truncated Laurent series expansion
of g(u) with respect to the variable u. For instance, when φ(u) = −au3 the Taylor part of
expansion about u =∞ looks like[

−au3e−1(u)
]

= −a
(
u2 + 2uq1 + q22 + 4q21

)
.

Substituting this expression into LV (u) one gets a Lax matrix for the Hénon–Heiles system on
the plane with the Hamiltonian

H1 =
1

2

(
p21 + p22

)
+ 8aq1

(
2q21 + q22

)
.

In nonholonomic case we can also find similar Lax matrices, classical r-matrix and integrable
potentials.

Proposition 4. For the Heisenberg type systems equations of motion (2.7) when V (q1, q2) = 0
can be rewritten in the Lax form (3.5) if

L̂(u) =

(
ĥ ê

f̂ −ĥ

)
(u) ≡


1

2µ

dê(u)

dt
ê(u)

− d

µdt

(
1

2µ

dê(u)

dt

)
− 2Ĥ1ê(u) − 1

2µ
dê(u)
dt

 (3.7)

and

Â =

(
0 µ

−2µĤ1 0

)
.

Here µ =
(
1 + q21 + q22

)−1
is a conformal factor (2.7) and function

ê(u) =

(
u− ζ̂1

)(
u− ζ̂2

)
u

= u− 2q1
1 + q21 + q22

− q22
u
(
1 + q21 + q22

)
is completely defined by characteristic coordinates ζ̂1,2 (2.21).
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The Lax matrix (3.7) was constructed by using the generic construction of the Lax matrices
for the Stäckel systems [13]. The modification consists only of application of the nontrivial
conformal factor µ.

Evaluating Poisson brackets {·, ·}∧ (2.5) between entries of the Lax matrix L̂(u) (3.7) we find
the corresponding classical r-matrix

r̂12(u, v) = r12(u, v) + 2


0 0 0 0
0 0 ê(v) 0
0 0 0 0

−f̂(v) 0 0 0

 , (3.8)

which explicitly depends on dynamical variables via entries of L̂(u) (3.7).
As above, we can consider additive perturbation of this Lax matrix

L̂V (u) = L̂(u) +

(
0 0

∆f̂ 0

)
, ∆f̂ =

(
u2 − 1

)[
φ(u)ê−1(u)

]
in order to get Lax matrices for the nonholonomic Heisenberg type systems with V 6= 0. For
instance, when φ(u) = −au3 the Teylor part of expansion about u =∞ looks like

[
−au3ê−1(u)

]
= −a

(
u2 +

2uq1
1 + q21 + q22

+
q22

1 + q21 + q22
+

4q21(
1 + q21 + q22

)2
)
.

Substituting this expression into L̂V (u) one gets a Lax matrix for the nonholonomic counterpart
of the Hénon–Hieles system on the plane with the Jacobi integral

Ĥ1 =
1

2

(
p21 + p22 + (q2p1 − q1p2)2

)
+

8aq1
(
q21q

2
2 + q42 + 2q21 + q22

)(
1 + q21 + q22

)3 .

4 Conclusion

Imposing nonholonomic constraints to Hamiltonian systems and making a suitable reduction one
gets some special class of non Hamiltonian systems on the reduced phase space, see book [7].
Usually we can not investigate the reduced system using standard mathematical methods of
Hamiltonian dynamics. For instance, we do not know how to get Lax matrices, classical r-
matrices or compatible Poisson brackets for the conformally Hamiltonian systems associated
with the nonholonomic Chaplygin ball, nonholonomic Suslov or Veselova systems.

In this note we find Killing tensors and compatible Poisson brackets, describe integrable
potentials and characteristic coordinates, evaluate Stäckel matrices and Stäckel quadratures,
to show Lax matrices and classical r-matrices for the nonholonomic Heisenberg type systems.
Indeed, we prove that some modern geometric methods of Hamiltonian mechanics can be directly
applied to the reduced conformally Hamiltonian systems. Other similar examples can be found
in [6, 8, 20, 22, 23].

Of course, we can impose other nonholonomic constraints on the original Hamiltonian sys-
tem (1.1), (1.2). It may be interesting to describe all the constraints which lead to nontrivial
integrable metrics and potentials on the reduced phase space.
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