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Abstract. The definitions of replicable and completely replicable functions are intimately
related to the Hecke operators for the modular group. We define the notions of “(2+)-
replicable” and “completely (2+)-replicable” functions by considering the Hecke operators
for Γ0(2)+. We prove that the McKay–Thompson series for 2 ·B, as computed by Höhn, are
completely (2+)-replicable.
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1 Introduction

The monstrous moonshine conjectures of Conway and Norton [8], led, via rapid developments
in VOA theory [2, 16] and generalized Kac–Moody algebras [3], to Borcherds’ proof of the
conjectures [4]. In this paper our aim is to generalize one aspect of this proof to the case of the
baby monster, B, namely the connection between an appropriate generalization of “complete
replication” of modular functions and the power map structure of 2 · B.

To explain this connection, recall the monstrous case. For this, Norton [22], introduced the
idea of replicable and completely replicable functions. A formal q-series f = q−1+c1q+c2q

2+· · ·
with rational coefficients is said to be replicable if and only if there exist formal q-series f (a) =

q−1 + c
(a)
1 q + c

(a)
2 q2 + · · · , a = 1, 2, 3, . . . such that

∑
ad=n

0≤b<d

f (a)

(
aτ + b

d

)
= Pn,f (f(q)), (1.1)

where Pn,f (X) is the n-th Faber polynomial of f . This is the unique polynomial such that
Pn,f (f(q))− 1

qn has only positive powers of q.

The series f (a) are called the replicates of f . Norton conjectured that f is replicable if and
only if it either has the form q−1 +cq or is the q expansion of a Haupmodul of certain congruence
subgroups. A completely replicable f is a replicable function for which f (a) is also replicable
for all positive integers a. Koike showed that a certain set of modular functions, which includes
those occurring in monstrous moonshine, are completely replicable and that their replicates
agree with those predicted by the monstrous moonshine conjectures.

This paper is a contribution to the Special Issue on Moonshine and String Theory. The full collection is
available at https://www.emis.de/journals/SIGMA/moonshine.html
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The Hauptmoduls for genus zero groups with rational integer coefficients are known to be
replicable functions [11]. The genus zero congruence subgroups of PSL(2,R) have been classified
in [9] and the completely replicable functions (with rational integer coefficients) were computed
in [1].

The connection with the monster, M, is that the trace functions of the action of M on V \ are
completely replicable as a consequence of the twisted denominator formula for the monster Lie
algebra [4, 8, 15].

Thus we have the surprising fact that the relatively simple characterization of completely
replicable functions in a sense captures the power map structure of the monster.

These facts have been generalized. In particular Norton [23] introduced generalized moon-
shine by associating functions to pairs of commuting elements in M. There has been considerable
progress in understanding this phenomenon and Carnahan has announced a proof of the gener-
alized moonshine conjectures [5, 6, 7].

Here we take a complementary approach which aims to understand and extend complete
replicability to the case of the baby monster. The idea is that the replication equations (1.1)
were discovered by Conway and Norton by modifying the Hecke operators for PSL(2,Z) to
take into account the conjectured trace functions on classes of M other than the class of the
identity. Instead we start here with the Hecke operators for Γ0(2)+ and then look for a natural
way to introduce replication and complete replication in this context (see [8] for notation). The
motivation is that 2·B is the centralizer in M of an element from the conjugacy class labeled 2A in
the atlas and in monstrous moonshine the class 2A is associated with the Hauptmodul for Γ0(2)+.

This is done in Section 2 and we find a different form of replicability and prove that it reflects
the power map structure in 2 · B. We call it (2+)-replicability as it is motivated by the Hecke
operators of Γ0(2)+ (which is denoted by (2+)in Conway and Norton’s notation). Although the
functional equations we use are implicit in the work of Carnahan [5, 6, 7] and Borcherds [4,
Section 10], we find that they have a natural interpretation as (2+)-replication identities.

Our main motivation for this approach is that Höhn [18] has given a proof of the baby moon-
shine conjectures which closely parallels Borcherds’ monstrous proof, but with a method which
uses replicability rather than complete replicability. Introducing complete (2+)-replicability al-
lows us to modify part of Höhn’s proof so as to clone Borcherds’ use of complete replicability
in his monstrous proof. To do this, in Section 3 we show that a large class of Hauptmoduls are
completely (2+)-replicable by working out candidate replicates. This class includes all but 13
of the Hauptmoduls which occur in moonshine for the baby monster. In Section 4 we prove
that a completely (2+)-replicable function is completely determined by the first 5 coefficients of
the function and its replicates. In the final Section 5 we prove that the baby monster McKay–
Thompson series are completely (2+)-replicable with (2+)-replicability respecting the power
map structure in 2 · B. This is sufficient to establish that McKay–Thompson series are Haupt-
moduls once their first 5 coefficients are calculated, except for the 13 exceptions noted above.
For these 13 cases our proof is similar that of Höhn, but simplified somewhat since we have
additional recurrence relations satisfied by the McKay–Thompson series. This establishes, inci-
dentally, that these exceptions are also (2+)-replicable – however we have not found a way to
include them in the cases covered in Section 3.

More generally, it is our belief that the notions of (2+)-replicability and complete (2+)-
replicability will lead to a better understanding of the connections between moonshine and
Hecke operators.

2 Hecke operators and replication

Some references for the background material needed for this section are: Chapter 5 in [12] for
Hecke operators and [8] for the basics of moonshine and the concept of replicability.
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Let G be a discrete subgroup of PSL(2,R) which is commensurable with PSL(2,Z). We con-
sider F(G) the set of functions meromorphic on the upper half plane and at cusps that are invari-
ant under the action of G. For each element α ∈ PSL(2,R) in the commensurator of G we define
a Hecke operator Tα : F(G) −→ F(G) in the following way. Consider a decomposition GαG =
n⋃
j=1

Gγj as a disjoint union, guaranteed to be finite as α is in the commensurator of G. Define

Tαf(z) =
n∑
j=1

f(γjz).

An important example is given by the Hecke operators of G = Γ = PSL(2,Z) (see, for
example, [25, pp. 60–63]. Let ∆ = {α ∈ M2(Z) | det(α) > 0} and let T̃m be the sum over all
double cosets ΓαΓ with α ∈ ∆ and det(α) = m. Also define Ta,d to be the double coset Γ

[
a 0
0 d

]
Γ

and set Tm = T1,m. From the theory of elementary divisors we then have formula T̃m =
∑

Ta,d
where the sum is over all positive a and d such that ad = m such that a divides d. As explained
above, the Hecke action of these (distinct) double cosets on modular functions is obtained by
expressing the double cosets as a union of left cosets (by a slight abuse of notation we use the
same symbol for both a sum of double cosets and the corresponding operator). For example,
if f is a modular function for Γ then

T̃4f(τ) = T1,4f(τ) + T2,2f(τ) = f(4τ) + f

(
2τ

2

)
+ f

(
2τ + 1

2

)
+ f

(τ
4

)
+ f

(
τ + 1

4

)
+ f

(
τ + 2

4

)
+ f

(
τ + 3

4

)
. (2.1)

The relationship to the Conway–Norton replication formulas of “classical” moonshine is as
follows. When f = fg is a Thompson–McKay series for an element g in the monster, the
Conway–Norton replication formula corresponding to (2.1) is

f (4)(4τ) + f (2)

(
2τ

2

)
+ f (2)

(
2τ + 1

2

)
+ f

(τ
4

)
+ f

(
τ + 1

4

)
+ f

(
τ + 2

4

)
+ f

(
τ + 3

4

)
= P4,f (f), (2.2)

where P4,f (f) is the 4th. Faber polynomial of f and the functions f (4) = fg4 and f (2) = fg2 are
the Thompson–McKay series for the monstrous elements g4 and g2 respectively. Thus the left
side of this replication formula is a modification of the Hecke action of T̃4. So in this sense the
Conway–Norton replication identities say that the result of a modified Hecke operator acting on
a Thompson–McKay series is equal to a Faber polynomial in that series.

We will show that a similar phenomenon occurs if we replace the monster by 2 · B and
PSL(2,Z) by Γ0(2)+. For the Γ0(2)+ case we set

∆2 =

{(
a b
2c d

)
| a, b, c, d ∈ Z, ad− 2bc > 0

}
and let

T̃m =
∑
α∈∆2

det(α)=m

Γ0(2)+αΓ0(2)+. (2.3)

Also define Ta,d to be the double coset Γ0(2)+
[
a 0
0 d

]
Γ0(2)+ and Tm = Tm,1. As we will see

T̃m =
∑

Ta,d where in this case the sum is over all positive integers a and d such that a divides d
and either ad = m or ad = m/2 (the second option being absent if m is odd).
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As for the modular group we have an action on functions. For example

T̃2f(τ) = T1,2f(τ) + T1,1f(τ)

= f(2τ) + f(τ) + f

(
τ +

1

2

)
+ f

(τ
2

)
+ f

(
τ + 1

2

)
, (2.4)

where we have used Proposition 2.1 below. As we will see, there is a “replication formula” for
2 · B which involves a modification of (2.4) in the same way that (2.2) involves a modification
of (2.1). It is

f [2](2τ) + f [
√

2](τ) + f [
√

2]

(
τ +

1

2

)
+ f

(τ
2

)
+ f

(
τ + 1

2

)
= P2,f (f). (2.5)

The novelty here is not in the existence of these identities, as mentioned above they are
implicit in previous work. Nor is it the existence of the (2+)-replicates, which, as we shall see,
are trace functions on appropriate VOA-modules. Rather we believe that the key points are
firstly that a form of complete replication is restored by introducing “half step” replicates as

in (2.5). So, for example,
(
f [
√

2]
)[√2]

= f [2] (which explains our chosen normalization for the
exponents of (2+)-replicates). The absence of complete replicability is a complicating factor
for groups other than the monster and introducing complete (2+)-replicability means that we
can give a modified version of Höhn’s 2 ·B proof which is closer to Borcherds’ monstrous proof.
The second key point is that this approach emphasizes a close connection between replication
identities and Hecke algebras of groups other than PSL(2,Z). A connection which, we believe,
may prove fruitful.

The purpose of the next section is to define (2+)-replicability based on the Hecke operators
for Γ0(2)+. We then define complete (2+)-replicability and we will see that the set of completely
(2+)-replicable functions includes the McKay–Thompson series for the baby monster group.

2.1 Hecke operators for Γ0(2)+

In this subsection we find expressions for the Hecke operators of Γ0(2)+. These will be used in
Section 2.2 to motivate the definition of (2+)-replication.

Let m be a positive integer. We define the following sets

Mm
1 =

{[
x y
0 z

]
|xz = m, 0 ≤ y < z, gcd(x, y, z) = 1, x odd

}
,

Sm1 =

{[
x y
0 z

]
|xz = m, 0 ≤ y < z, gcd(x, y, z) = 1, z odd

}
,

Sm2 =

{
2−1/2

[
x y
0 z

]
|xz = 2m, 0 ≤ y < z, gcd(x, y, z) = 1, x, z even

}
,

Mm
2 = Sm1 ∪ Sm2 , Mm = Mm

1 ∪Mm
2 . (2.6)

The main result of this subsection is the following

Proposition 2.1. Let m be an even positive integer then we have the following

1) Γ0(2)+ [ 1 0
0 m ] Γ0(2) =

⋃
γ∈Mm

1
Γ0(2)+γ,

2) Γ0(2)+ [m 0
0 1 ] Γ0(2) =

⋃
γ∈Mm

2
Γ0(2)+γ,

3) Γ0(2)+ [m 0
0 1 ] Γ0(2)+ = Γ0(2)+ [ 1 0

0 m ] Γ0(2)+ =
⋃
γ∈Mm Γ0(2)+γ.

The proof will proceed by several lemmas. Until Proposition 2.8, m will always be a positive
even integer.
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Lemma 2.2. The cosets Γ0(2)+γ for γ in Mm are distinct.

Proof. For any γ and γ′ in Mm we have that r = γ′γ−1 fixes ∞. So if r is in Γ0(2)+ it must
be of the form ±

[
1 k
0 1

]
. A short calculation now shows that γ = γ′. �

In what follows, for a positive integer n we define ψ(n) = n
∏
p|n

p prime

(
1− 1

p

)
.

Lemma 2.3. Let m = 2ab with a > 0 and b odd. Then we have∣∣Mm
1

∣∣ = 2aψ(b) = Index

(
Γ0(2),Γ0(2) ∩

[
1 0
0 m

]−1

Γ0(2)+

[
1 0
0 m

])
.

Proof. First observe that each element of Mm
1 has the form

[
d y
0 2a(b/d)

]
where d is a divisor of b

(and hence odd) and 0 ≤ y < 2a(b/d). The number of such matrices is 2a times the number

of matrices of the form
[
d y
0 (b/d)

]
, but where 0 ≤ y < (b/d). By the standard theory of Hecke

operators for the modular groups, the number of these matrices is ψ(b), the index of Γ0(b) in
the modular group, and so the first equation follows.

