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Abstract. Supersymmetric composite generalized quantum integrable models solvable by
the algebraic Bethe ansatz are studied. Using a coproduct in the bialgebra of monodromy
matrix elements and their action on Bethe vectors, formulas for Bethe vectors in the com-
posite models with supersymmetry based on the super-Yangians Y [gl(2|1)] and Y [gl(1|2)]
are derived.
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1 Introduction

The main success of the algebraic Bethe ansatz resides in the general prescription how to obtain
eigenvectors (famous Bethe vectors) for a vast class of quantum integrable models. Consequently,
it enables the calculation of the correlation functions via the calculation of the form factors. The
Bethe vectors for models related to the algebra gl(2) and its deformations have a very simple
form (see [6, 16, 20, 28, 31] and references therein). However, they become very nontrivial for
models based on higher rank (super)algebras.

What is common for the Bethe vectors in the models with gl(2) and higher rank symmetry
(super)algebras is that they belong to the state (super)space H with a structure of the Fock
space. In other words, H contains a cyclic vector Ω (usually called pseudovacuum) and the Bethe
vectors are generated by the action of certain creation-like operators on Ω. These creation-like
operators belong to the (super)algebra of matrix elements of the monodromy matrix T (u).

The problem of the higher rank (super)algebras has been addressed by the nested Bethe
ansatz method. Its origin dates back to the works [30, 33] in the context of the coordinate
Bethe ansatz, whereas its algebraic version was introduced in [21]. The last years have been
marked by considerable progress in finding “user-friendly” forms of Bethe vectors for higher
rank (super)algebras. For gl(3) and its quantum deformations, Bethe vectors were calculated
in [3, 4]. Bethe vectors for the superalgebras gl(2|1) and gl(1|2) were obtained in [26] and
used to calculate the scalar products [13, 14] and the form factors of the monodromy matrix
elements [11]. Based on this, correlation functions in models with this type of supersymmetry
can be investigated via the form factor expansion.

The knowledge of form factors of local operators thus becomes an important condition for
the calculation of correlation functions. In their turn, the form factors of local operators can be
computed in two different ways. To clarify the purpose and content of this paper, we briefly
describe these approaches.
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The first method is applied to the models with a known solution of the quantum inverse
scattering problem (see, e.g., [18, 23]). These include the supersymmetric t-J model (in the
context of gl(2|1)) well-known from the condensed matter physics. The corresponding quantum
inverse scattering problem was solved in [10]. The form factors of local operators in this model
reduce to the form factors of the monodromy matrix elements. Their calculation, in its turn,
reduces to the well-studied problem of calculating scalar products of Bethe vectors. Thus, in
this case, the inverse scattering problem provides a powerful tool for calculating the form factors
of local operators. However, solutions of the quantum inverse scattering problem are known for
a rather restricted class of integrable models.

The second approach to the calculation of the form factors of local operators is more general
and does not imply knowledge of explicit solutions of the quantum inverse scattering problem. It
is based on the composite model [16].1 There are several integrable models related to the gl(2|1)
superalgebra to which the composite model is applicable. They are, e.g., the impurity version of
the t-J model [7], the doped Heisenberg chains [8], or the supersymmetric U model [5] and [2, 27].
Unlike the t-J model, they are not based on the fundamental representation of gl(2|1), therefore,
the quantum inverse scattering problem is unsolved for them. However, the method of the
composite model still works in this case, as it is based on the algebraic Bethe ansatz only.

The main idea of the composite model method is that the interval [0, L], on which the original
model is defined, is divided into two subintervals [0, x] and ]x, L]. Consequently, the state
(super)space H of the complete model is divided into two (graded) subspaces H(1) and H(2)

corresponding to [0, x] and ]x, L], respectively, such that H = H(1) ⊗ H(2). Simultaneously,
the monodromy matrix T (u) can be presented as a matrix product of two partial monodromy
matrices T (2)(u) and T (1)(u):

T (u) = T (2)(u) · T (1)(u). (1.1)

The partial monodromy matrices T (`)(u), ` = 1, 2, are to be understood as particular represen-
tations of the complete monodromy matrix T (u) on the partial state (super)spaces H(`). This
shall be ascribed to a bialgebraic structure on the algebra of matrix elements of the monodromy
matrix. The property (1.1) is equivalent to a comultiplication in the aforementioned bialgebra.
The partial monodromy matrix T (`)(u) acts nontrivially only in its corresponding representation
(super)space H(`).

We suppose that the partial state (super)spaces H(`) possess also the structure of the Fock
space with the partial pseudovacua Ω(`) such that Ω = Ω(1) ⊗Ω(2). A nontrivial fact is that the
Bethe vectors B ∈ H of the complete model can be represented as bilinear combinations of partial
Bethe vectors B(1) ∈ H(1) and B(2) ∈ H(2). For the models based on the gl(2) symmetry, this was
shown in [16]. The case of gl(3) was recently studied in [24]. The aim of this article is to find
a similar representation for the integrable models based on the superalgebras gl(2|1) and gl(1|2).
Such a representation allows one to compute the form factors of the partial monodromy matrix

elements T
(`)
ij (u) in the basis of the Bethe vectors of the complete model. Based on this, the

form factors and correlation functions of local operators can be investigated.
It is worth mentioning that the composite model is tied with the theory of the quantized

Knizhnik–Zamolodchikov (qKZ) equation. Bethe vectors play a principal role in finding its
integral solutions [1, 32]. This is related to the fact that the Bethe vectors belong to the same
vector space as the solutions of qKZ. For an R-matrix R(u), which at a certain value of the
parameter u becomes a permutation operator, a technique of solving the qKZ based on the
nested Bethe ansatz was developed in [1]. In [32], the so-called weight functions are constructed

1The terminology witnessed a long evolution here. The composite model was originally called the two-site
model in [16]. Later the term two-component model was used [29]. Both these terms can lead to confusion in
some situations. Therefore, the term composite model was proposed recently [24]. We hold this terminology in
our article.
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as basic building blocks for the integral solutions of the qKZ. They satisfy a coproduct property.
The coproduct property states that from two weight functions belonging to vector spaces V (1)

and V (2), respectively, a weight function belonging to their tensor product V (1) ⊗ V (2) can be
constructed in a unique way. The weight functions are nothing else but the Bethe vectors for an
integrable model whose monodromy matrix is constructed from the R-matrices corresponding to
the qKZ equation. The composite model represents in an explicit way the coproduct property
of the weight functions, i.e., of the Bethe vectors.

The general strategy of this article is similar to the strategy of the paper [24] on gl(3).
However, some technical details appear due to different commutation relations. We describe
these technical differences. We show how they change calculations for a concrete case, but we
do not give all calculations.

Recall that the superalgebras gl(2|1) and gl(1|2) are isomorphic. The same holds also for their
corresponding super-Yangians Y [gl(2|1)] and Y [gl(1|2)]. Therefore, we mostly concern ourselves
with the models based on gl(2|1) and then isomorphically map the results to the gl(1|2) case.
Let us emphasize that the underlying algebraic structure of the models described in this paper
are the super-Yangians Y [gl(2|1)] and Y [gl(1|2)], respectively.