For the second equation, if w is in Γ0(2)+ we have that [ 1 0
0 m ]

−1
w [ 1 0

0 m ] is in Γ0(2) if and only
if w is in Γ0(2m). Since conjugation preserves areas of fundamental domains, it preserves indexes
and so the required index is that of Γ0(2m) in Γ0(2) which is ψ(2m)/3 = ψ(2a+1b)/3 = 2aψ(b)
as required. �

Lemma 2.4. The cosets Γ0(2)+γ for γ in M1
m are closed under right multiplication by elements

of Γ0(2).

Proof. The group Γ0(2) is generated by [ 1 1
0 1 ] and [ 1 0

2 1 ]. Closure under right multiplication by
the former is easy to verify.

For the latter we have[
x y
0 z

] [
1 0
2 1

]
=

[
x+ 2y y

2z z

]
.

If g = gcd(x+2y, 2z) then g is odd since x is odd. Let a and b be such that a2z+b(x+2y) = g.

Then r =
[

b a
−(2z/g) (x+2y)/g

]
is in Γ0(2) and we have

r

[
x+ 2y y

2z z

]
=

[
g (g − bx)/2
0 m/g

]
.

Up to left multiplication by a translation this last element is in Mm
1 , as required. �

Lemma 2.5. Part 1 of Proposition 2.1 holds:

Γ0(2)+

[
1 0
0 m

]
Γ0(2) =

⋃
γ∈Mm

1

Γ0(2)+γ.

Proof. By Lemma 2.4 and the fact that [ 1 0
0 m ] is in Mm

1 we can conclude that
⋃

γ∈Mm
1

Γ0(2)+γ

is a union of Γ0(2)+ − Γ0(2) double cosets which includes the double coset Γ0(2)+ [ 1 0
0 m ] Γ0(2).

According to [25, Proposition 3.1], if G1 and G2 are commensurable subgroups of a group G then

for each g in G the double coset G1gG2 is a union of disjoint single cosets
d⋃
i=1

G1gi where d is the

index of G2∩g−1G1g in G2. Using this result and Lemma 2.3, the double coset Γ0(2)+ [ 1 0
0 m ] Γ0(2)

is a union of |Mm
1 | distinct left Γ0(2)+ cosets. By Lemma 2.2 the left cosets defined by elements

of Mm
1 are distinct and so we have equality. �
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Lemma 2.6. |Mm
1 | = |Mm

2 |.

Proof. With m = 2ab as above, we have to show |Mm
2 | = 2aψ(b). Recall that Mm

2 = Sm1 ∪ Sm2
with Sm1 and Sm2 defined as in (2.6). We will find the sizes of these two sets.

A typical element of Sm1 has the form
[

2a(b/s) y
0 s

]
where s is a divisor of b and hence odd.

The elements of this matrix are coprime if and only if the elements of the matrix
[

(b/s) y
0 s

]
are

coprime and there is a one to one correspondence between these two sets of matrices. But the
number of matrices of the latter form is ψ(b) and so this is the size of Sm1 .

To count the elements of Sm2 consider a typical element, which has the form 2−1/2
[

(2m/z) y
0 z

]
with z an even divisor of 2m such that 2m/z is even and y is such that 0 ≤ y < z and the entries
are coprime.

If we ignore the condition that z and 2m/z are even, there are ψ(2m) such matrices. But this

over-counts by matrices of the form 2−1/2
[
b/s y

0 2a+1s

]
of which there are 2a+1ψ(b) (as in the proof

of Lemma 2.3), and also matrices of the form 2−1/2
[

2a+1b/s y
0 s

]
of which there are ψ(b) (as in case

of SM1 above). This gives |Sm2 | = ψ(2a+1b)− 2a+1ψ(b)− ψ(b) = 3× 2aψ(b)− 2a+1ψ(b)− ψ(b) =
2aψ(b)− ψ(b). So finally |Mm

2 | = 2aψ(b) as required. �

Let w2 = 2−1/2
[

0 −1
2 0

]
.

Lemma 2.7.⋃
γ∈Mm

1

Γ0(2)+γ =
⋃

γ∈Mm
2

Γ0(2)+γw2.

Proof. By Lemmas 2.2 and 2.6 it suffices to show that each γw2 with γ in Mm
2 is equal, up to

left multiplication by elements of Γ0(2)+, to an element of Mm
1 .

Case I: Suppose γ = [ x y0 z ] is in Sm1 . Then w−1
2 γw2 =

[
z 0
−2y x

]
. Let g = gcd(z, 2y) which is

odd since z is odd, and let a and b be such that az − b2y = g. Then r =
[

a b
2y/g z/g

]
is in Γ0(2)

and r
[

z 0
−2y x

]
=
[
g bx
0 m/g

]
which, up to a left translation, is in Mm

1 .

Case II: Suppose γ = 2−1/2 [ x y0 z ] is in Sm2 . Then γw2 =
[
y −x/2
z 0

]
. Let g = gcd(z, y) which

is odd since y is odd, and let a and b be such that az + by = g with a even (which is possible

since y/g is odd). Then r =
[

b a
−z/g y/g

]
is in Γ0(2) and r

[
y −x/2
z 0

]
=
[
g −bx/2
0 m/g

]
which again, up

to a left translation, is in Mm
1 . �

Proof of Proposition 2.1. Part 1 of the Proposition was proved in Lemma 2.5.
Part 2 follows from⋃

γ∈Mm
2

Γ0(2)+γ =
⋃

γ∈Mm
1

Γ0(2)+γw2 = Γ0(2)+

[
1 0
0 m

]
Γ0(2)w2

= Γ0(2)+w−1
2

[
1 0
0 m

]
w2Γ0(2) = Γ0(2)+

[
m 0
0 1

]
Γ0(2),

where the first equality follows from Lemma 2.7 and the fact that w2
2 = −12.

Finally, part 3 follows from

Γ0(2)+

[
1 0
0 m

]
Γ0(2)+ =

(
Γ0(2)+

[
1 0
0 m

]
Γ0(2)

)⋃(
Γ0(2)+

[
1 0
0 m

]
Γ0(2)w2

)
=

(
Γ0(2)+

[
1 0
0 m

]
Γ0(2)

)⋃(
Γ0(2)+

[
m 0
0 1

]
Γ0(2)

)
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=

( ⋃
γ∈Mm

1

Γ0(2)+γ

)⋃( ⋃
γ∈Mm

2

Γ0(2)+γ

)
=

⋃
γ∈Mm

Γ0(2)+γ,

where we have used parts 1 and 2. �

For the case where m is odd we have from the definition (2.6) above that

Mm =

{[
x y
0 z

]
|xz = m, 0 ≤ y < z, gcd(x, y, z) = 1

}
.

We then have the following:

Proposition 2.8. Let m be an odd positive integer then

Γ0(2)+

[
1 0
0 m

]
Γ0(2) = Γ0(2)+

[
m 0
0 1

]
Γ0(2) = Γ0(2)+

[
m 0
0 1

]
Γ0(2)+

= Γ0(2)+

[
1 0
0 m

]
Γ0(2)+ =

⋃
γ∈Mm

Γ0(2)+γ.

Proof. The proof is similar, but simpler, than the proof of Proposition 2.1 and we omit it. �

We now wish to introduce Hecke operators for Γ0(2)+. In the introduction to this section,
we defined Hecke operators by starting with double cosets and then writing these double cosets
as single cosets. We will find it convenient here to reverse this ordering and start by defining
operators T̃m and Tm by their actions and then deducing their characterizations as double
cosets given in (2.3). Moreover, to further simplify the presentation we only consider actions on
functions (i.e., weight zero modular forms) so that the action of Ta,d is equal to that of Ta/d,1

which, as mentioned earlier, we write as Ta/d. Thus we make the following definitions:

Definition 2.9. Let m be a positive integer

1) Tmf(τ) =
∑
γ∈Mm

f(γ(z)),

2) T̃mf(τ) =



∑
xz=m
0≤y<z

f

(
xτ + y

z

)
, m odd,

∑
xz=m
0≤y<z

f

(
xτ + y

z

)
+

∑
xz=2m
x,z even
0≤y<z

f

(
xτ + y

z

)
, m even.

By Proposition 2.1 this definition of the action Tm is the same as the action of the double
coset Γ0(2)+ [m 0

0 1 ] Γ0(2)+ as required. Moreover, if we observe that every element of ∆2 is, up
to left multiplication by an element of Γ0(2)+, equivalent to one of the matrices which occur on
the right side of part 2 of Definition 2.9 and that these matrices represent distinct left cosets
of Γ0(2)+, then it is straightforward to verify that this definition of T̃m is equivalent to that give
in (2.3).

The relationship between Tm and T̃m is given by the following:

Proposition 2.10. Let m = 2αβ be a positive integer where β is odd, then

T̃m =
∑
r2|m
r odd

α∑
i=0

Tm/(r22i).
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Proof. Define first the following operators

Rmf(τ) =
∑
xz=m
0≤y<z

f

(
xτ + y

z

)
, Dmf(τ) =

∑
xz=m
x odd
0≤y<z

f

(
xτ + y

z

)
,

Umf(τ) =
∑
xz=m
z odd
0≤y<z

f

(
xτ + y

z

)
, Omf(τ) =

∑
xz=m

x,z even, y odd
0≤y<z

f

(
xτ + y

z

)
.

Then we have

T̃m =

{
Rm + R2m −U2m −D2m, m even,

Rm, m odd,
(2.7)

since when m is even the second term of T̃m excludes the cases when x is odd and when z is
odd which are disjoint.

We also have

O4m = R4m −Rm −U4m −D4m, (2.8)

since the cases when x, y and z are all even, when x is odd and when z is odd must be excluded
from the sum in R4m and these are disjoint.

If m is odd then

O2m = 0 = R2m −U2m −D2m, (2.9)

since in this case either x or z is odd (but not both).
For Tm we have the following∑

r2|m
r odd

Tm/r2 =

{
O2m + Um + Dm, m even,

Rm, m odd.

This follows from the terms in Mm in each case and the fact that the condition that the gcd
of the entries is 1 for each element of Mm. In particular, this establishes the required result if m
is odd.

We also have

T̃2m − T̃m = O4m + U2m + D2m. (2.10)

This follows from (2.7) as follows. If m is even then

T̃2m − T̃m = R2m + R4m −U4m −D4m −Rm −R2m + U2m + D2m

= R4m −Rm −U4m −D4m + U2m + D2m = O4m + U2m + D2m

using (2.8). While if m is odd then

T̃2m − T̃m = R2m + R4m −U4m −D4m −Rm

= R2m + O4m = O4m + U2m + D2m

using (2.9).
To establish the proposition if m is even, we have from (2.10)

T̃m = O2m + Um + Dm + T̃m/2 =
∑
r2|m

Tm/r2 + T̃m/2.

The result now follows by induction on α where m = 2αβ with β odd. �
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2.2 (2+)-replicability

The operators Tm and T̃m just defined map the field of modular functions for Γ0(2)+ to itself.
If T2A is the normalized Hauptmodul of Γ0(2)+ this means that Tm(T2A)(z) is a rational function
of T2A(z) and since Tm(T2A)(z) has no poles in the upper half-plane this rational function is
actually a polynomial. From the power series expansion we can see that it has to be the m-th
Faber polynomial of T2A. We have just said that

Pm(T2A(τ)) =
∑
ad=m
0≤b<d

T2A

(
aτ + b

d

)
+
∑
ad=m
d even
0≤b<d

T2A

(
2aτ + b

d

)
. (2.11)

As discussed in the introduction, we will show that the situation is entirely analogous to the
situation with PSL(2,Z), the monster and “ordinary” replication. For Γ0(2)+ and the baby
monster we will show that the appropriate generalization is the following:

Definition 2.11. A function f is (2+)-replicable if there are f [n] and f [n
√

2], for n ∈ N, such
that

Pn,f (f) =
∑
ad=n

0≤b<d

f [a]

(
aτ + b

d

)
+
∑
ad=n
d even
0≤b<d

f [a
√

2]
(

2aτ + b

d

)
. (2.12)

Equation (2.11) is the (2+)-self-replication property of T2A. We make a few remarks on this
definition.

Remark 2.12. Given a (2+)-replicable function f , its (2+)-replicates are not determined
uniquely. For example, for m = 2, equation (2.12) becomes

f [2](2τ) + f [
√

2](τ) + f [
√

2]

(
τ +

1

2

)
+ f

(τ
2

)
+ f

(
τ + 1

2

)
= P2,f (f),

and we can see that f [2] is known when f and f [
√

2] are known. Also, the odd-power coefficients of
the replicates f [

√
2n] can be changed freely and identity (2.12) is still true. We will see instances

of (2+)-replicable functions that are (2+)-replicable in different ways, i.e., have different (2+)-
replicates. For example, in Table 3 the trace functions for the 2·B classes 2e and 4d are both T4C ,
the Hauptmodul for Γ0(4) which corresponds to the class 4C in the monster. However, for the

classes 2e and 4d, f [
√

2] is given by the monstrous functions T2B and T4C respectively. In other
words there are two (2+)-replication structures which are compatible with the Hauptmodul T4C

and both of these occur for the baby monster. One might think that for “ordinary” replication
there is in principle a similar lack of uniqueness in the definition of replicates. For example, the
monstrous classes 27A and 27B have the same trace functions (in fact they are the only rational
classes with this property). But both cube to 9B. More generally, as pointed out by Norton [22],
the “ordinary” replicates of a replicable function are unique. So for “ordinary” replication we
have a unique “power map” structure.

Remark 2.13. If a function f is (2+)-replicable then it is replicable with

f (n)(z) =

f
[n](z), n odd,

f [n](z) + f
[ n√

2
]
(z

2

)
+ f

[ n√
2

]
(
z + 1

2

)
, n even.



10 C. Cummins and R. Matias

Also, we can see that if f is replicable and if, for every n even, we can write

f (n)(z) = f [n](z) + f
[ n√

2
]
(z

2

)
+ f

[ n√
2

]
(
z + 1

2

)
,

for some f [n], f
[ n√

2
]
, then f is (2+)-replicable. For n odd we obviously have f [n] = f (n). This is

shown by the following simple manipulation∑
ad=n

0≤b<d

f (a)

(
az + b

d

)
=
∑
ad=n
a odd
0≤b<d

f (a)

(
az + b

d

)
+
∑
ad=n
a even
0≤b<d

f (a)

(
az + b

d

)

=
∑
ad=n
a odd
0≤b<d

f [a]

(
az + b

d

)
+
∑
ad=n
a even
0≤b<d

f [a]

(
az + b

d

)

+
∑
ad=n
a even
0≤b<d

f [
√

2a
2

]

(
az + b

2d

)
+
∑
ad=n
a even
0≤b<d

f [
√

2a
2

]

(
az + b+ d

2d

)

=
∑
ad=n

0≤b<d

f [a]

(
az + b

d

)
+

∑
ad=n
a even

0≤b<2d

f [
√

2a
2

]

(
2
(
a
2

)
z + b

2d

)

=
∑
ad=n

0≤b<d

f [a]

(
az + b

d

)
+
∑
ad=n
d even
0≤b<d

f [
√

2a]

(
2az + b

d

)
.

Finally, if f is replicable then f is always (2+)-replicable by taking, for example, f [n
√

2] = 0.
Note that this is in contrast with ordinary replication for which the replication equations

uniquely fix the replicates.

Remark 2.14. Because of Remark 2.13 what we are actually interested in is finding the possible
(2+)-replicables for a given (2+)-replicable function. For example, we could ask if a (2+)-
replicable function is completely (2+)-replicable in the sense given below. There are examples
of Hauptmoduls that are not complete replicable functions but are completely (2+)-replicable.
As we will see, some examples of these are T4∼b, T12∼d among many others (see [24] for the
notation).

For the monster, since replicates corresponds to power maps, the replicable functions sa-
tisfy a stronger property called complete replicability. Namely that the replicate functions are
themselves replicable and that taking replicates is “commutative”. We make a corresponding
definition for (2+)-replicability.

Definition 2.15. We say that a function f is completely (2+)-replicable if

– it is (2+)-replicable, with replicates f [n], n ∈ N ∪
√

2N, and

– for every n ∈ N∪
√

2N the function f [n] is (2+)-replicable with (2+)-replicates
(
f [n]
)[m]

=

f [mn], for any m ∈ N ∪
√

2N.

In the following section we show that certain Hauptmoduls are completely (2+)-replicable.
The list will include almost all the Hauptmoduls which occur in moonshine for the baby monster.
The proof of (2+)-replicability for the remaining baby monstrous moonshine functions will be
given at the end of Section 5.
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3 Complete (2+)-replicability and Hauptmoduls

The following result is Theorem 5.15 in Ferenbaugh’s Ph.D. Thesis [13] and will be useful
in proving that certain Hauptmoduls that are not completely replicable are completely (2+)-
replicable. We refer to [8] and [14] for the notation on the Atkin–Lehner involutions We and on
groups of the form n |h+ e1, e2, . . . and n ‖ h+ e1, e2, . . ..

Theorem 3.1. Let p be prime and f be the Hauptmodul for some group np |h + e1, e2 . . . with
p - h. Then

– if p is one of the e1, e2, . . . then f (p)(z) = f(z) + f
(
z
p

)
+ · · ·+ f

( z+p−1
p

)
,

– if p is not one of the e1, e2, . . . but ep is, for some e with p -e, then f (p)(Wez) = f(Wpz) +
f
(
z
p

)
+ · · ·+ f

( z+p−1
p

)
,

– if ep is one of the e1, e2, . . . with p | e then f (p)(Wez) = f
(
z
p

)
+ · · ·+ f

( z+p−1
p

)
.

Remark 2.13 gives motivation to find formulas of type A(z) = B(z) + C
(
z
2

)
+ C

(
z+1

2

)
. This

will help us finding (2+)-replicates for certain Hauptmoduls. Before we proceed, we need some
notation in order to separate even Atkin–Lehner involutions from the odd ones.

From now on, any group n |h+ e, f, . . . will be written as n |h+ O1 + 2kO2 where 2k is the
highest power of 2 that divides n

h , the set O1 is the set of odd Atkin–Lehner involutions of the
group and O2 is the set of even Atkin–Lehner involutions of the group divided by 2k. We always
include 1 in O1.

For example, the group 30 + 6, 10, 15 will be written as 30 + O1 + 2O2, with O1 = {1, 15}
and O2 = {3, 5}.

We should also note that the elements of both O1 and O2 are odd, and these sets can satisfy
O1 = O2 as, for example, in 6 + 1, 2, 3, 6, where O1 = O2 = {1, 3}.

Recall, Gα denotes [ 1 α
0 1 ]G [ 1 α

0 1 ]
−1

.

Remark 3.2. If the matrix
[

1 1
2

0 1

]
does not normalize the genus zero group 2kN |h+O1 +2kO2,

with N odd, then

T
(2kN |h+O1+2kO2)

1
2
(z) = −T2kN |h+O1+2kO2

(
z +

1

2

)
.

If it normalizes, we have

T2kN |h+O1+2kO2

(
z +

1

2

)
= −T2kN |h+O1+2kO2

(z),

and this happens exactly when either h is even or h = 1, k ≥ 2 and O2 is empty.

Also, this matrix conjugates the groups 2N +O1 and 4N +O1 + 4O1 onto each other, when
(2, N) = 1.

We make the following observation which will be used several times in what follows.

Remark 3.3. For a Hauptmodul f of a genus zero group G, α = 1
2 ,

1
4 ,

1
8 and n odd we have(

fα
)(n)

=
(
f (n)

)α
.

In particular,
((
fα
)(m))(n)

=
(
fα
)(mn)

, for m, n odd.

Lemma 3.4. We have the following identities:
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1. If (2, N) = 1 then

TN+O1(z) = T2N+O1+2O1(z) + T2N+O1+2O1

(z
2

)
+ T2N+O1+2O1

(
z + 1

2

)
or, equivalently,

T2N+O1+2O1(z) = TN+O1(z) + T
(2N+O1+2O1)

1
2

(z
2

)
+ T

(2N+O1+2O1)
1
2

(
z + 1

2

)
.

2. If (2, N) = 1, k ≥ 1 and O2 is not empty then

T2kN+O1
(z) = T2kN+O1+2kO2

(z) + T
(2k+1N+O1+2k+1O2)

1
2

(z
2

)
+ T

(2k+1N+O1+2k+1O2)
1
2

(
z + 1

2

)
.

In particular, if k = 1 and O1 = O2 we have

T2N+O1(z) = T2N+O1+2O1(z) + T2N+O1

(z
2

)
+ T2N+O1

(
z + 1

2

)
.

3. If (2, N) = 1, k ≥ 1 and O2 is not empty then

T2kN+O1+2kO2
(z) = T2kN+O1

(z) + T2k+1N+O1+2k+1O2

(z
2

)
+ T2k+1N+O1+2k+1O2

(
z + 1

2

)
.

Proof. The first identity is Theorem 3.1 applied to f = T2N+O1+2O1 and p = 2. The third
identity is also a consequence of Theorem 3.1 applied to f = T2k+1N+O1+2k+1O2

and p = 2. Since
2k ‖ N , for k ≥ 1, we have

T2k+1N+O1+2k+1O2

(z
2

)
+ T2k+1N+O1+2k+1O2

(
z + 1

2

)
= T2kN+O1

(We′z) ,

where e′ = 2ke for some e ∈ O2. But

T2kN+O1
(z) + T2kN+O1

(We′z) = T2kN+O1+2kO2
(z)

and this proves the third identity. The second identity is the third one written in a different
way. �

Theorem 3.5. Every function g of type as given in Tables 1 and 2 is (2+)-replicable. The
[
2
n
2

]
-

replicates, for n a non-negative integer, are the ones given in those tables and replicates g[2
n
2 m],

for n a non-negative integer and m a positive odd integer, are given by g[2
n
2 m] =

(
g[2

n
2 ]
)(m)

.

Proof. We start by proving the result for completely replicable functions and then use this to
complete the proof for conjugates of completely replicable functions. For the cases where the
function is completely replicable we know how replication works and for each g(2m) we will either
apply Lemma 3.4 or, in view of Remark 2.13, take g(2m) as g[2m] and any function satisfying the

condition in Remark 3.2 as g
[ 2
m
√
2

]
. This defines the (2+)-replicates g[m], with m a power of

√
2.
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g 2N +O1 + 2O2 4N +O1 + 4O2 4N +O1 + 4O2 8N +O1 + 8O2

g[
√

2] 2N +O1 + 2O1 2N +O1 4N +O1 4N +O1

g[2] 2N +O1 + 2O1 2N +O1 + 2O1 2N +O1 4N +O1

g[2
√

2] · · · 2N +O1 + 2O1 2N +O1 + 2O1 2N +O1

g[4] · · · 2N +O1 + 2O1 2N +O1 + 2O1

g[4
√

2] · · · 2N +O1 + 2O1
... · · ·
g 8N +O1 + 8O2 16N +O1 + 16O2 16N +O1 + 16O2 32N +O1 + 32O2

g[
√

2] 8N +O1 8N +O1 16N +O1 16N +O1

g[2] 4N +O1 8N +O1 8N +O1 16N +O1

g[2
√

2] 4N +O1 4N +O1 8N +O1 8N +O1

g[4] 2N +O1 4N +O1 4N +O1 8N +O1

g[4
√

2] 2N +O1 + 2O1 2N +O1 4N +O1 4N +O1

g[8] 2N +O1 + 2O1 2N +O1 + 2O1 2N +O1 4N +O1

g[8
√

2] · · · 2N +O1 + 2O1 2N +O1 + 2O1 2N +O1

g[16] · · · 2N +O1 + 2O1 2N +O1 + 2O1

g[16
√

2] · · · 2N +O1 + 2O1
... · · ·
g 2N |2 +O1 4N |2 +O1 + 2O2 8N |2 +O1 + 4O2 8N |2 +O1 + 4O2

g[
√

2] 2N +O1 + 2O1 4N +O1 + 4O2 4N |2 +O1 + 2O2 8N +O1 + 8O2

g[2] 2N +O1 + 2O1 2N +O1 4N +O1 + 4O2 4N +O1

g[2
√

2] · · · 2N +O1 + 2O1 2N +O1 4N +O1

g[4] 2N +O1 + 2O1 2N +O1 + 2O1 2N +O1

g[4
√

2] · · · 2N +O1 + 2O1 2N +O1 + 2O1

g[8] · · · 2N +O1 + 2O1
... · · ·
g 16N |2 +O1 + 8O2 16N |2 +O1 + 8O2 32N |2 +O1 + 16O2 32N |2 +O1 + 16O2

g[
√

2] 8N |2 +O1 + 4O2 16N +O1 + 16O2 16N |2 +O1 + 8O2 32N +O1 + 32O2

g[2] 8N +O1 + 8O2 8N +O1 16N +O1 + 16O2 16N +O1

g[2
√

2] 4N +O1 8N +O1 8N +O1 16N +O1

g[4] 4N +O1 4N +O1 8N +O1 8N +O1

g[4
√

2] 2N +O1 4N +O1 4N +O1 8N +O1

g[8] 2N +O1 + 2O1 2N +O1 4N +O1 4N +O1

g[8
√

2] 2N +O1 + 2O1 2N +O1 + 2O1 2N +O1 4N +O1

g[16] · · · 2N +O1 + 2O1 2N +O1 + 2O1 2N +O1

g[16
√

2] · · · 2N +O1 + 2O1 2N +O1 + 2O1

g[32] · · · 2N +O1 + 2O1
... · · ·
g 8N |4 +O1 + 2O2 16N |4 +O1 + 4O2 16N |4 +O1 + 4O2 32N |4 +O1 + 8O2

g[
√

2] 8N |2 +O1 + 4O2 16N |2 +O1 + 8O2 8N |4 +O1 + 2O2 32N |2 +O1 + 16O2

g[2] 4N |2 +O1 + 2O2 8N |2 +O1 + 4O2 8N |2 +O1 + 4O2 16N |2 +O1 + 8O2

g[2
√

2] 4N +O1 + 4O2 8N +O1 + 8O2 4N |2 +O1 + 2O2 16N +O1 + 16O2

g[4] 2N +O1 4N +O1 4N +O1 + 4O2 8N +O1

g[4
√

2] 2N +O1 + 2O1 4N +O1 2N +O1 8N +O1

g[8] 2N +O1 + 2O1 2N +O1 2N +O1 + 2O1 4N +O1

g[8
√

2] · · · 2N +O1 + 2O1 2N +O1 + 2O1 4N +O1

g[16] 2N +O1 + 2O1 · · · 2N +O1

g[16
√

2] · · · 2N +O1 + 2O1

g[32] 2N +O1 + 2O1
... · · ·
g 4N +O1 4N |2 +O1 + 2O1 4N |2 +O1 (4N +O1 + 4O2)