The paper is organized as follows. In Section 2, basic notions of the gl(2|1)-invariant quantum
integrable models like the monodromy matrix, the RTT algebra, and the Bethe vectors are
introduced, and the notation used further in the article is described. Section 3 describes the
gl(2|1)-invariant composite model. The main results are formulated in two theorems contained
in Section 3.1. Section 4 deals with some technical details from Section 3.1. Section 5 is devoted
to the gl(1|2)-invariant composite model. The main results are presented in two theorems in
Section 5.1.

2 Basic notions of the gl(2|1)-invariant model

2.1 R-matrix and RTT algebra

The content of this subsection can be easily generalized to superalgebras of other ranks.
The R-matrix acts in the tensor product of two Z2-graded auxiliary superspaces C2|1. The

basis of the even part of C2|1 is {e1, e2} and of the odd part is {e3}. We introduce the parity func-
tion [ ] : {1, 2, 3} → Z2 such that [1] = [2] = 0 and [3] = 1. The gradation of the superspace C2|1

is thus described by this parity function: grad(ei) = [i], i = 1, 2, 3.
The matrix units Eij ∈ End(C3) are introduced in the standard way (Eij)ab = δiaδjb with

the gradation grad(Eij) = [i] + [j]. The tensor product is graded in the following way:

(Eij ⊗ Ekl)(Emn ⊗ Epq) = (−1)([k]+[l])([m]+[n])EijEmn ⊗ EklEpq.

The graded permutation (superpermutation) for two auxiliary superspaces [22] is defined using
the matrix units

P =

3∑
i,j=1

(−1)[j]Eij ⊗ Eji.

The gl(2|1)-invariant R-matrix has the explicit form

R(u, v) = I⊗ I + g(u, v)P, (2.1)

where I is the unit matrix in C2|1. The function g(u, v) is antisymmetric and rational

g(u, v) =
c

u− v
and c ∈ C is an auxiliary constant.
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The definition of the monodromy matrix is standard T (u) =
3∑

i,j=1
Eij ⊗ Tij(u). The ele-

ments Tij(u), i, j = 1, 2, 3, together with the unit element 1 are generators of the associa-
tive superalgebra A. The monodromy matrix is a globally even matrix due to the fact that
grad(Eij) = grad(Tij(u)). It satisfies the RTT relation with the R-matrix (2.1)

R(u, v)(T (u)⊗ I)(I⊗ T (v)) = (I⊗ T (v))(T (u)⊗ I)R(u, v). (2.2)

The RTT relation is equivalent to the bilinear relations in A which can be written in two
equivalent forms

[Tij(u), Tkl(v)} = g(u, v)(−)[i][j]+[i][l]+[j][l](Til(u)Tkj(v)− Til(v)Tkj(u))

= −g(u, v)(−)[i][k]+[i][l]+[k][l](Tkj(u)Til(v)− Tkj(v)Til(u)) (2.3)

with the supercommutator [Tij(u), Tkl(v)} ≡ Tij(u)Tkl(v) − (−)([i]+[j])([k]+[l])Tkl(v)Tij(u). The
superalgebra A is called the RTT algebra.

There is a coalgebraic structure defined on A with the following coproduct:

∆(Tij(u)) ≡
3∑

k=1

Tkj(u)⊗ Tik(u) =
3∑

k=1

T
(1)
kj (u)T

(2)
ik (u). (2.4)

The superscripts at T
(`)
ij (u), ` = 1, 2, are used to distinguish the two copies of the bialgebra A.

The elements of different copies ofAmutually supercommute
[
T

(1)
il (u), T

(2)
jk (v)

}
= 0. The partial

monodromy matrices T (`)(u), ` = 1, 2, satisfy the same RTT relation (2.2) as A has the structure
of bialgebra. It is worth mentioning that the coproduct (2.4) is equivalent to relation (1.1) for
the monodromy matrix of the composite model.

Let us remind that there is an antimorphism of A [26]:

ψ(Tij(u)) = (−1)[i][j]+[i]Tji(u), ψ(AB) = (−1)grad(A)·grad(B)ψ(B)ψ(A), (2.5)

for A,B ∈ A of definite gradings. It preserves the supercommutator ψ([A,B}) = −[ψ(A), ψ(B)}
and satisfies the composition rule

∆ ◦ ψ = (ψ ⊗ ψ) ◦∆′ (2.6)

with the standard coproduct (2.4) and the opposite coproduct2

∆′(Tij(u)) =
∑
k

(−1)([i]+[k])([k]+[j])Tik(u)⊗ Tkj(u) =
∑
k

T
(2)
kj (u)T

(1)
ik (u). (2.7)

The composition rule (2.6) is the key property for the investigation of dual Bethe vectors in the
composite model, as we will see below.

2.2 Notation

The following functions are used throughout the text:

f(u, v) = 1 + g(u, v) =
u− v + c

u− v
, h(u, v) =

f(u, v)

g(u, v)
=
u− v + c

c
.

2The name opposite coproduct is obviously relative. It refers to the fact that it intertwines the factors in
the tensor product in comparison with the “standard” coproduct (2.4). In the same way, (2.4) is the opposite
coproduct to (2.7). Despite this, we call in this article the coproduct of the type (2.4) the standard and of (2.7)
the opposite.
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We completely follow the notation used, e.g., in [26]. The sets of parameters are denoted
as ū, v̄ etc. Their individual elements as uj , v0, etc. The notation ūj , v̄0 means ū\uj , v̄\v0, etc.
To avoid lengthy and complicated formulas, we use the shorthand notation for products of the
above functions over the sets of parameters. For example,

f(ū, v) ≡
∏
uj∈ū

f(uj , v), g(u, v̄i) ≡
∏
vj∈v̄
vj 6=vi

g(u, vj), h(ū, v̄) =
∏
uj∈ū

∏
vk∈v̄

h(uj , vk).

This notation is preserved also for products of even operators

Tij(ū) ≡
∏
uk∈ū

Tij(uk), [i] + [j] = 0.

For products of odd operators Ti3(u) and T3i(u), i = 1, 2, the symmetrised product is used

Ti3(ū) ≡ Ti3(u1)Ti3(u2) · · ·Ti3(un)∏
1≤j<k≤n

h(uk, uj)
, T3i(ū) ≡ T3i(u1)T3i(u2) · · ·T3i(un)∏

1≤j<k≤n
h(uj , uk)

.

A set of parameters ū is often divided into its two disjoint subsets ūI, ūII: ūI ∩ ūII = ∅
and ūI ∪ ūII = ū. We denote it as ū ⇒ {ūI, ūII}. Such a partition is always accompanied
by a summation over all partitions of the prescribed type, just according to the rule: “where
a partition is, there is a summation”.