1
2

g[
√

2] (4N +O1 + 4O2)
1
2 (2N +O1 + 2O1)

1
2 (4N +O1 + 4O2)

1
2 2N +O1 + 2O2

g[2] 2N +O1 + 2O2 N +O1 2N +O1 + 2O2 2N +O1 + 2O1

g[2
√

2] 2N +O1 + 2O1 2N +O1 + 2O1 2N +O1 + 2O1 2N +O1 + 2O1

g[4] 2N +O1 + 2O1 2N +O1 + 2O1 2N +O1 + 2O1 · · ·
... · · · · · · · · ·

Table 1. (2+)-replicates of Hauptmoduls.
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g 8N |2 +O1 8N |4 +O1 + 2O1 8N |2 +O1 8N |4 +O1

g[
√

2] (8N +O1 + 8O2)
1
2 (4N |2 +O1 + 2O1)

1
4 (8N |2 +O1 + 4O1)

1
4 (8N |2 +O1 + 4O1)

1
4

g[2] 4N +O1 + 4O2 4N |2 +O1 + 2O1 4N +O1 4N |2 +O1

g[2
√

2] 4N +O1 (2N +O1 + 2O1)
1
2 (4N +O1 + 4O1)

1
2 (4N +O1 + 4O1)

1
2

g[4] 2N +O1 N +O1 2N +O1 + 2O1 2N +O1 + 2O1

g[4
√

2] 2N +O1 + 2O1 2N +O1 + 2O1 2N +O1 + 2O1 2N +O1 + 2O1

g[8] 2N +O1 + 2O1 2N +O1 + 2O1 2N +O1 + 2O1 2N +O1 + 2O1
... · · · · · · · · · · · ·
g (2N +O1 + 2O1)

1
2 N +O1 (8N +O1 + 8O2)

1
2 (8N +O1 + 8O2)

1
2

g[
√

2] N +O1 2N +O1 + 2O1 4N +O1 + 4O2 8N +O1 + 8O2

g[2] 2N +O1 + 2O1 2N +O1 + 2O1 4N +O1 4N +O1

g[2
√

2] 2N +O1 + 2O1 · · · 2N +O1 2N +O1

g[4] · · · 2N +O1 + 2O1 2N +O1 + 2O1

g[4
√

2] 2N +O1 + 2O1 2N +O1 + 2O1
... · · · · · ·
g (16N +O1 + 16O2)

1
2 (32N +O1 + 32O2)

1
2 (4N |2 +O1 + 2O1)

1
4 (8N |2 +O1 + 4O2)

1
4

g[
√

2] 8N +O1 + 8O2 16N +O1 + 16O2 4N |2 +O1 + 2O1 4N |2 +O1

g[2] 8N +O1 16N +O1 (2N +O1 + 2O1)
1
2 (4N +O1 + 4O2)

1
2

g[2
√

2] 4N +O1 8N +O1 N +O1 2N +O1 + 2O2

g[4] 4N +O1 8N +O1 2N +O1 + 2O1 2N +O1 + 2O1

g[4
√

2] 2N +O1 4N +O1 2N +O1 + 2O1 2N +O1 + 2O1

g[8] 2N +O1 + 2O1 4N +O1 · · · · · ·
g[8
√

2] 2N +O1 + 2O1 2N +O1

g[16] · · · 2N +O1 + 2O1

g[16
√

2] 2N +O1 + 2O1
... · · ·
g (16N |2 +O1 + 8O1)

1
4 (8N |4 +O1 + 2O1)

1
8 (8N |4 +O1 + 2O1)

1
8

g[
√

2] 8N |2 +O1 8N |4 +O1 + 2O1 8N |2 +O1 + 2O1

g[2] (8N +O1 + 8O1)
1
2 (4N |2 +O1 + 2O1)

1
4 (4N |2 +O1 + 2O1)

1
4

g[2
√

2] 4N +O1 + 4O1 4N |2 +O1 + 2O1 4N |2 +O1 + 2O1

g[4] 4N +O1 (2N +O1 + 2O1)
1
2 (2N +O1 + 2O1)

1
2

g[4
√

2] 2N +O1 N +O1 N +O1

g[8] 2N +O1 + 2O1 2N +O1 + 2O1 2N +O1 + 2O1

g[8
√

2] 2N +O1 + 2O1 2N +O1 + 2O1 2N +O1 + 2O1

g[16] · · · · · · · · ·

Table 2. (2+)-replicates of Hauptmoduls (continued).

Having done so, and because of Remark 2.13 again, it is enough in order to finish the proof in
this case to show that, for all positive m and odd n, we have

g(2mn)(z) =
(
g[2m]

)(n)
(z) +

(
g

[ 2
m
√
2

]
)(n) (z

2

)
+

(
g

[ 2
m
√
2

]
)(n)(z + 1

2

)
. (3.1)

This is a case by case check on every g(2m).
1. Our first case is when we are using some identity from Lemma 3.4 to decompose g(2m).

In this case, we must have g(2m) = 2kN + O1 + 2kO2, i.e., h = 1, and g(2mn) =
(
g(2m)

)(n)
=

2kN ′ + O′1 + 2kO′2 where N ′ = N/ gcd(N,n), O′1 = {e ∈ O1 | e divides N ′} and O′2 = {e ∈
O2 | e divides N ′}. We fix an odd n and divide this case further into three different subcases.

i) If O2 = ∅ (which implies O′2 = ∅) then the possibilities, depending on k, for g[2m] and

g
[ 2
m
√
2

]
when we apply Lemma 3.4 to decompose g(2m) are

g(2m) g[2m] g
[ 2
m
√
2

]

k = 0 N +O1 2N +O1 + 2O1 2N +O1 + 2O1

k = 1 2N +O1 2N +O1 + 2O1 2N +O1

k ≥ 1 2kN +O1 2kN +O1 + 2kO2

(
2k+1N +O1 + 2k+1O2

) 1
2
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Applying (n)-replication to every entry in the table we obtain

g(2mn)
(
g[2m]

)(n) (
g

[ 2
m
√
2

])(n)

k = 0 N ′ +O′1 2N ′ +O′1 + 2O′1 2N ′ +O′1 + 2O′1
k = 1 2N ′ +O′1 2N ′ +O′1 + 2O′1 2N ′ +O′1

k ≥ 1 2kN ′ +O′1 2kN ′ +O′1 + 2kO′2
(
2k+1N ′ +O′1 + 2k+1O′2

) 1
2

We can see that every row in the table corresponds to some identity from Lemma 3.4 and
identity (3.1) is satisfied in this case.

ii) If O2 6= ∅ and O′2 6= ∅ then the possibilities, depending on k, for g[2m] and g
[ 2
m
√
2

]
when we

apply Lemma 3.4 to decompose g(2m) are

g(2m) g[2m] g
[ 2
m
√
2

]

k = 1 2N +O1 + 2O1 N +O1 (2N +O1 + 2O1)
1
2

k ≥ 1 2kN +O1 + 2kO2 2kN +O1 2k+1N +O1 + 2k+1O2

Applying (n)-replication to every entry in the table we obtain

g(2mn)
(
g[2m]

)(n) (
g

[ 2
m
√

2
])(n)

k = 1 2N ′ +O′1 + 2O′1 N ′ +O′1 (2N ′ +O′1 + 2O′1)
1
2

k ≥ 1 2kN ′ +O′1 + 2kO′2 2kN ′ +O′1 2k+1N ′ +O′1 + 2k+1O′2

We can see that every row in the table corresponds to some identity from Lemma 3.4 and
identity (3.1) is satisfied in this case.

iii) If O2 6= ∅ and O′2 = ∅ then the possibilities, depending on k, for g[2m] and g
[ 2
m
√
2

]
when

we apply Lemma 3.4 to decompose g(2m) are

g(2m) g[2m] g
[ 2
m
√
2

]

k = 1 2N +O1 + 2O1 N +O1 (2N +O1 + 2O1)
1
2

k ≥ 1 2kN +O1 + 2kO2 2kN +O1 2k+1N +O1 + 2k+1O2

Applying (n)-replication to every entry in the table we obtain

g(2mn)
(
g[2m]

)(n) (
g

[ 2
m
√
2

])(n)

k = 1 2N ′ N ′ (2N ′)
1
2

k ≥ 1 2kN ′ +O′1 2kN ′ +O′1 2k+1N ′ +O′1

We can see that the first row corresponds to an identity from Lemma 3.4 and in the last row
the Hauptmodul 2k+1N ′+O′1 satisfies the condition of Remark 3.2. Identity (3.1) is satisfied in
both cases.

2. If we are taking g[2m] = g(2m) and g
[ 2
m
√
2

]
to be any Hauptmodul satisfying the condition

in Remark 3.2 then identity (3.1) is trivially satisfied because odd replication preserves the
property of Remark 3.2.

This completes the proof in the case g is completely replicable.
The proof also shows that in Tables 1 and 2 we can take any 2kN ‖ h+O1 + 2kO2 instead

of 2kN |h+O1 + 2kO2 and the result is still valid.
For the remaining cases in the tables, g is not completely replicable, but its invariance group

is conjugate by [ 1 α
0 1 ], with α = 1

2 ,
1
4 or 1

8 , to some group whose Hauptmodul f is completely
replicable. We shall give the proof for the case α = 1

2 as the other two cases are similar.
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Let g = TG and f = TGα so that g(z) = −f
(
z + 1

2

)
. Since we are assuming f is completely

replicable it follows, as remarked above, that f is (2+)-replicable. So for some – not necessarily
unique – (2+)-replicates we have

Pn,f (f(z)) =
∑
ad=n

0≤b<d

f [a]

(
az + b

d

)
+
∑
ad=n
d even
0≤b<d

f [
√

2a]

(
2az + b

d

)
. (3.2)

Our aim is to use the relationship between f and g to show that (3.2) implies that g is
(2+)-replicable after a suitable choice of (2+)-replicates for f .

Now by the definition of the Faber polynomials, for any series h(z) = 1
q + · · · we have

Pn,h
(
h
(
z + 1

2

))
= (−1)nP

n,h
1
2

(
h

1
2 (z)

)
, where h

1
2 (z) = −h

(
z + 1

2

)
.

In particular applying this to f and g gives Pn,f
(
f
(
z + 1

2

))
= (−1)nPn,g(g). So for n odd,

substituting z by z + 1
2 in (3.2) gives

Pn,g(g(z)) = −
∑
ad=n

0≤b<d

f [a]

(
az + b

d
+

a

2d

)
=
∑
ad=n

0≤b<d

(f [a])
1
2

(
az + b+ a−d

2

d

)

=
∑
ad=n

0≤b<d

(f [a])
1
2

(
az + b

d

)
.

So these replication identities for g are satisfied by choosing g[a] =
(
f [a]
) 1

2 for a odd.
For n even, we again substitute z by z + 1

2 in (3.2). Arranging the resulting right hand side
by the highest power of 2 which divides a gives

Pn,g(g(z)) =
∑
ad=n
a odd
0≤b<d

f [a]

(
az + b

d
+

a

2d

)
+
∑
ad=n
a odd
d even
0≤b<d

f [
√

2a]

(
2az + b

d

)

+

∞∑
i=1


∑
ad= n

2i

a odd
0≤b<d

f [2ia]

(
2iaz + b

d

)
+
∑

2iad=n
a odd
d even
0≤b<d

f [2i
√

2a]

(
2i+1az + b

d

)
 . (3.3)

So if we set g[2
n
2 m] = f [2

n
2 m] for n ≥ 2 these replication identities for g will be satisfied

provided we can show that the i = 0 term∑
ad=n
a odd
0≤b<d

f [a]

(
az + b

d
+

a

2d

)
+
∑
ad=n
a odd
d even
0≤b<d

f [
√

2a]

(
2az + b

d

)
(3.4)

has the form∑
ad=n
a odd
0≤b<d

g[a]

(
az + b

d

)
+
∑
ad=n
a odd
d even
0≤b<d

g[
√

2a]

(
2az + b

d

)
(3.5)

with g[a] as given above and for suitable choices of the g[
√

2a].
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The proof is by considering cases. First consider g = T
(2N+O1+2O1)

1
2
, thus f = T2N+O1+2O1 .

Then each f [a] in (3.4) is of type T2M+O′1+2O′1
, where M = N/ gcd(N, a) and O′1 = {e ∈

O1 | e divides M} and we know from Theorem 3.1 that in this case

T2M+O′1+2O′1

(z
2

)
+ T2M+O′1+2O′1

(
z + 1

2

)
+ T2M+O′1+2O′1

(z) = TM+O′1
(z).