2.3 Bethe vectors

The Bethe vectors for the gl(2|1)-invariant models were calculated in [26]. They are obtained
under the assumption that there is a cyclic vector Ω which is an eigenvector of the diagonal
elements of the monodromy matrix T (u) and is annihilated by the lower-triangular elements:

Tii(u)Ω = λi(u)Ω, Tij(u)Ω = 0, i > j. (2.8)

The eigenfunctions λi(u) vary depending on the model. Leaving them as arbitrary functions of
the parameter u, the model is called generalized. The cyclic vector Ω is called pseudovacuum.
We suppose its gradation to be vanishing (Ω is an even supervector). The other Bethe vectors
Ba,b(ū; v̄) are generated by the action of the upper-triangular elements Tij(u), i < j, on Ω.
They depend on two sets of spectral parameters ū = {u1, . . . , ua} and v̄ = {v1, . . . , vb} where
a, b = 0, 1, 2, . . . are the cardinalities a = #ū and b = #v̄.

The Bethe vectors have several representations [26]. It is convenient to use the following one
for our purposes:

Ba,b(ū; v̄) =
∑

Kn(v̄I|ūI)
f(ūI, ūII)g(v̄II, v̄I)

λ2(ūII)λ2(v̄)f(v̄, ū)
T13(v̄I)T23(v̄II)T12(ūII)Ω. (2.9)

The sum goes over all partitions ū ⇒ {ūI, ūII} and v̄ ⇒ {v̄I, v̄II} with the restriction that
#ūI = #v̄I = n, where n = 0, 1, . . . ,min(a, b). The function Kn(v̄I|ūI) is the partition func-
tion of the six-vertex model with the domain wall boundary condition [19]. It has the following
representation [15]:

Kn(v̄|ū) =
n∏

i<j

g(vi, vj)g(uj , ui) ·
f(v̄, ū)

g(v̄, ū)
det

[
g2(vk, ul)

f(vk, ul)

]∣∣∣∣
k,l=1,...,n

.

A simple observation states that the Bethe vector Ba,b(ū; v̄) has the gradation grad(Ba,b) = b
(mod 2).



6 J. Fuksa

Similarly, we assume the existence of the dual pseudovacuum Ω† with the properties

Ω†Tii(u) = λi(u)Ω†, Ω†Tij(u) = 0, i < j,

where the eigenfunctions λi(u) are the same as in (2.8). We suppose the gradation of Ω† to be
vanishing. The dual Bethe vectors Cab(ū; v̄) also depend on two sets of spectral parameters ū, v̄
with a = #ū, b = #v̄. Their explicit form is [26]

Ca,b(ū; v̄) = (−1)
b2−b

2

∑
Kn(v̄I|ūI)

f(ūI, ūII)g(v̄II, v̄I)

λ2(ūII)λ2(v̄)f(v̄, ū)
Ω†T21(ūII)T32(v̄II)T31(v̄I),

where the sum goes over all partitions ū ⇒ {ūI, ūII} and v̄ ⇒ {v̄I, v̄II} with the restriction that
#ūI = #v̄I = n, where n = 0, 1, . . . ,min(a, b). The gradation of the dual Bethe vector Ca,b(ū; v̄)
is again grad(Ca,b) = b (mod 2).

If the antimorphism (2.5) relates the pseudovacuum to the dual pseudovacuum as ψ(Ω) = Ω†,
the Bethe vector Ba,b(ū; v̄) is mapped by ψ to the dual Bethe vector Ca,b(ū; v̄)

ψ (Ba,b(ū; v̄)) = Ca,b(ū; v̄). (2.10)

3 Composite gl(2|1)-invariant model

The interval [0, L], which the generalized model is defined on, is split into its two subintervals, as
discussed in Introduction. The fact that the monodromy matrix of the full model T (u) is simply
the matrix product of the partial monodromy matrices T (2)(u)T (1)(u), as expressed in (1.1),
follows from the coproduct (2.4) in the bialgebra A.

This is followed by the split of the original superspace into its two graded subspaces H =
H(1) ⊗ H(2). We suppose that the graded subspaces H(`), ` = 1, 2, contain the partial pseu-
dovacua Ω(`) with the properties

T
(`)
ii (u)Ω(`) = λ

(`)
i (u)Ω(`), T

(`)
ij (u)Ω(`) = 0, i > j.

The operators T
(`)
ij (u) are the matrix elements of the partial monodromy matrices T (`)(u) de-

scribed by (1.1). In other words, the subspaces H(`) have exactly the same structure of a Fock

space as the full superspace H. The corresponding Bethe vectors are denoted as B(`)
a,b(ū; v̄). We

suppose that the partial pseudovacua Ω(`) form the total pseudovacuum Ω = Ω(1)Ω(2). We omit
here the symbol ⊗ for the direct product of the pseudovacua because the superscripts at Ω(`)

indicate that we work in the direct product of superspaces. This notation is kept also below for
direct products of arbitrary Bethe vectors.

Similarly, we suppose for the partial dual superspaces the existence of the dual pseudova-
cua Ω†(`) satisfying

Ω†(`)T
(`)
ii (u) = λ

(`)
i (u)Ω†(`), Ω†(`)T

(`)
ij (u) = 0, i < j.

The corresponding dual Bethe vectors are denoted as C(`)
a,b(ū; v̄) and we again suppose that

Ω† = Ω†(1)Ω†(2).
It is useful to introduce two ratio functions r1(u) and r3(u) instead of three independent

functions λi(u):

ri(u) =
λi(u)

λ2(u)
, i = 1, 3, r

(`)
i (u) =

λ
(`)
i (u)

λ
(`)
2 (u)

, i = 1, 3, ` = 1, 2.

This corresponds to the multiplication of the monodromy matrix by λ−1
2 (u). Obviously λi(u) =

λ
(1)
i (u)λ

(2)
i (u) and ri(u) = r

(1)
i (u)r

(2)
i (u).
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3.1 Main results

Theorem 3.1. The Bethe vectors of the full model can be expressed as the bilinear combination
of the partial Bethe vectors:

Ba,b(ū; v̄) =
∑

r
(2)
1 (ūI)r

(1)
3 (v̄II)

f(ūII, ūI)g(v̄I, v̄II)

f(v̄II, ūI)
B(2)
a2,b2

(ūII; v̄II)B
(1)
a1,b1

(ūI; v̄I). (3.1)

The summation goes over all partitions ū⇒ {ūI, ūII} and v̄ ⇒ {v̄I, v̄II} with no restriction. The
corresponding cardinalities satisfy a1 + a2 = a and b1 + b2 = b.

The coproduct used in the proof is the standard one (2.4), as can be seen in Section 4.

Idea of the proof. The proof is based on a recursion relation enjoined by Bethe vectors of
gl(2|1)-invariant models [26]

T23(z)

λ2(z)h(v̄, z)
Ba,b−1(ū; v̄) = f(z, ū)Ba,b(ū; {z, v̄})

+
∑

ū⇒{u0,ū0}

g(u0, z)f(u0, ū0)
T13(z)Ba−1,b−1(ū0; v̄)

λ2(z)h(v̄, z)
. (3.2)

Here, the sum is taken over all partitions ū⇒ {u0, ū0} where #u0 = 1.

Let us define the following vectors contained in the composite model, i.e., in H(1) ⊗H(2):

Ba,b(ū; v̄) =
∑

r
(2)
1 (ūI)r

(1)
3 (v̄II)

f(ūII, ūI)g(v̄I, v̄II)

f(v̄II, ūI)
B(2)(ūII; v̄II)B(1)(ūI; v̄I). (3.3)

The subscripts a1, b1, a2, b2 of the partial Bethe vectors B(1)(ūI; v̄I) and B(2)(ūII; v̄II) in the
definition of Ba,b(ū; v̄) are omitted here and below because they do not carry any important
information. Obviously, if we prove that vector (3.3) satisfies recursion (3.2) and an initial
condition Ba,0(ū;∅) = Ba,0(ū;∅), a = 0, 1, . . . , then, using induction over b, we immediately
obtain that Ba,b(ū; v̄) = Ba,b(ū; v̄) for a and b arbitrary.

It is easy to see that Ba,0(ū;∅) coincides with the known result for the composite gl(2)-
invariant model [16]

Ba,0(ū;∅) =
∑

r
(2)
1 (ūI)f(ūII, ūI)B(2)(ūII;∅)B(1)(ūI;∅) = Ba,0(ū;∅).

Thus, the initial condition is satisfied. It remains to prove that Ba,b(ū; v̄) satisfies the recursion

T23(z)

λ2(z)h(v̄, z)
Ba,b−1(ū; v̄) = f(z, ū)Ba,b(ū; {z, v̄})

+
∑

ū⇒{u0,ū0}

g(u0, z)f(u0, ū0)
T13(z)Ba−1,b−1(ū0; v̄)

λ2(z)h(v̄, z)
. (3.4)

Here the notation is the same as in (3.2).

One can easily convince oneself that recursion relation (3.4) is a simple consequence of the
following two relations which we intend to prove in Section 4:

T13(z)

λ2(z)h(v̄, z)
Ba−1,b−1(ū; v̄) = Ba,b({z, ū}; {z, v̄}), (3.5)

T23(z)

λ2(z)h(v̄, z)
Ba,b−1(ū; v̄) = f(z, ū)Ba,b(ū; {z, v̄})
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+
∑

ū⇒{u0,ū0}

g(u0, z)f(u0, ū0)Ba,b({z, ū0}; {z, v̄}). (3.6)

The sum is performed here over all partitions of the type ū ⇒ {u0, ū0} where #u0 = 1. Thus,
the proof of equations (3.5), (3.6) yields the proof of (3.1). �

Remark 3.2. We can commute the factors B(1)
a1,b1

(ūI; v̄I) and B(2)
a2,b2

(ūII; v̄II) in (3.1) according to

g(v̄I, v̄II)B
(2)
a2,b2

(ūII; v̄II)B
(1)
a1,b1

(ūI; v̄I) = g(v̄II, v̄I)B
(1)
a1,b1

(ūI; v̄I)B
(2)
a2,b2

(ūII; v̄II)

because their gradation is reflected in the product of the antisymmentric functions g(v̄I, v̄II).

Theorem 3.3. The dual Bethe vectors of the full model can be expressed as the bilinear combi-
nation of the partial dual Bethe vectors:

Ca,b(ū; v̄) =
∑

r
(1)
1 (ūII)r

(2)
3 (v̄I)

f(ūI, ūII)g(v̄II, v̄I)

f(v̄I, ūII)
C(1)
a1,b1

(ūI; v̄I)C
(2)
a2,b2

(ūII; v̄II).

The summation goes over all partitions ū ⇒ {ūI, ūII} and v̄ ⇒ {v̄I, v̄II}. The corresponding
cardinalities satisfy a1 + a2 = a and b1 + b2 = b.

Proof. The Bethe vector Ba,b(ū; v̄) can be understood as

Ba,b(ū; v̄) = Ba,b(ū; v̄)Ω

where Ba,b(ū; v̄) is a polynomial in elements of the bialgebra A which acts on the pseudova-
cuum Ω. In other words, it is the rest of the Bethe vector (2.9) if we erase the pseudovacuum.
Hence, formula (3.1) for Bethe vectors in the composite model can be written as

Ba,b(ū; v̄) = Ba,b(ū; v̄)Ω = ∆(Ba,b(ū; v̄))Ω(1)Ω(2)

=
∑

r
(2)
1 (ūI)r

(1)
3 (v̄II)

f(ūII, ūI)g(v̄I, v̄II)

f(v̄II, ūI)
B

(2)
a2,b2

(ūII; v̄II)B
(1)
a1,b1

(ūI; v̄I)Ω
(1)Ω(2).

The antimorphism (2.5) relates the Bethe vectors to the dual Bethe vectors, cf. (2.10),

Ca,b(ū; v̄) = ψ(Ba,b(ū; v̄)) = ψ(Ω)ψ(Ba,b(ū; v̄)) = Ω†ψ(Ba,b(ū; v̄)).

Due to the composition rule (2.6) for the antimorphism ψ with the coproducts (2.4) and (2.7),
we obtain for the composite model

Ca,b(ū; v̄) = Ω†(1)Ω†(2) [∆ ◦ ψ(Ba,b(ū; v̄))] = Ω†(1)Ω†(2)
[
(ψ ⊗ ψ) ◦∆′(Ba,b(ū; v̄))

]
= Ω†(1)Ω†(2)

[
(ψ ⊗ ψ)

∑
r

(1)
1 (ūI)r

(2)
3 (v̄II)

f(ūII, ūI)g(v̄I, v̄II)

f(v̄II, ūI)
B

(1)
a2,b2

(ūII; v̄II)B
(2)
a1,b1

(ūI; v̄I)

]
.

We stress that the factors B
(2)
a2,b2

(ūII; v̄II)B
(1)
a1,b1

(ūI; v̄I) are changed to B
(1)
a2,b2

(ūII; v̄II)B
(2)
a1,b1

(ūI; v̄I) in

comparison with Theorem 3.1. In the same way, the functions r
(2)
1 (ūI)r

(1)
3 (v̄II) are changed to

r
(1)
1 (ūI)r

(2)
3 (v̄II). This is due to the use of the opposite coproduct (2.7) instead of the standard

one (2.4). After the application of ψ ⊗ ψ

Ca,b(ū; v̄) =
∑

r
(1)
1 (ūI)r

(2)
3 (v̄II)

f(ūII, ūI)g(v̄I, v̄II)

f(v̄II, ūI)
C(1)
a2,b2

(ūII; v̄II)C
(2)
a1,b1

(ūI; v̄I).

Renaming the sets of variables as ūI ↔ ūII, v̄I ↔ v̄II, we arrive at the statement of the theo-
rem. �
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4 Action of T13(z) and T23(z) on Ba,b(ū; v̄)

We aim to prove that the supervectors (3.3) satisfy

T13(z)

λ2(z)h(v̄, z)
Ba−1,b−1(ū; v̄) = Ba,b(η̄; ξ̄), (4.1)

where we introduce new sets of spectral parameters η̄ = {z, ū} and ξ̄ = {z, v̄}. Equation (4.1)
is just one of the properties satisfied by the Bethe vector Ba−1,b−1(ū; v̄), as remarked in Ap-
pendix A. The strategy of the proof is simple. We investigate both sides of (4.1) separately and
then show that they coincide. To this end, we use the known formulas for the action of the
monodromy matrix elements on the Bethe vectors listed in Appendix A.