In particular, substituting z by 2az+b
d and summing over b we have∑

0≤b<2d

T2M+O′1+2O′1

(
az

d
+

b

2d

)
+
∑

0≤b<d
T2M+O′1+2O′1

(
2az + b

d

)

=
∑

0≤b<d
TM+O′1

(
2az + b

d

)
or, equivalently,∑

0≤b<d
T2M+O′1+2O′1

(
az + b

d
+

1

2d

)
+
∑

0≤b<d
T2M+O′1+2O′1

(
2az + b

d

)

= −
∑

0≤b<d
T2M+O′1+2O′1

(
az + b

d

)
+
∑

0≤b<d
TM+O′1

(
2az + b

d

)

=
∑

0≤b<d
T

(2M+O′1+2O′1)
1
2

(
az + b

d
+

1

2

)
+
∑

0≤b<d
TM+O′1

(
2az + b

d

)

=
∑

0≤b<d
T

(2M+O′1+2O′1)
1
2

(
az + b

d

)
+
∑

0≤b<d
TM+O′1

(
2az + b

d

)
. (3.6)

As mentioned above, the (2+)-replicates of f in (3.2) are not necessarily unique and we are

free to make any convenient choices. So we now choose f [
√

2a] = T2M+O′1+2O′1
. Identity (3.6)

then shows that (3.4) has the form (3.5), with g[a] =
(
T2M+O′1+2O′1

)( 1
2

)
and g[

√
2a] = TM+O′1

, as
required.

For the second part of the theorem we just note that when n ≥ 2 we have g[2
n
2 m] = f [2

n
2 m] =(

f [2
n
2 ]
)(m)

=
(
g[2

n
2 ]
)(m)

, when n = 1 we have g[
√

2m] = TM+O′1
=
(
TN+O1

)(m)
=
(
g[
√

2]
)(m)

and
when n = 0 we have

g[m] =
(
T2M+O′1+2O′1

) 1
2 =

((
T2N+O1+2O1

)(m)) 1
2 =

((
T2N+O1+2O1

) 1
2
)(m)

= g(m).

This finishes the proof for functions of the form T
(2N+O1+2O1)

1
2
.

We now consider g of the form T
(2kN+O1+2kO2)

1
2
, with k ≥ 2. In this case, the f [a] in (3.3)

are equal to T2kM+O′1+2kO′2
, where M = N/ gcd(N, a), O′1 = {e ∈ O1 | edivides M} and O′2 =

{e ∈ O2 | e divides M} and applying Lemma 3.4 to this function we have

T2kM+O′1+2kO′2

(z
2

)
+ T2kM+O′1+2kO′2

(
z + 1

2

)
+ T2k−1M+O′1

(z) = T2k−1M+O′1+2k−1O′2
(z).

Substituting z by 2az+b
d and summing over b we obtain∑

0≤b<2d

T2kM+O′1+2kO′2

(
az

d
+

b

2d

)
+
∑

0≤b<d
T2k−1M+O′1

(
2az + b

d

)

=
∑

0≤b<d
T2k−1M+O′1+2O′2

(
2az + b

d

)
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and, in particular,∑
0≤b<d

T2kM+O′1+2kO′2

(
az + b

d
+

1

2d

)
+
∑

0≤b<d
T2k−1M+O′1

(
2az + b

d

)

= −
∑

0≤b<d
T2kM+O′1+2kO′2

(
az + b

d

)
+
∑

0≤b<d
T2k−1M+O′1+2k−1O′2

(
2az + b

d

)

=
∑

0≤b<d
T

(2kM+O′1+2kO′2)
1
2

(
az + b

d
+

1

2

)
+
∑

0≤b<d
T2k−1M+O′1+2k−1O′2

(
2az + b

d

)

=
∑

0≤b<d
T

(2kM+O′1+2kO′2)
1
2

(
az + b

d

)
+
∑

0≤b<d
T2k−1M+O′1+2k−1O′2

(
2az + b

d

)
.

As mentioned above, the (2+)-replicates of f in (3.2) are not necessarily unique and we are free

to make any convenient choices. So we now choose f [
√

2a] of the form T2k−1M+O′1
. Identity (3.6)

then shows that (3.4) has the form (3.5), with g[a] =
(
T2M+O′1+2O′2

) 1
2 and g[

√
2a] = TM+O′1

, as
required.

For the second part of the theorem we just note that when n ≥ 2 we have g[2
n
2 m] = f [2

n
2 m] =(

f [2
n
2 ]
)(m)

=
(
g[2

n
2 ]
)(m)

, when n = 1 we have g[
√

2m] = T2k−1M+O′1+2k−1O′2
=
(
T2k−1N+O1+2kO2

)(m)

=
(
g[
√

2]
)(m)

and when n = 0 we have g[m] =
(
T2kM+O′1+2kO′2

) 1
2 =

((
T2kN+O1+2kO2

)(m)) 1
2 =((

T2kN+O1+2kO2

) 1
2
)(m)

= g(m).

The remaining cases can be done similarly. For Hauptmoduls of groups of the form G
1
4

(resp. G
1
8 ) it is the summand corresponding to i = 1 (resp. i = 2) that matters. We just note

that the replicates f [
√

2a] (resp. f [
√

2a] and f [2
√

2a]) with a odd, have a power series expansion
with coefficients of even powers of q equal to zero. This means that any other function with the
same property will work as well. We just chose those particular ones because they give complete
(2+)-replicability. �

Corollary 3.6. The functions g on Tables 1 and 2 are completely (2+)-replicable.

Proof. We begin the proof showing that we have complete (2+)-replicability for powers of
√

2.
By complete (2+)-replicability for powers of

√
2 we mean that, for any (2+)-replicate of

g, g[2
m
2 n], if we choose

(
g[2

m
2 n]
)[√2]

= g[2
m+1

2 n] and apply the (2+)-replication rules from the
theorem/tables we will necessarily have(

g[2
m
2 n]
)[2m′2 ]

= g[2
m+m′

2 n], for all m′ ≥ 2. (3.7)

For doing this, we just have to see that after removing the first few entries of any column or
applying (m)-replication, with m odd, to a full column, the list we obtain is still a full column

in the tables. This is a case by case check and is what guarantees that any replicate g[2
k
2 n],

together with g[2
k+1
2 n] as its [

√
2]-replicate, will have (2+)-replicates as expected(

g[2
m
2 n]
)[2m′2 n′]

=
((
g[2

m
2 n]
)[2m′2 ])(n′)

(by definition)

=
(
g[2

m+m′
2 n]

)(n′)
(from (3.7))

=
((
g[2

m+m′
2 ]
)(n))(n′)

(by definition)

=
(
g[2

m+m′
2 ]
)(nn′)

(with g[2
m+m′

2 ] comp. repl. or not)

= g[2
m+m′

2 nn′] (by definition). �
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4 Complete (2+)-replicability
and generalized Mahler recurrence relations

In this Section we extend some of Martin’s results from [21] to (2+)-replication. Namely, we
adapt his proof to show that the coefficients of completely (2+)-replicable functions satisfy
recurrence relations very similar to those of completely replicable functions.

We consider L a field extension of Q containing all roots of unity, the ringK=L
[
. . . , x

[n]
m , . . .

]
,

m ∈ N, n ∈ N ∪
√

2N, the series

h[r](q) =
1

q
+
∞∑
m=1

x[r]
m q

m

for r ∈ N ∪
√

2N, and the polynomials Pk,r(t) defined inductively by P1,r(t) = t and Pk,r(t) =

tPk−1,r(t) −
k−2∑
s=1

x
[r]
s Pk−s−1,r(t) − kx

[k]
k−1. These are the same recurrence relations that Faber

polynomials satisfy.

We fix r ∈ N ∪
√

2N and consider the set of equations indexed by k ≥ 1∑
ad=k

0≤b<d

h[ra]
(
e2πi b

d q
a
d
)

+
∑
ad=k
d even
0≤b<d

h[ra
√

2]
(
e2πi b

d q
2a
d
)

= Pk,r
(
h[r](q)

)
. (4.1)

These equations give an infinite set of identities in K by equating the coefficients of equal
powers of q in both sides of the each equation. We denote by I [r] the ideal in K generated by
them and write I for the ideal in K generated by

⋃
r∈N∪

√
2N
I [r].

If f(q) = 1
q +

∞∑
k=1

akq
k is completely (2+)-replicable with replicates f [n](q) = 1

q +
∞∑
k=1

a
[n]
k qk,

n ∈ N∪
√

2N then they satisfy equations (4.1) with h[n](q) and h[
√

2n](q) replaced by f [n](q) and

f [
√

2n](q), respectively. This means that every completely (2+)-replicable function f induces

a non-trivial homomorphism Ef : K −→ C with Ef
(
x

[n]
k

)
= a

[n]
k , whose kernel contains I.

For u ∈ N ∪
√

2N we define a L-algebra endomorphism ψu of K letting it fix every element

of L and mapping x
[n]
m to x

[nu]
m . Since the equations defining I [r] and I [ru] have the same form,

it is clear that ψu(I [r]) = I [ru] for any r. Consequently, ψu(I) ⊆ I and we think of ψu as an
L-algebra endomorphism of the quotient K/I.

For each M ≥ 1 we set RM = K/I
[[
q

1
2M

]]
and also

∆ =

{[
a b
0 d

]
| a, b, d ∈ N

}
∪
{[√

2a b/
√

2

0
√

2d

]
| a, b, d ∈ N

}
.

We define an action of ∆ in RM in the following way. For α = [ u v0 y ] ∈ ∆ we set e ‖ α = e,

x
[r]
m ‖ α = ψu

(
x

[r]
m

)
= x

[ru]
m and q

1
M ‖ α = e

2πi v
My q

u
My . Then we extend this map to an L-

homomorphism from K
[[
q

1
M

]]
to K

[[
q

1
My
]]

. Though the context should make it clear, we warn
the reader that in this Chapter only the symbol ‖ has this meaning.

Remark 4.1. The ideal I of K is stable under ‖ α for every α ∈ ∆.

Remark 4.2. For every α, β ∈ ∆ and h(q) ∈ RM we have

(h(q) ‖ α) ‖ β = h(q) ‖ αβ.
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Remark 4.3. If α = [ u x0 y ] ∈ ∆ then h[r](q) ‖ α = h[ru]
(
e

2πix
y q

u
y
)
.

Remark 4.4. For every positive integer j,
(
h[r](q)

)j ‖ α =
(
h[r](q) ‖ α

)j
as ‖ α is a ring

homomorphism.

Definition 4.5. Let n be a positive integer and h(q) ∈ R1. We define Tn by

Tn(h(q)) =
∑
uy=n

0≤v<y

h(q) ‖
[
u v
0 y

]
+

∑
uy=n

2
0≤v<2y

h(q) ‖

[√
2u

v√
2

0
√

2y

]

and call Tn a generalized Hecke operator. Both sums are over positive integer numbers which
makes the second sum be zero if n is odd.

With this definition equation (4.1) becomes

Tk

(
h[r](q)

)
= Pk,r

(
h[r](q)

)
. (4.2)

Definition 4.6. Let n ∈ N ∪
√

2N and h(q) ∈ R1. We denote by Ψn the mapping Ψnh(q) =
h(q) ‖ [ n 0

0 n ].

Proposition 4.7. Let l1 and l2 be relatively prime positive integers and h(q) ∈ R1. Then

Tl1Tl2h(q) = Tl1l2h(q).

In particular, Tl1 and Tl2 commute.

Proof. This comes from the fact that{[
u v
0 y

] [
u′ v′

0 y′

]
|uy = l1, u

′y′ = l2, 0 ≤ v < y, 0 ≤ v′ < y′, (yy′ even)

}
=

{[
u′′ v′′

0 y′′

]
|u′′v′′ = l1l2, 0 ≤ v′′ < y′′, (y′′ even)

}
. �

Proposition 4.8. If p is an odd prime then

TpnTp(h(q)) = Tpn+1(h(q)) + pTpn−1Ψp(h(q)).

If p = 2 then

T2nT2(h(q)) = T2n+1(h(q)) + 2T2nΨ√2(h(q)) + 2T2n−1Ψ2(h(q)).

Proof. The case where p is odd is true as the operators Tpn agree with the Hecke operator for
PSL2(Z). For the case p = 2 we see that T2nT2(h(q)) equals

h(q) ‖

 ∑
i=0,1

0≤b<2i

[
21−i b

0 2i

]
+
∑

0≤b<2

[√
2 b√

2

0
√

2

]
 ∑
i=0,...,n
0≤b<2i

[
2n−i b

0 2i

]

+ h(q) ‖

 ∑
i=0,1

0≤b<2i

[
21−i b

0 2i

]
+
∑

0≤b<2

[√
2 b√

2

0
√

2

]
 ∑
i=0,...,n−1
0≤b<2i+1

[
2n−1−i√2 b√

2

0 2i
√

2

]
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= h(q) ‖

 ∑
i=0,...,n
0≤b<2i

[
2n+1−i 2b

0 2i

]
+

∑
i=0,...,n
0≤b<2i

[
2n−i
√

2
√

2b

0 2i
√

2

]
+

∑
i=0,...,n
0≤b<2i

[
2n−i
√

2
√

2b+ 2i√
2

0 2i
√

2

]

+
∑

i=0,...,n
0≤b<2i

[
2n−i b

0 2i+1

]
+

∑
i=0,...,n
0≤b<2i

[
2n−i b+ 2i

0 2i+1

]
+

∑
i=0,...,n−1
0≤b<2i+1

[
2n−i
√

2
√

2b

0 2i
√

2

]

+
∑

i=0,...,n−1
0≤b<2i+1

[
2n−i b

0 2i+1

]
+

∑
i=0,...,n−1
0≤b<2i+1

[
2n−i b+ 2i

0 2i+1

]

+
∑

i=0,...,n−1
0≤b<2i+1

[
2n−1−i√2 b√

2

0 2i+1
√

2

]
+

∑
i=0,...,n−1
0≤b<2i+1

[
2n−1−i√2 b√

2
+ 2ib

0 2i+1
√

2

]

= h(q) ‖

 ∑
i=0,...,n
0≤b<2i

[
2n+1−i 2b

0 2i

]
+

∑
i=0,...,n
0≤b<2i

[
2n−i
√

2
√

2b

0 2i
√

2

]

+
∑

i=0,...,n
0≤b<2i

[
2n−i
√

2
√

2b+ 2i√
2

0 2i
√

2

]
+

∑
i=0,...,n

0≤b<2i+1

[
2n−i b

0 2i+1

]

+ 2
∑

i=0,...,n−1
0≤b<2i

[
2n−i
√

2
√

2b

0 2i
√

2

]
+ 2

∑
i=0,...,n−1
0≤b<2i+1

[
2n−i b

0 2i+1

]

+
∑

i=0,...,n−1
0≤b<2i+2

[
2n−1−i√2 b√

2

0 2i+1
√

2

] .

Now, the first and fourth summands equal

h(q) ‖

 ∑
i=0,...,n+1

0≤b<2i

[
2n+1−i b

0 2i

]
+ 2

∑
i=0,...,n−1

0≤b<2i

[
2n−i 2b

0 2i

] ,

the second, third and last summands equal

h(q) ‖

 ∑
i=0,...,n

0≤b<2i+1

[
2n−i
√

2 b√
2

0 2i
√

2

]
+ 2

∑
i=0,...,n−2
0≤b<2i+1

[
2n−2−i √

2b

0 2i+1
√

2

] ,

and this shows that

T2nT2(h(q)) = h(q) ‖

 ∑
i=0,...,n+1

0≤b<2i

[
2n+1−i b

0 2i

]
+

∑
i=0,...,n

0≤b<2i+1

[
2n−i
√

2 b√
2

0 2i
√

2

]



22 C. Cummins and R. Matias

+ 2
∑

i=0,...,n−1
0≤b<2i+1

[
2n−i
√

2
√

2b

0 2i
√

2

]
+ 2

∑
i=0,...,n−1
0≤b<2i+1

[
2n−i b

0 2i+1

]

+ 2
∑

i=0,...,n−1
0≤b<2i

[
2n−i 2b

0 2i+1

]
+ 2

∑
i=0,...,n−2
0≤b<2i+1

[
2n−2−i √

2b

0 2i+1
√

2

]
= T2n+1(h(q)) + 2T2nΨ√2(h(q)) + 2T2n−1Ψ2(h(q)),

and the theorem is proven. �

Corollary 4.9. The algebra generated by the operators Tn, for n ∈ N, is commutative.

Let l be a fixed prime. We set Qk = Tl

(
h(q)k

)
for k ≥ 1, and for b ∈ K

I we use b[l] to denote

b ‖
[
l ∗
0 ∗
]
. We set also Q0 =

{
2l + 1, if l = 2,

l + 1, if l 6= 2
and define T k

l
as the operator that sends R1 to

zero if l does not divide k. We use the same notation to denote both Pk,r(t) and its image in K
I [t].

Proposition 4.10. For k ∈ N write Pk,r(t) = tk +
k∑
i=1

bk,it
k−i ∈ K

I [t]. If l is odd then

Qk +
k∑
i=1

bk,iQk−i +
k∑
i=1

(
b
[l]
k,i − bk,i

)
h[l](ql)k−i = Pkl(h(q)) + kT k

l
Ψl(h(q)),

and if l = 2 we have

Qk +
k∑
i=1

bk,iQk−i+
k∑
i=1

(
b
[
√

2]
k,i − bk,i

)(
h[
√

2](q)k−i+ h[
√

2](−q)k−i
)
+

k∑
i=1

(
b
[2]
k,i− bk,i

)
h[2]
(
q2
)k−i

=

{
P2k,1(h(q)), if 2 -k,
P2k,1(h(q)) + 2TkΨ√2(h(q)) + 2T k

2
Ψ2(h(q)), if 2 | k

Proof. The case where l is odd can be found in [21]. When l = 2 we apply T2 to both sides of
equation (4.2)

T2Tk(h(q)) = T2

(
h(q)k +

k∑
i=1

bk,ih(q)k−i

)
,

and the following manipulation

T2

(
bk,ih(q)k−i

)
= bk,ih(q)k−i ‖

[
2 0
0 1

]
+ bk,ih(q)k−i ‖

[√
2 0

0
√

2

]
+ bk,ih(q)k−i ‖

[√
2 1√

2

0
√

2

]
+ bk,ih(q)k−i ‖

[
1 0
0 2

]
+ bk,ih(q)k−i ‖

[
1 1
0 2

]
= (b

[2]
k,i − bk,i)

(
h(q)k−i ‖

[
2 0
0 1

])
+ (b

[
√

2]
k,i − bk,i)

(
h(q)k−i ‖

[√
2 0

0
√

2

])
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+ (b
[
√

2]
k,i − bk,i)

(
h(q)k−i ‖

[√
2 1√

2

0
√

2

])
+ bk,iT2

(
h(q)k−i

)
=
(
b
[2]
k,i − bk,i

)
h[2]
(
q2
)k−i

+
(
b
[
√

2]
k,i − bk,i

)
×
(
h[
√

2](q)k−i + h[
√

2](−q)k−i
)

+ bk,iQk−i

shows that T2Tk(h(q)) is equal to

Qk +
k∑
i=1

bk,iQk−i +
k∑
i=1

((
b
[2]
k,i − bk,i

)
h[2]
(
q2
)k−i

+
(
b
[
√

2]
k,i − bk,i

)
×
(
h[
√

2](q)k−i + h[
√

2](−q)k−i
))
.

If (2, k) = 1 then T2Tk(h(q)) = T2k(h(q)) = P2k,1(h(q)) and if 2r is the exact power of 2 that
divides k we have that

T2Tk(h(q)) = T k
2r

T2rT2 = T k
2r

(
T2r+1(h(q)) + 2T2rΨ√2(h(q)) + 2T2r−1Ψ2(h(q))

)
= T2k(h(q)) + 2TkΨ√2(h(q)) + 2T k

2
Ψ2(h(q)).

This proves the assertion of the theorem. �

When l = 2 the Qk are simply the power sum symmetric functions on h[2]
(
q2
)
, h[
√

2](q),

h[
√

2](−q), h(q), h(−q). By induction, using the previous result, one shows that every Qj is

a polynomial in h[2](q), h[2]
(
q2
)
, h[
√

2](q), h[
√

2](−q) and h(q). Let

σn =
∑

1≤i1<i2<···<in≤5

xi1 · · ·xin

be the elementary symmetric functions in the indeterminates x1, x2, x3, x4, x5. We know that
the elementary symmetric function are polynomials in the power sum symmetric functions and
from this we conclude that the elementary symmetric functions on h[2]

(
q2
)
, h[
√

2](q), h[
√

2](−q),
h(q), h(−q) are polynomials in h[2](q), h[2]

(
q2
)
, h[
√

2](q), h[
√

2](−q) and h(q). We use these facts
in the proof of the following proposition.

Proposition 4.11. If f(q) = 1
q +

∞∑
k=1

akq
k is completely (2+)-replicable with replicates f [n](q) =

1
q +

∞∑
k=1

a
[n]
k qk, for n ∈ N ∪

√
2N, then

σ2

(
f [2](2z), f [

√
2](z), f [

√
2]

(
z +

1

2

)
, f
(z

2

)
, f

(
z + 1

2

))
= 2a2f(z)− f [2](z) + 2 (a4 − a1) + 2a

[
√

2]
2 −

(
f [
√

2](z)
)2
.

Proof. We take h[n](q), for n ∈ N ∪
√

2N as before and start by noticing that

σ2

(
h[2](2z), h[

√
2](z), h[

√
2]

(
z +

1

2

)
, h
(z

2

)
, h

(
z + 1

2

))
=

1

2

(
Q2

1 −Q2

)
.

Then we use Proposition 4.10 to expressQ1 andQ2 as polynomials in h[2](q), h[2]
(
q2
)
, h[
√

2](q),

h[
√

2](−q) and h(q).
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Now,

Q1 = T1(h(q)) = P1(h(q)) = h2(q)− 2x1,

and from Proposition 4.10

Q2 = P4(h(q)) + 2P2

(
h[
√

2](q)
)
+ 2h[2](q)−

(
−10x1 + 2

(
−2x

[
√

2]
1 + 2x1

)
+
(
−2x

[2]
1 + 2x1

))
,

because b2,1 = b
[
√

2]
2,1 = b

[2]
2,1 = 0 and b2,1 = −2x1, b

[
√

2]
2,1 = −2x

[
√

2]
1 , b

[2]
2,1 = −2x

[2]
1 , and 1

2

(
Q2

1 −Q2

)
becomes

1

2
(h4(q)− 4x1h

2(q) + 4x2
1 −

(
h4(q)− 4x1h

2(q)− 4x2h(q)− 4x3 + 2x2
1

+ 2h[
√

2](q)2 − 4x
[
√

2]
1 + 2h[2](q) + 10x1 + 4x

[
√

2]
1 − 4x1 + 2x

[2]
1 − 2x1

)
= 2x2h(q)−

(
h[
√

2](q)
)2 − h[2](q) + x2

1 + 2x3 − 2x1 − x[2]
1 .

Applying the homomorphism Ef defined at the beginning of this section we get

σ2

(
f [2](2z), f [

√
2](z), f [

√
2]

(
z +

1

2

)
, f
(z

2

)
, f

(
z + 1

2

))
= 2a2f(q)−

(
f [
√

2](q)
)2 − f [2](q) + a2

1 + 2a3 − 2a1 − a[2]
1 .

Equating the coefficient of q2 in both sides of the equation

f [2]
(
q2
)

+ f [
√

2](q) + f [
√

2](−q) + f
(
q

1
2
)

+ f
(
−q

1
2
)

= P2(f(q)),

we see that a2
1 + 2a3 − a[2]

1 = 2a4 + 2a
[
√

2]
2 and this concludes the proof. �

Theorem 4.12. If f(q) = 1
q +

∞∑
k=1

akq
k is completely (2+)-replicable with replicates f [n](q) =

1
q +

∞∑
k=1

a
[n]
k qk, for n ∈ N ∪

√
2N, then their coefficients satisfy the following recurrence relation:

1) a4k = a2k+1 +
k−1∑
j=1

aja2k−j +
1

2

(
a2
k − a

[2]
k

)
− a[

√
2]

2k ,

2) a4k+1 = a2k+3 − a2a2k +
k∑
j=1

aja2k+2−j +

k−1∑
j=1

a
[2]
j a

[
√

2]
2k−2j + 2

k−1∑
j=1

a4ja
[
√

2]
2k−2j

+

k−1∑
j=1

a4ja
[2]
k−j +

2k−1∑
j=1

(−1)jaja4k−j +

k−1∑
j=1

a
[
√

2]
2j a

[
√

2]
2k−2j

+
1

2

(
a2
k+1 − a

[2]
k+1 + a2

2k + a
[2]
2k

)
,

3) a4k+2 =

k∑
j=1

aja2k+1−j + a2k+2,

4) a4k+3 = a2k+4 − a2a2k+1 −
1

2

(
a2

2k+1 − a
[2]
2k+1

)
+

2k∑
j=1

(−1)jaja4k+2−j + a
[
√

2]
2k+2

+

k∑
j=1

a4j−2a
[2]
k+1−j +

k+1∑
j=1

aja2k+3−j + 2

2k∑
j=1

a2ja
[
√

2]
2k+1−j +

k∑
j=1

a
[
√

2]
j a

[
√

2]
2k+1−j .
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Proof. This is a consequence of the following two identities

σ1

(
f [2](2z), f [

√
2](z), f [

√
2]

(
z +

1

2

)
, f
(z

2

)
, f

(
z + 1

2

))
= P2,f (f(z)),

σ2

(
f [2](2z), f [

√
2](z), f [

√
2]

(
z +

1

2

)
, f
(z

2

)
, f

(
z + 1

2

))
= 2a2f(z)− f [2](z) + 2 (a4 − a1) + 2a

[
√

2]
2 −

(
f [
√

2](z)
)2
. �

5 The baby monster Lie algebra and (2+)-replication

The moonshine module V \ was constructed in [15] by Frenkel, Lepowsky and Meurman. This is
a vertex operator algebra that has M, the monster group, as symmetry group A vertex operator
algebra is an intricate algebraic structure and we refer to [20] for the definition and the basics

of its theory. The moonshine module has a grading V \ =
⊕

n≥−1 V
\

(n) and its graded dimension∑
n≥−1

(
dimV \

(n)

)
qn is the J-function. Borcherds ([4]) uses this vertex operator algebra to prove

the moonshine conjectures in the following way. First, he shows that the McKay–Thompson
series for V \, i.e., Tg =

∑
n≥−1

Tr
(
g|V \

(n)

)
qn are completely replicable functions. To do this, he

uses V \ to build a generalized Kac–Moody algebra, the monster Lie algebra, whose twisted
denominator identity is essentially the statement that the n-th replicate of a Tg is Tgn . Knowing
that Hauptmoduls for genus-zero congruence groups are also completely replicable functions and
that completely replicable functions satisfy some recurrence relations that determine a function
from the first 5 coefficients of the function and its replicates, he was able to show that every
McKay–Thompson series is indeed a Hauptmodul for some genus-zero congruence groups by
just comparing the first few coefficients of the functions involved.