The right-hand side of (4.1) has the form

Ba,b(η̄; ξ̄) =
∑

r
(2)
1 (η̄I)r

(1)
3 (ξ̄II)

f(η̄II, η̄I)g(ξ̄I, ξ̄II)

f(ξ̄II, η̄I)
B(2)(η̄II; ξ̄II)B(1)(η̄I; ξ̄I),

where we just used definition (3.3). From the analysis how the parameter z can enter the subsets
η̄I, ξ̄I, η̄II, ξ̄II we obtain three cases:

(i) η̄I = {z, ūI}, ξ̄I = {z, v̄I}, η̄II = ūII, ξ̄II = v̄II,

(ii) η̄I = ūI, ξ̄I = v̄I, η̄II = {z, ūII}, ξ̄II = {z, v̄II},
(iii) η̄I = ūI, ξ̄I = {z, v̄I}, η̄II = {z, ūII}, ξ̄II = v̄II.

The case, where z ∈ ξ̄II and z ∈ η̄I, gives a vanishing contribution because of the function
f(ξ̄II, η̄I) in the denominator. The vector Ba,b(η̄; ξ̄) is thus composed of three parts with different
structure

Ba,b(η̄; ξ̄) = A1 +A2 +A3,

where

A1 =
∑

r
(2)
1 (z)r

(2)
1 (ūI)r

(1)
3 (v̄II)

f(ūII, z)f(ūII, ūI)g(v̄I, v̄II)g(z, v̄II)

f(v̄II, ūI)f(v̄II, z)

× B(2)(ūII; v̄II)B(1)({z, ūI}; {z, v̄I}),

A2 =
∑

r
(2)
1 (ūI)r

(1)
3 (z)r

(1)
3 (v̄II)

f(ūII, ūI)g(v̄I, z)g(v̄I, v̄II)

f(v̄II, ūI)
B(2)({z, ūII}; {z, v̄II})B(1)(ūI; v̄I),

A3 =
∑

r
(2)
1 (ūI)r

(1)
3 (v̄II)

f(z, ūI)f(ūII, ūI)g(z, v̄II)g(v̄I, v̄II)

f(v̄II, ūI)
B(2)({z, ūII}; v̄II)B(1)(ūI; {z, v̄I}).

As the supervector Ba−1,b−1(ū; v̄) belongs to H(1)⊗H(2), the action of T13(z) on it is defined
via a coproduct. We use the standard one (2.4)

∆(T13(z)) = T
(1)
13 (z)T

(2)
11 (z) + T

(1)
23 (z)T

(2)
12 (z) + T

(1)
33 (z)T

(2)
13 (z).

Hence, the left-hand side of (4.1) decomposes into three parts

T13(z)

λ2(z)h(v̄, z)
Ba−1,b−1(ū; v̄) = C1 + C2 + C3

=

(
T

(1)
13 (z)T

(2)
11 (z)

λ2(z)h(v̄, z)
+
T

(1)
23 (z)T

(2)
12 (z)

λ2(z)h(v̄, z)
+
T

(1)
33 (z)T

(2)
13 (z)

λ2(z)h(v̄, z)

)
Ba−1,b−1(ū; v̄). (4.2)
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The specific parts Ck, k = 1, 2, 3, can be written as

Ck =
∑

(−1)(1+[k])·b2r
(2)
1 (ūI)r

(1)
3 (v̄II)

f(ūII, ūI)g(v̄I, v̄II)

f(v̄II, ūI)

×
T

(2)
1k (z)

λ
(2)
2 (z)h(v̄II, z)

B(2)(ūII; v̄II)
T

(1)
k3 (z)

λ
(1)
2 (z)h(v̄I, z)

B(1)(ūI; v̄I),

where b2 = #v̄II. The sign factor in Ck appears because of the oddness of the monodromy matrix
element Ti3(z), i = 1, 2. It is absorbed during the calculations by the antisymmetric functions
g(u, v).

Using formulas for the action of the monodromy matrix elements on the Bethe vectors listed
in Appendix A, we obtain the explicit forms of Ck:

C1 =
∑

ū⇒{ūI,ūII}
v̄⇒{v̄I,v̄II}

r
(2)
1 (ūI)r

(1)
3 (v̄II)

f(ūII, ūI)g(v̄I, v̄II)

f(v̄II, ūI)

{
r

(2)
1 (z)

f(ūII, z)g(z, v̄II)

f(v̄II, z)
B(2)(ūII; v̄II)

+
∑

ūII⇒{ui,ūii}

r
(2)
1 (ui)

f(ūii, ui)g(z, ui)g(z, v̄II)

f(v̄II, ui)
B(2)({z, ūii}; v̄II)

+
∑

ūII⇒{ui,ūii}
v̄II⇒{vi,v̄ii}

r
(2)
1 (ui)

f(ūii, ui)g(vi, z)g(vi, v̄ii)

f(v̄ii, ui)h(vi, z)h(vi, ui)
B(2)({z, ūii}; {z, v̄ii})

}
B(1)({z, ūI}; {z, v̄I}),

C2 =
∑

ū⇒{ūI,ūII}
v̄⇒{v̄I,v̄II}

r
(2)
1 (ūI)r

(1)
3 (v̄II)

f(ūII, ūI)g(v̄I, v̄II)

f(v̄II, ūI)

×

{
g(z, v̄II)B(2)({z, ūII}; v̄II) +

∑
v̄II⇒{vi,v̄ii}

g(vi, z)g(vi, v̄ii)

h(vi, z)
B(2)({z, ūII}; {z, v̄ii})

}

×

{
f(z, ūI)B(1)(ūI; {z, v̄I}) +

∑
ūI⇒{ui,ūii}

g(ui, z)f(ui, ūii)B(1)({z, ūii}; {z, v̄I})

}
,

C3 =
∑

ū⇒{ūI,ūII}
v̄⇒{v̄I,v̄II}

r
(2)
1 (ūI)r

(1)
3 (v̄II)

f(ūII, ūI)g(v̄I, v̄II)

f(v̄II, ūI)
B(2)({z, ūII}; {z, v̄II})

×

{
r

(1)
3 (z)g(v̄I, z)B(1)(ūI; v̄I) +

∑
v̄I⇒{vi,v̄ii}

r
(1)
3 (vi)

f(z, ūI)g(z, vi)g(v̄ii, vi)

h(vi, z)f(vi, ūI)
B(1)(ūI; {z, v̄ii})

+
∑

ūI⇒{ui,ūii}
v̄I⇒{vi,v̄ii}

r
(1)
3 (vi)

g(ui, z)f(ui, ūii)g(z, vi)g(v̄ii, vi)

h(vi, ui)f(vi, z)f(vi, ūii)
B(1)({z, ūii}; {z, v̄ii})

}
.

The summations are performed over all possible partitions of the sets ū, v̄ of the original Bethe
parameters into their subsets ū⇒ {ūI, ūII}, v̄ ⇒ {v̄I, v̄II}. Some of these subsets are divided into
additional subsets, e.g., ūII ⇒ {ui, ūii} where #ui = 1, and the summation is performed again
over all such partitions. The same for the other additional divisions of v̄II, ūI, v̄I.