In [18], Höhn shows that there is a vertex algebra W where 2 · B acts as a symmetry group.
This group is a central extension of B, the baby monster group, and it arises as the centralizer of
an element of class 2A in M. This vertex operator algebra plays for 2 · B the role that V \ plays
for the M and it was used to prove the generalized moonshine conjectures for the case of the
baby monster, i.e., when g in Tg,h (see [23] for a precise statement of the generalized moonshine
conjectures and what Tg,h is) is an involution of type 2A in M. In this section, we use t to
represent a (fixed) element in class 2A in M. More precisely, what Höhn states in [18] is the
following. If

V \(t) =
⊕
n≥−1

V \
(n
2

)(t)

is the t-twisted module and h is an element in the centralizer of t in M then the McKay–
Thompson series

Tt,g =
∑
n≥−1

Tr
(
g|V \

(n2 )
(t)
)
qn

is the Hauptmodul for some genus zero congruence subgroup.

We give a very brief sketch of the results from [18]. From the decompositions of V \ =
V 00

⊕
V 01 and V \(t) = V 10

⊕
V 11 of +1 and −1 eigenspaces for t, Höhn builds the vertex

algebra W mentioned above on which 2 · B acts. Using this vertex algebra W a Lie algebra g\B,
the baby monster Lie algebra, is constructed too. This is a 1

2Z ×
1
2Z-graded Lie algebra that

has an action of 2 ·B in it that respects the grading and its
(
m
2 ,

n
2

)
piece is isomorphic to V

[m,n]
(2mn)
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([·, ·] represents reduction mod 2). Also, V 10 is isomorphic to V 01 as 2 ·B-modules. Höhn shows
that W is a generalized Kac–Moody algebra with twisted denominator formula∑

m∈Z
Tr
(
g|V [m,1]

(m2 )

)
p
m
2 −

∑
n∈Z

Tr
(
g|V [1,n]

(n2 )

)
q
n
2

= p−
1
2 exp

−∑
i>0

∑
m∈Z+

n∈Z

Tr
(
gi|V [m,n]

(mn2 )

)p im2 q in2
i

 . (5.1)

We can now state our main result.

Theorem 5.1. The McKay–Thompson series Tt,g(z), for g ∈ 2·B, are completely (2+)-replicable

with replicates T
[n]
t,g = Tt,gn and T

[
√

2n]
t,g = T1,gnt.

Proof. From the twisted denominator identity for the baby monster Lie algebra (5.1) we have,

after substituting p
1
2 for p and q

1
2 for q,

∑
m∈Z

Tr
(
g|V [m,1]

(m2 )

)
pm −

∑
n∈Z

Tr
(
g|V [1,n]

(n2 )

)
qn = p−1 exp

−∑
i>0

∑
m∈Z+

n∈Z

Tr
(
gi|V [m,n]

(mn2 )

)pimqin
i

 .

The right side of this equation is p−1 exp(Z), where

Z = −
∑
i>0

∑
m∈Z+

n∈Z

Tr
(
gi|V [m,n]

(mn2 )

)pimqin
i

.

Because of the isomorphism between V 01 and V 10,

Z = −
∑
i>0

∑
m∈Z+

n∈Z
m or n odd

Tr
(
gi|V [1,mn]

(mn2 )

)pimqin
i
−
∑
i>0

∑
m∈Z+

n∈Z
m and n even

Tr
(
git|V 00

(mn2 )

)pimqin
i

= −
∑
i>0

∑
m∈Z+

n∈Z
m or n odd

Tr
(
gi|V [1,mn]

(mn2 )

)pimqin
i

−
∑
i>0

∑
m∈Z+

n∈Z
m and n even

(
Tr
(
git|V \

(mn2 )

)
− Tr

(
git|V 01

(mn2 )

)) pimqin

i

= −
∑
i>0

∑
m∈Z+

n∈Z
m or n odd

Tr
(
gi|V [1,mn]

(mn2 )

)pimqin
i

−
∑
i>0

∑
m∈Z+

n∈Z
m and n even

(
Tr
(
git|V \

(mn2 )

)
+ Tr

(
gi|V 01

(mn2 )

)) pimqin

i

= −
∑
i>0

∑
m∈Z+

n∈Z

Tr
(
gi|V [1,mn]

(mn2 )

)pimqin
i
−
∑
i>0

∑
m∈Z+

n∈Z

Tr
(
git|V \

(2mn)

)p2imq2in

i



(2+)-Replication and the Baby Monster 27

= −
+∞∑
n=1

1

n

∑
ad=n

d ·
∑
k∈Z

Tr
(
ga|V [1,kd]

( kd2 )

)
qak +

∑
ad=n
d even

d ·
∑
k∈Z

Tr
(
gat|V \

( kd2 )

)
q2ak

 pn

= −
+∞∑
n=1

1

n


∑
ad=n

0≤b<d

Tt,ga

(
aτ + b

d

)
+
∑
ad=n
d even
0≤b<d

T1,gat

(
2aτ + b

d

) pn.

Since

Tt,g(p)− Tt,g(q) = p−1 exp

(
−

+∞∑
n=1

1

n
Pn(Tt,g(q))p

n

)
,

where Pn is the n-th Faber polynomial, we conclude that, for all n ∈ N,∑
ad=n

0≤b<d

Tt,ga

(
aτ + b

d

)
+
∑
ad=n
d even
0≤b<d

T1,gat

(
2aτ + b

d

)
= Pn(Tt,g(q)),

and we get that Tt,g is (2+)-replicable with (2+)-replicates given as stated in the theorem.

By substituting g by gn we see that Tt,gn is (2+)-replicable with replicates T
[m]
t,gn = Tt,gmn =

T
[mn]
t,g and T

[
√

2m]
t,gn = T1,gmnt = T

[
√

2nm]
t,g , i.e.

(
T

[n]
t,g

)[m]
= T

[mn]
t,g and

(
T

[n]
t,g

)[√2m]
= T

[
√

2nm]
t,g .

To complete the proof it remains to see that T
[
√

2n]
t,g = T1,gnt is (2+)-replicable with replicates(

T
[
√

2n]
t,g

)[m]
= T1,gnmt and

(
T

[
√

2n]
t,g

)[√2m]
= Tt,g2nm , for m ∈ N. Equivalently, what we need to

prove is that, for every m ∈ N,∑
ad=n

0≤b<d

T1,gmat

(
aτ + b

d

)
+
∑
ad=n
d even
0≤b<d

Tt,g2ma

(
2aτ + b

d

)
= Pn

(
T1,gmt(q)

)
.

But since T1,gmt is a monstrous function we know that∑
ad=n

0≤b<d

T1,(gmt)a

(
aτ + b

d

)
= Pn

(
T1,gmt(q)

)
.

But now,

∑
ad=n

0≤b<d

T1,gmat

(
aτ + b

d

)
= n

∑
k∈N

 ∑
a|(n,k)

1

a
Tr
(
gmat|V \(

nk
a2

)) qk,

∑
ad=n
d even
0≤b<d

Tt,g2ma

(
2aτ + b

d

)
= n

∑
k∈N

 ∑
a|(n,k)
n
a

even

1

a
Tr
(
g2ma|V

[1, kn
a2

](
nk
2a2

))
 q2k,

∑
ad=n

0≤b<d

T1,(gmt)a

(
aτ + b

d

)
= n

∑
k∈N

 ∑
a|(n,k)

1

a
Tr
(
(gmt)a|V \(

nk
a2

)) qk,
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and what we have to show is∑
k∈N

∑
a|(n,k)

1

a
Tr
(
gmat|V \(

nk
a2

))qk +
∑
k∈N

∑
a|(n,k)
n
a

even

1

a
Tr
(
g2ma|V

[1, kn
a2

](
nk
2a2

))q2k

=
∑
k∈N

∑
a|(n,k)

1

a
Tr
(
(gmt)a|V \(

nk
a2

))qk.
This means that for k odd we have to show that∑

a|(n,k)

1

a
Tr
(
gmat|V \(

nk
a2

)) =
∑
a|(n,k)

1

a
Tr
(
(gmt)a|V \(

nk
a2

)),
which is true because t and g commute and every a in the sum, being a divisor of k, is odd too.

For k = 2k′ even we have to show that∑
a|(n,2k′)

1

a
Tr
(
gmat|V \(

2nk′
a2

))+
∑

a|(n,k′)
n
a

even

1

a
Tr
(
g2ma|V

[1, k
′n
a2

](
nk′
2a2

) )

=
∑

a|(n,2k′)

1

a
Tr
(
(gmt)a|V \(

2nk′
a2

)).
This identity is clearly true for n odd and for n = 2n′ even it becomes, because of the

isomorphism between V 01 and V 10,∑
a|2(n′,k′)

1

a
Tr
(
gmat|V \(

4n′k′
a2

))+
∑

a|(2n′,k′)
2n′
a

even

1

a
Tr
(
g2ma|V 01(

n′k′
a2

))

=
∑

a|2(n′,k′)

1

a
Tr
(
(gmt)a|V \(

4n′k′
a2

))
and this is now easy to prove∑

a|2(n′,k′)

1

a
Tr
(
gmat|V \(

4n′k′
a2

))+
∑

a|(2n′,k′)
2n′
a

even

1

a
Tr
(
g2ma|V 01(

n′k′
a2

))

=
∑

a|2(n′,k′)

1

a
Tr
(
gmat|V \(

4n′k′
a2

))+
∑

a|(n′,k′)

1

a
Tr
(
g2ma|V 01(

4n′k′
(2a)2

))
=

∑
a|2(n′,k′)

1

a
Tr
(
gmat|V \(

4n′k′
a2

))− ∑
a|2(n′,k′)
a even

2

a
Tr
(
gmat|V 01(

4n′k′
a2

))
=

∑
a|2(n′,k′)

1

a
Tr
(
gmat|V 00(

4n′k′
a2

))+
∑

a|2(n′,k′)
a even

1

a
Tr
(
gmat|V 01(

4n′k′
a2

))
+

∑
a|2(n′,k′)
a odd

1

a
Tr
(
gmat|V 01(

4n′k′
a2

))− ∑
a|2(n′,k′)
a even

2

a
Tr
(
gmat|V 01(

4n′k′
a2

))
=

∑
a|2(n′,k′)

1

a
Tr
(
(gmt)a|V 00(

4n′k′
a2

))+
∑

a|2(n′,k′)
a even

1

a
Tr
(
(gmt)a|V 01(

4n′k′
a2

))
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+
∑

a|2(n′,k′)
a odd

1

a
Tr
(
(gmt)a|V 01(

4n′k′
a2

)) =
∑

a|2(n′,k′)

1

a
Tr
(
(gmt)a|V \(

4n′k′
a2

)),
and the theorem is proven. �

We can now use Theorem 5.1 to reprove Höhn’s result

Theorem 5.2. The McKay–Thompson series Tt,g(z), for g ∈ 2 · B, are the q-expansions of
Hauptmoduls.

Proof. We know that the McKay–Thompson series Tt,g are completely (2+)-replicable and

consequently satisfy the recurrence relations from Theorem 4.12. We know that T
[n
√

2]
t,g = T1,tgn

is a monstrous function and therefore its coefficients are known once we know in what class in
the monster the element tg is, for every g ∈ 2 · B. This can be done with GAP [17]. Hence,
the first five coefficients of every Tt,g determine all the coefficients of the Tt,g completely. From
Section 3 we also have some completely (2+)-replicability results for some Hauptmoduls and
thus these Hauptmoduls satisfy the same recurrence relations from Theorem 4.12. To prove
that every McKay–Thompson series is a Hauptmodul it would be enough to compare, for every
g ∈ 2·B, the first five coefficients of Tt,g, T1,tg, Tt,g2 , T1,tg2 , . . . with those of f, f [

√
2], f [2], f [2

√
2], . . .,

respectively, for some Hauptmodul f in Tables 1 and 2.

However, not all McKay–Thompson series correspond to Hauptmoduls listed in Tables 1
and 2 and, because of that, this method for proving that the McKay–Thompson series are
Hauptmoduls works for all 247 classes in 2 · B with 13 exceptions. This happens because the
Hauptmodul associated to each of these 13 classes is neither a completely replicable function
nor a dash (see [14] for the definition of the dash operator) of a completely replicable function
and our Tables 1 and 2 only contain such functions.