We can moreover see that the sum over partitions in C1 involving the product of Bethe vectors
B(2)(ūII; v̄II)B(1)({z, ūI}; {z, v̄I}) coincides with the term A1. The sum over partitions involving
B(2)({z, ūII}; v̄II)B(1)(ūI; {z, v̄I}) in C2 coincides with A3. Similarly, the sum over partitions in C3

containing B(2)({z, ūII}; {z, v̄II})B(1)(ūI; v̄I) coincides with A2. The remaining terms of C1, C2, C3

cancel mutually, as we show below.
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There are two remaining terms containing the product of Bethe vectors of this type

B(2)({z, ū′}; {z, v̄′})B(1)(ū′′; {z, v̄′′}),

where primes mean any subset of ū or v̄. Namely, the first term comes from C2

C2,3 =
∑

ū⇒{ūI,ūII}
v̄⇒{v̄I,vi,v̄ii}

r
(2)
1 (ūI)r

(1)
3 (vi)r

(1)
3 (v̄ii)

f(ūII, ūI)g(v̄I, v̄ii)g(v̄I, vi)g(vi, v̄ii)f(z, ūI)

f(v̄ii, ūI)f(vi, ūI)h(vi, z)

× g(vi, z)B(2)({z, ūII}; {z, v̄ii})B(1)(ūI; {z, v̄I})

and the second term from C3

C3,2 =
∑

ū⇒{ūI,ūII}
v̄⇒{vi,v̄ii,v̄II}

r
(2)
1 (ūI)r

(1)
3 (vi)r

(1)
3 (v̄II)

f(ūII, ūI)g(v̄ii, v̄II)g(vi, v̄II)g(v̄ii, vi)f(z, ūI)

f(v̄II, ūI)f(vi, ūI)h(vi, z)

× g(z, vi)B(2)({z, ūII}; {z, v̄II})B(1)(ūI; {z, v̄ii}). (4.3)

Renaming the sets v̄II → v̄ii and v̄ii → v̄I in (4.3), we obtain

C3,2 =
∑

ū⇒{ūI,ūII}
v̄⇒{vi,v̄I,v̄ii}

r
(2)
1 (ūI)r

(1)
3 (vi)r

(1)
3 (v̄ii)

f(ūII, ūI)g(v̄I, v̄ii)g(vi, v̄ii)g(v̄I, vi)f(z, ūI)

f(v̄ii, ūI)f(vi, ūI)h(vi, z)

× g(z, vi)B(2)({z, ūII}; {z, v̄ii})B(1)(ūI; {z, v̄I}).

Due to the antisymmetry of the function g(z, vi), we see that C2,3 + C3,2 = 0.
There are two terms containing the product of Bethe vectors of the type

B(2)({z, ū′}; v̄′)B(1)({z, ū′′}; {z, v̄′′}).

One such term is contained in C1 and one in C2. One can prove that their sum vanishes by
similar argumentation as above.

The remaining three terms contain Bethe vectors of the type

B(2)({z, ū′}; {z, v̄′})B(1)({z, ū′′}; {z, v̄′′}).

They are the following:

C1,3 =
∑

ū⇒{ūI,ui,ūii}
v̄⇒{v̄I,vi,v̄ii}

r
(2)
1 (ūI)r

(2)
1 (ui)r

(1)
3 (v̄ii)r

(1)
3 (vi)

f(ui, ūI)f(ūii, ūI)f(ūii, ui)

f(v̄ii, ūI)f(vi, ūI)f(v̄ii, ui)f(vi, ui)
(4.4)

× g(v̄I, v̄ii)g(v̄I, vi)g(vi, v̄ii)

h(vi, z)
g(vi, z)g(vi, ui)B(2)({z, ūii}; {z, v̄ii})B(1)({z, ūI}; {z, v̄I}),

C2,4 =
∑

ū⇒{ui,ūii,ūII}
v̄⇒{v̄I,vi,v̄ii}

r
(2)
1 (ūii)r

(2)
1 (ui)r

(1)
3 (v̄ii)r

(1)
3 (vi)

f(ūII, ūii)f(ūII, ui)f(ui, ūii)

f(v̄ii, ūii)f(v̄ii, ui)f(vi, ūii)f(vi, ui)
(4.5)

× g(v̄I, v̄ii)g(v̄I, vi)g(vi, v̄ii)

h(vi, z)
g(vi, z)g(ui, z)B(2)({z, ūII}; {z, v̄ii})B(1)({z, ūii}; {z, v̄I}),

C3,3 =
∑

ū⇒{ui,ūii,ūII}
v̄⇒{vi,v̄ii,v̄II}

r
(2)
1 (ūii)r

(2)
1 (ui)r

(1)
3 (v̄II)r

(1)
3 (vi)

f(ūII, ūii)f(ūII, ui)f(ui, ūii)

f(v̄II, ūii)f(v̄II, ui)f(vi, ūii)f(vi, ui)
(4.6)
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× g(v̄ii, v̄II)g(vi, v̄II)g(v̄ii, vi)

h(vi, z)
g(z, ui)g(vi, ui)B(2)({z, ūII}; {z, v̄II})B(1)({z, ūii}; {z, v̄ii}).

We rename the sets as ūII → ūii and ūii → ūI in (4.5). In (4.6), we rename the sets as ūII, v̄II →
ūii, v̄ii and ūii, v̄ii → ūI, v̄I. Thus, we obtain all the Bethe vectors in (4.4)–(4.6) with the same
arguments. Due to the identity

g(vi, z)g(vi, ui) + g(vi, z)g(ui, z) + g(z, ui)g(vi, ui) = 0,

we see that C1,3 + C2,4 + C3,3 = 0. Equality (4.1) is thus proved.

The action of T23(z) on Ba,b−1(ū; v̄) described in (3.6) can be proved in a similar manner.
We again use the coproduct (2.4) to define the action of T23(z) on the direct product of two

partial Bethe vectors B(2)
a2,b2

(ūII; v̄II)B
(1)
a1,b1

(ūI; v̄I) and formulas from Appendix A for the action of
the monodromy matrix elements on Bethe vectors. The case of T23(z) involves more lengthy
calculations than that of T13(z). As the reasoning is rather similar, we do not provide the details
here.

5 Composite gl(1|2)-invariant model

Let us denote the RTT algebra corresponding to gl(1|2) as Ã and its elements as T̃ij(u) to
distinguish them from their gl(2|1) equivalents. The gradation in the gl(1|2) case is described

by the parity function [̃ ], where [̃1] = 0 and [̃2] = [̃3] = 1. The algebraic structure is governed
by the bilinear relation (2.3) provided that all relevant objects are marked by tildas.

For the gl(1|2)-invariant models the pseudovacuum is denoted as Ω̃ and the corresponding
eigenvalues of T̃jj(u), j = 1, 2, 3, are λ̃j(u). The dual pseudovacuum is denoted as Ω̃†.

There is a relation between gradations on A and Ã: [i] = [̃4− i] + 1 (mod 2), i = 1, 2, 3.

The superalgebras A and Ã are isomorphic, as was shown in [26]. This is due to the map

ϕ :


A → Ã,
Tij(u)→ (−1)[i][j]+[j]+1T̃4−j,4−i(u),

λj(u)→ −λ̃4−j(u) = λj(u).

The ratio function ri(u), i = 1, 3, is mapped to r̃4−i(u) = λ̃4−i(u)/λ̃2(u). Moreover ϕ is a ho-
momorphism ϕ(AB) = ϕ(A)ϕ(B). The map

ϕ̃ :


Ã → A,
T̃ij(u)→ (−1)[̃i][̃j]+[̃j]+1T4−j,4−i(u),

λ̃j(u)→ −λ4−j(u) = λ̃j(u)

is inverse to ϕ, i.e., ϕ̃ ◦ ϕ = id and ϕ ◦ ϕ̃ = ĩd, where id is the identity map on A and ĩd is the
identity map on Ã.

The (dual) Bethe vectors for the gl(1|2)-invariant models were constructed in [26]:

B̃a,b(ū; v̄) = (−1)a
∑ g(ūI, v̄I)f(v̄I, v̄II)g(ūII, ūI)h(v̄I, v̄I)

λ̃2(ūII)λ̃2(v̄)f(ū, v̄)
T̃13(v̄I)T̃23(v̄II)T̃12(ūII)Ω̃,

C̃a,b(ū; v̄) = (−1)
a(a−1)

2

∑ g(ūI, v̄I)f(v̄I, v̄II)g(ūII, ūI)h(v̄I, v̄I)

λ̃2(ūII)λ̃2(v̄)f(ū, v̄)
Ω̃†T̃21(ūII)T̃32(v̄II)T̃31(v̄I),
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where the sums go over all partitions ū ⇒ {ūI, ūII} and v̄ ⇒ {v̄I, v̄II} under the constraint
#ūI = #v̄I. We remind that the products of the odd operators T̃1i(u) and T̃i1(u), i = 2, 3, are
symmetrised

T̃1i(ū) ≡ T̃1i(u1)T̃1i(u2) · · · T̃1i(un)∏
1≤j<k≤n

h(uk, uj)
, T̃i1(ū) ≡ T̃i1(u1)T̃i1(u2) · · · T̃i1(un)∏

1≤j<k≤n
h(uj , uk)

.

If we assume that ϕ(Ω) = Ω̃ and ϕ(Ω†) = Ω̃†, it can be shown that

ϕ(Ba,b(ū; v̄)) = B̃b,a(v̄; ū), ϕ(Ca,b(ū; v̄)) = C̃b,a(v̄; ū).

The coalgebraic structure on Ã and A is related by the isomorphism ϕ in the following way:

∆̃ ◦ ϕ = (ϕ⊗ ϕ) ◦∆′, (5.1)

where ∆′ is the opposite coproduct (2.7) on A and ∆̃ is the standard coproduct on Ã

∆̃(T̃ij(u)) = −T̃kj(u)⊗ T̃ik(u).

It seems useful to incorporate the minus in the definition of ∆̃. This has a consequence for

the pseudovacuum eigenvalues in the composite model: λ̃j(u) = −λ̃(1)
j (u)λ̃

(2)
j (u). On the other

hand, the ratio functions satisfy the same relation as for gl(2|1): r̃j(u) = r̃
(1)
j (u)r̃

(2)
j (u).

5.1 Main results

From the above remarks and results of Section 3.1, we can conclude about the form of Bethe
vectors in the gl(1|2)-invariant composite model. Similarly to the case of Theorem 3.3, the proof
of the following two theorems is based on the composition rule for the isomorphism ϕ with the
coproducts ∆̃ and ∆′.

Theorem 5.1. The Bethe vectors of the full model can be expressed as the bilinear combination
of the partial Bethe vectors:

B̃a,b(ū; v̄) =
∑

r̃
(1)
3 (v̄II)r̃

(2)
1 (ūI)

f(v̄I, v̄II)g(ūII, ūI)

f(ūI, v̄II)
B̃(1)
a1,b1

(ūI; v̄I)B̃
(2)
a2,b2

(ūII; v̄II).

The summation goes over all partitions ū⇒ {ūI, ūII} and v̄ ⇒ {v̄I, v̄II} with no restriction. The
corresponding cardinalities satisfy a1 + a2 = a and b1 + b2 = b.

Proof. Let B̃ab(ū; v̄) denote the polynomial in elements of Ã which acts on the pseudovacuum,
i.e., B̃ab(ū; v̄) = B̃ab(ū; v̄)Ω̃. We use the composition rule (5.1) and the results of Theorem 3.1

B̃a,b(ū; v̄) = B̃a,b(ū; v̄)Ω̃ = ∆̃(B̃a,b(ū; v̄))Ω̃(1)Ω̃(2) =
[
∆̃ ◦ ϕ(Bb,a(v̄; ū))

]
Ω̃(1)Ω̃(2)

=
[
(ϕ⊗ ϕ) ◦∆′(Bb,a(v̄; ū))

]
Ω̃(1)Ω̃(2)

=

[
(ϕ⊗ ϕ)

∑
r

(1)
1 (v̄I)r

(2)
3 (ūII)

f(v̄II, v̄I)g(ūI, ūII)

f(ūII, v̄I)
B

(1)
b2,a2

(v̄II; ūII)B
(2)
b1,a1

(v̄I; ūI)

]
Ω̃(1)Ω̃(2).

We stress that there was again used the opposite coproduct (2.7) in contrast to Theorem 3.1.

The application of the map ϕ ⊗ ϕ maps not only the polynomials B
(1)
b2,a2

(v̄II; ūII)B
(2)
b1,a1

(v̄I; ūI) to

B̃
(1)
a2,b2

(ūII; v̄II)B̃
(2)
a1,b1

(ūI; v̄I) but also r
(1)
1 (v̄I)r

(2)
3 (ūII) to r̃

(1)
3 (v̄I)r̃

(2)
1 (ūII). Hence,

B̃a,b(ū; v̄) =
∑

r̃
(1)
3 (v̄I)r̃

(2)
1 (ūII)

f(v̄II, v̄I)g(ūI, ūII)

f(ūII, v̄I)
B̃(1)
a2,b2

(ūII; v̄II)B̃
(2)
a1,b1

(ūI; v̄I).

After renaming the sets of variables as ūI ↔ ūII and v̄I ↔ v̄II, we arrive at the statement of the
theorem. �
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Theorem 5.2. The dual Bethe vectors of the full model can be expressed as the bilinear combi-
nation of the partial Bethe vectors:

C̃a,b(ū; v̄) =
∑

r̃
(2)
3 (v̄I)r̃

(1)
1 (ūII)

f(v̄II, v̄I)g(ūI, ūII)

f(ūII, v̄I)
C̃(2)
a2,b2

(ūII; v̄II)C̃
(1)
a1,b1

(ūI; v̄I).

The summation goes over all partitions ū⇒ {ūI, ūII} and v̄ ⇒ {v̄I, v̄II} with no restriction. The
corresponding cardinalities satisfy a1 + a2 = a and b1 + b2 = b.