For those 247− 13 = 234 classes covered by Tables 1 and 2 we use the decomposition of the
first five head characters given in [18]:

1) H1 = χ1 + χ2,

2) H2 = χ185,

3) H3 = 2χ1 + χ2 + χ3 + χ4,

4) H4 = 2χ185 + χ186,

5) H5 = 3χ1 + 3χ2 + 2χ3 + χ4 + χ6 + χ7

to make the comparison and we obtain a proof of Höhn’s results which is analogous to Borcherds
proof of the original moonshine conjectures.

For the remaining 13 classes (their names are, using GAP notation: 12h, 12i, 20h, 20i, 24i,
24m, 24n, 36d, 36e, 40f , 40g, 60d, 60e) we use again the recurrence relations from Theorem 4.12
to find the first 23 coefficients of their McKay–Thompson series. Since we know that a replicable
function (we recall from Remark 2.13 that a (2+)-replicable function is replicable) is completely
determined by its first 23 coefficients, a simple check among the power series expansions of the
616 Hauptmoduls for genus zero groups with rational integer coefficients allows us to match
every such class with some Hauptmodul (see references [9, 14, 24] for details of these functions
and the corresponding groups). This is analogous to Höhn’s proof but the recurrence relations
from Theorem 4.12 simplify the computations greatly. �

A list of 2 · B classes with their corresponding McKay–Thompson series and
[√

2
]
-replicates

is given in Table 3 (see [24] for the labelling of the Hauptmoduls).
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Class of g (of g2) Tt,g T
[
√

2]
t,g = T1,gt Class of g (of g2) Tt,g T

[
√

2]
t,g = T1,gt

1a (1a) 2A 2A 2a (1a) 4 ∼ b 1A

2b (1a) 2a 2A 2c (1a) 4A 2B

2d (1a) 2B 2A 2e (1a) 4C 2B

3a (3a) 6A 6A 3b (3b) 6D 6D

4a (2a) 8 ∼ b 4B 4b (2d) 4a 4A

4c (2d) 4B 4A 4d (2d) 4C 4C

4e (2c) 8a 4B 4f (2e) 8A 4C

4g (2e) 8 ∼ d 4A 4h (2d) 4D 4C

4i (2c) 8B 4B 4j (2e) 8E 4C

4k (2e) 8D 4D 5a (5a) 10A 10A

5b (5b) 10C 10C 6a (3a) 12 ∼ d 3A

6b (3b) 12 ∼ f 3B 6c (3a) 6a 6A

6d (3a) 6b 6A 6e (3a) 12A 6C

6f (3a) 6C 6A 6g (3b) 6c 6D

6h (3a) 12c 6C 6i (3b) 12B 6E

6j (3b) 6E 6D 6k (3a) 12E 6C

6l (3b) 12H 6E 6m (3b) 12 ∼ h 6B

6n (3b) 12I 6E 7a (7a) 14A 14A

8a (4a) 16 ∼ a 8C 8b (4d) 8a 8A

8c (4c) 8b 8B 8d (4c) 8c 8B

8e (4d) 8B 8A 8f (4c) 8C 8B

8g (4d) 8D 8E 8h (4g) 16 ∼ d 8D

8i (4d) 8E 8E 8j (4h) 8F 8D

8k (4f) 16A 8B 8l (4j) 16C 8E

8m (4j) 16 ∼ e 8A 8n (4i) 16a 8C

8o (4j) 16B 8E 8p (4k) 16d 8F

9a (9a) 18A 18A 9b (9b) 18B 18B

10a (5a) 20 ∼ c 5A 10b (5b) 20 ∼ d 5B

10c (5a) 10a 10A 10d (5a) 20A 10B

10e (5a) 10B 10A 10f (5b) 20C 10E

10g (5b) 10E 10C 10h (5a) 20d 10B

10i (5b) 20F 10E 10j (5b) 20 ∼ g 10D

11a (11a) 22A 22A 12a (6a) 24 ∼ f 12C

12b (6b) 24 ∼ h 12G 12c (6f) 12a 12A

12d (6j) 12G 12B 12e (6f) 12b 12A

12f (6f) 12C 12A 12g (6e) 24a 12C

12h (6m) 24 ∼ j 12H 12i (6m) 24 ∼ k 12B

12j (6f) 12E 12E 12k (6e) 24b 12C

12l (6f) 12d 12E 12m (6k) 24B 12E

12n (6k) 24 ∼ m 12A 12o (6i) 24c 12G

12p (6e) 24A 12C 12q (6j) 12I 12I

12r (6n) 24C 12I 12s (6n) 24 ∼ o 12B

12t (6j) 12F 12H 12u (6k) 24h 12E

12v (6m) 24 ∼ q 12I 12w (6l) 24H 12F

12x (6n) 24I 12I 12y (6n) 24 ∼ r 12H

13a (13a) 26A 26A 14a (7a) 28 ∼ c 7A

14b (7a) 14a 14A 14c (7a) 14c 14A

14d (7a) 28B 14B 14e (7a) 14B 14A

14f (7a) 28C 14B 15a (15a) 30B 30B

15b (15b) 30F 30F 16a (8e) 16b 16A

16b (8e) 16c 16A 16c (8i) 16B 16B

16d (8i) 16A 16C 16e (8e) 16a 16A

16f (8i) 16A 16C 16g (8l) 32B 16A

16h (8o) 32A 16B 16i (8o) 32 ∼ e 16C

17a (17a) 34A 34A 18a (9a) 36 ∼ h 9B

18b (9b) 36 ∼ e 9A 18c (9b) 18c 18B

18d (9b) 18c 18B 18e (9b) 36A 18C



(2+)-Replication and the Baby Monster 31

Class of g (of g2) Tt,g T
[
√

2]
t,g = T1,gt Class of g (of g2) Tt,g T

[
√

2]
t,g = T1,gt

18f (9b) 18C 18B 18g (9b) 36f 18C

18h (9a) 36D 18D 18i (9a) 36 ∼ q 18E

19a (19a) 38A 38A 20a (10a) 40 ∼ c 20B

20b (10e) 20a 20A 20c (10g) 20c 20C

20d (10e) 20b 20A 20e (10e) 20B 20A

20f (10d) 40a 20B 20g (10d) 40B 20B

20h (10j) 40 ∼ h 20F 20i (10j) 40 ∼ i 20C

20j (10g) 20E 20F 20k (10i) 40C 20E

21a (21a) 42A 42A 22a (11a) 44 ∼ b 11A

22b (11a) 22a 22A 22c (11a) 22a 22A

22d (11a) 44A 22B 22e (11a) 22B 22A

23a (23a) 46C 46C 23b (23b) 46C 46C

24a (12b) 48 ∼ c 24G 24b (12f) 24d 24A

24c (12f) 24e 24A 24d (12f) 24g 24A

24e (12f) 24f 24A 24f (12j) 24b 24B

24g (12q) 24c 24C 24h (12j) 24A 24B

24i (12i) 48 ∼ h 24H 24j (12n) 48 ∼ i 24D

24k (12m) 48A 24A 24l (12q) 24H 24I

24m (12v) 48 ∼ j 24I 24n (12v) 48 ∼ k 24C

24o (12t) 24F 24H 24p (12w) 48h 24F

25a (25a) 50A 50A 26a (13a) 52 ∼ c 13A

26b (13a) 26a 26A 27a (27a) 54A 54A

28a (14a) 56 ∼ d 28A 28b (14e) 28A 28B

28c (14e) 28C 28C 28d (14e) 28a 28B

28e (14d) 56a 28A 28f (14f) 56A 28C

28g (14f) 56 ∼ g 28B 30a (15a) 60 ∼ c 15A

30b (15b) 60 ∼ l 15C 30c (15a) 30a 30B

30d (15a) 30d 30B 30e (15a) 60B 30C

30f (15a) 30C 30B 30g (15a) 60a 30C

30h (15b) 60D 30G 30i (15b) 60 ∼ m 30A

30j (15b) 60C 30G 30k (15b) 30G 30F

30l (15b) 60C 30G 30m (15b) 30G 30F

31a (31a) 62A 62A 31b (31b) 62A 62A

32a (16c) 32B 32A 32b (16c) 32B 32A

32c (16d) 32b 32B 32d (16d) 32b 32B

33a (33a) 66A 66A 34a (17a) 68 ∼ b 17A

34b (17a) 34a 34A 34c (17a) 34a 34A

35a (35a) 70A 70A 36a (18b) 72 ∼ c 36C

36b (18f) 36C 36A 36c (18e) 72a 36C

36d (18i) 72 ∼ p 36D 36e (18i) 72 ∼ q 36B

38a (19a) 76 ∼ b 19A 38b (19a) 38a 38A

38c (19a) 38a 38A 39a (39a) 78A 78A

40a (20a) 80 ∼ a 40A 40b (20e) 40b 40B

40c (20e) 40c 40B 40d (20e) 40A 40B

40e (20g) 80a 40A 40f (20i) 80 ∼ e 40C

40g (20i) 80 ∼ e 40C 42a (21a) 84 ∼ e 21A

42b (21a) 42a 42A 42c (21a) 42b 42A

44a (22e) 44c 44A 44b (22e) 44c 44A

46a (23a) 92 ∼ b 23A 46b (23b) 92 ∼ b 23A

46c (23c) 92A 46A 46d (23a) 46A 46C

46e (23b) 92A 46A 46f (23b) 46A 46C

47a (47a) 94A 94A 47b (47b) 94A 94A

48a (24h) 48a 48A 48b (24h) 48b 48A

50a (25a) 100 ∼ c 25A 52a (26a) 104 ∼ c 52A

54a (27a) 108 ∼ g 27A 55a (55a) 110A 110A

56a (28c) 56a 56A 56b (28c) 56a 56A

60a (30a) 120 ∼ d 60A 60b (30f) 60b 60B
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Class of g (of g2) Tt,g T
[
√

2]
t,g = T1,gt Class of g (of g2) Tt,g T

[
√

2]
t,g = T1,gt

60c (30e) 120a 60A 60d (30i) 120 ∼ g 60D

60e (30i) 120 ∼ h 60C 62a (31a) 124 ∼ b 31A

62b (31b) 124 ∼ b 31A 66a (33a) 132 ∼ c 33B

66b (33a) 66a 66A 66c (33a) 66a 66A

68a (34a) 136 ∼ b 68A 70a (35a) 140 ∼ b 35A

70b (35a) 70a 70A 70c (35a) 70a 70A

78a (39a) 156 ∼ d 39A 84a (42a) 168 ∼ c 84A

94a (47a) 188 ∼ b 47A 94b (47a) 188 ∼ b 47A

104a (52a) 208 ∼ a 104A 104b (52a) 208 ∼ a 104A

110a (55a) 220 ∼ b 55A

Table 3. Classes in 2 ·B and corresponding McKay–Thompson series together with their
[√

2
]
-replicates.

6 Comments and questions

The results of the previous sections raise some natural questions. For example, to what extent
can these results be extended to other groups arising as centralizers of elements in classes p+
or p−, for a prime p, in the monster?

For groups of type p+ there is an obvious generalization of (2+)-replication to (p+)-replica-
tion. Computationally we have found the (p+)-replicates of all of the rational replicable functions
in Norton’s list of 616 such functions [24]. In all the cases we have checked, this replication
structure respects the power map structure in the group arising as a centralizer of the element
of class p+ in the monster. However, even if we could generalize all the results of the current
paper, this would not be sufficient to give a separate proof akin to Borcherds’ monstrous proof
for each of these groups. In the first place, an explicit construction of each VOA-module would
be required. However, more importantly, for p > 2 there are Hauptmodul which have some
irrational integer coefficients. There are two such Hauptmodul for 3 · Fi24. Although it is
possible to write down the identities which are required in these cases, we have not found
a natural way to do so. The crux of the problem is that for the monster and 2 ·B a p-th replicate
contains information about the pth power of an element g even when p divides the order of g
and this information is contained in the essentially combinatorial definition of the p-replicate.
No information about g or the underlying action of g on the relevant VOA-module is needed.
But when the corresponding Hauptmodul has irrational coefficients we have not found a way to
extract this information (other than to look at the underlying VOA-module structure, of course).
A solution to this problem for 3 ·Fi24 would be very interesting. The classes in question are 18m
and 18p and the Hauptmoduls are 54 ∼ c and 54 ∼ b [24].

For groups of type p− the situation is more complicated and we have found no natural way
to choose an operator in the Hecke algebra that applied to the Hauptmodul for p− yields the
Faber polynomial while at the same time respecting the power map structure in corresponding
group. This seems to be due to the fact that p−, unlike p+, has more than one cusp. A solution
to this problem in the simplest case 2− would be very interesting.

We should also mention that complete replicability plays a key role in the work of Martin [21]
on modularity of “j-final” functions and also in the work of Kozlov [19] and Cummins and Gan-
non [10] on modularity from formal modular equations. The aim of these papers was to see
if the identities implied by complete replicability imply the modularity of Thompson–McKay
series thus avoiding the part of Borcherds’ proof which shows modularity by recurrence rela-
tions and a comparison of initial terms. This approach was used by Carnahan in his work on
generalized moonshine. We believe it would be of interest to extend these results to complete
(2+)-replicability, but we have not done so here.
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