Proof. We use the results of Theorem 3.3 and the composition rule (5.1). Everything is ana-
logous to the proof of the previous theorem

C̃a,b(ū; v̄) = ϕ(Cb,a(v̄; ū)) = Ω̃†ϕ(Cb,a(v̄; ū)) = Ω̃†(1)Ω̃†(2)
[
∆̃ ◦ ϕ(Cb,a(v̄; ū))

]
= Ω̃†(1)Ω̃†(2)

[
(ϕ⊗ ϕ) ◦∆′(Cb,a(v̄; ū))

]
= Ω̃†(1)Ω̃†(2)

[
(ϕ⊗ ϕ)

∑
r

(2)
1 (v̄II)r

(1)
3 (ūI)

f(v̄I, v̄II)g(ūII, ūI)

f(ūI, v̄II)
C

(2)
b1,a1

(v̄I; ūI)C
(1)
b2,a2

(v̄II; ūII)

]
=
∑

r̃
(2)
3 (v̄II)r̃

(1)
1 (ūI)

f(v̄I, v̄II)g(ūII, ūI)

f(ūI, v̄II)
C(2)
a1,b1

(ūI; v̄I)C
(1)
a2,b2

(ūII; v̄II).

Renaming the sets of variables as ūI ↔ ūII and v̄I ↔ v̄II leads to the statement of the theorem. �

6 Conclusion

We have obtained explicit formulas for Bethe vectors for the composite gl(2|1)- and gl(1|2)-
invariant generalized quantum integrable models. The method of calculation was straightfor-
ward. We used the known action of the monodromy matrix elements on the Bethe vectors [12].
Since the RTT algebra A has the structure of a bialgebra, we expressed the action of the mo-
nodromy matrix elements of the complete model on the tensor product of the superspaces of the
partial models using the coproduct in A. The corresponding dual Bethe vectors were obtained
using a certain antimorphism of A. Similarly, the (dual) Bethe vectors for the gl(1|2)-invariant
model were obtained with the help of isomorphism of the RTT algebras A and Ã.

The authors of [24] used apart from this approach also the coproduct property of the weight
functions [17].

We are now prepared to calculate the form factors of the partial monodromy elements T
(`)
ij (u)

in the basis of the Bethe vectors of the complete model. They allow one to calculate the form
factors of local operators depending on an internal point of the original interval [0, L]. The
correlation functions of the local operators can be consequently investigated.

Our subsequent publication [9] is devoted to the investigation of the form factors of the partial
monodromy matrix elements and local operators using the method of zero modes [25].

A Action of monodromy matrix elements on Bethe vectors

We list here some useful formulas. The summation is usually performed over all partitions of the
type ū⇒ {u0, ū0} and v̄ ⇒ {v0, v̄0} where #u0 = #v0 = 1. It also happens that the summation
goes over all partitions of the type ū ⇒ {u0, u1, ū2} with the condition #u0 = #u1 = 1. All
formulas listed in this appendix are special cases of the results obtained in [12].

• Action of the diagonal elements:

T11(z)

λ2(z)h(v̄, z)
Ba,b(ū; v̄) = r1(z)

f(ū, z)

h(v̄, z)
Ba,b(ū; v̄)
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+
∑

ū⇒{u0,ū0}

r1(u0)
g(z, u0)f(ū0, u0)g(v̄, z)

f(v̄, u0)
Ba,b({z, ū0}; v̄)

+
∑

ū⇒{u0,ū0}
v̄⇒{v0,v̄0}

r1(u0)
f(ū0, u0)g(z, v0)g(v̄0, v0)

f(v̄0, u0)h(v0, z)h(v0, u0)
Ba,b({z, ū0}; {z, v̄0}),

T22(z)

λ2(z)h(v̄, z)
Ba,b(ū; v̄) = f(z, ū)g(v̄, z)Ba,b(ū; v̄)

+
∑

v̄⇒{v0,v̄0}

f(z, ū)g(z, v0)g(v̄0, v0)

h(v0, z)
Ba,b(ū; {z, v̄0})

+
∑

ū⇒{u0,ū0}

g(u0, z)f(u0, ū0)g(v̄, z)Ba,b({z, ū0}; v̄)

+
∑

ū⇒{u0,ū0}
v̄⇒{v0,v̄0}

g(u0, z)f(u0, ū0)g(z, v0)g(v̄0, v0)

h(v0, z)
Ba,b({z, ū0}; {z, v̄0}),

T33(z)

λ2(z)h(v̄, z)
Ba,b(ū; v̄) = r3(z)g(v̄, z)Ba,b(ū; v̄)

+
∑

v̄⇒{v0,v̄0}

r3(v0)
f(z, ū)g(z, v0)g(v̄0, v0)

h(v0, z)f(v0, ū)
Ba,b(ū; {z, v̄0})

+
∑

ū⇒{u0,ū0}
v̄⇒{v0,v̄0}

r3(v0)
g(u0, z)f(u0, ū0)g(z, v0)g(v̄0, v0)

h(v0, u0)f(v0, z)f(v0, ū0)
Ba,b({z, ū0}; {z, v̄0}).

• Action of the upper-triangular elements:

T13(z)

λ2(z)h(v̄, z)
Ba,b(ū; v̄) = Ba+1,b+1({z, ū}; {z, v̄}),

T23(z)

λ2(z)h(v̄, z)
Ba,b(ū; v̄)

= f(z, ū)Ba,b+1(ū; {z, v̄}) +
∑

ū⇒{u0,ū0}

g(u0, z)f(u0, ū0)Ba,b+1({z, ū0}, {z, v̄}),

T12(z)

λ2(z)h(v̄, z)
Ba,b(ū; v̄)

= g(v̄, z)Ba+1,b({z, ū}; v̄) +
∑

v̄⇒{v0,v̄0}

g(z, v0)g(v̄0, v0)

h(v0, z)
Ba+1,b({z, ū}; {z, v̄0}).

• Action of the lower-triangular elements:

T21(z)

λ2(z)h(v̄, z)
Ba,b(ū; v̄) =

∑
ū⇒{u0,ū0}

r1(z)
f(u0, z)f(u0, ū0)f(ū0, z)g(v̄, z)

f(v̄, z)h(u0, z)
Ba−1,b(ū0; v̄)

+
∑

ū⇒{u0,ū0}

r1(u0)
f(z, u0)f(z, ū0)f(ū0, u0)g(v̄, z)

f(v̄, u0)h(z, u0)
Ba−1,b(ū0; v̄)

+
∑

ū⇒{u0,u1,ū2}

r1(u0)
f(u1, u0)f(u1, ū2)f(u1, z)f(ū2, u0)f(z, u0)g(v̄, z)

f(v̄, u0)h(u1, z)h(z, u0)

× Ba−1,b({z, ū2}; v̄)
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+
∑

ū⇒{u0,ū0}
v̄⇒{v0,v̄0}

r1(u0)
f(z, ū0)f(ū0, u0)g(z, v0)g(v̄0, v0)

h(v0, z)f(v̄0, u0)h(v0, u0)
Ba−1,b(ū0; {z, v̄0})

+
∑

ū⇒{u0,u1,ū2}
v̄⇒{v0,v̄0}

r1(u0)
f(u1, u0)g(u1, z)f(u1, ū2)f(ū2, u0)g(z, v0)g(v̄0, v0)

h(v0, z)f(v̄0, u0)h(v0, u0)

× Ba−1,b({z, ū2}; {z, v̄0}).
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