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Abstract. BPS spectra give important insights into the non-perturbative regimes of su-
persymmetric theories. Often from the study of BPS states one can infer properties of the
geometrical or algebraic structures underlying such theories. In this paper we approach this
problem from the perspective of persistent homology. Persistent homology is at the base
of topological data analysis, which aims at extracting topological features out of a set of
points. We use these techniques to investigate the topological properties which characterize
the spectra of several supersymmetric models in field and string theory. We discuss how such
features change upon crossing walls of marginal stability in a few examples. Then we look
at the topological properties of the distributions of BPS invariants in string compactifica-
tions on compact threefolds, used to engineer black hole microstates. Finally we discuss the
interplay between persistent homology and modularity by considering certain number theo-
retical functions used to count dyons in string compactifications and by studying equivariant
elliptic genera in the context of the Mathieu moonshine.
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1 Introduction

In supersymmetric theories one often can gain deep insights by studying the properties of pro-
tected states. States which preserve a fraction or all of the supersymmetries can be used to
get exact results about quantities of physical interest. Such states are usually directly related
to geometrical quantities, such as enumerative invariants, or to the mathematical structures
underlying the physical models.

For example the BPS spectral problem in quantum field theories is deeply related to the struc-
ture of the quantum vacuum and plays an important role in understanding various dualities [59].
In black hole physics, the exact enumeration of microstates is a problem of prime importance
as it provides a quantum statistical derivation of gravitational thermodynamics [43, 62]. Fur-
thermore in many cases the duality properties of a theory directly imply modular properties of
the partition functions. In all these cases the counting problem has roots in various areas of
mathematics and has important physical consequences.

In general one is lead to investigate the structures underlying such counting problems. For
example if the counting can be organized according to the representation theory of some group
or algebra, then one has identified a fundamental principle in the physical theory. The typical
situation is however less direct and often a consequence of several structures simultaneously.
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Consider for example the case of N = 2 SU(N) super Yang–Mills theories on R3 × S1.
The moduli space of vacua is the Hitchin moduli space and is hyperKähler [60]. The latter
condition is guaranteed by the fact that the BPS spectrum of the theory obeys a wall-crossing
formula [31]. The latter originates from the theory of generalized Donaldson–Thomas invariants,
which encodes the behavior of stable objects in a (derived) category under a change of stability
conditions [44]. As a consequence the moduli space of vacua is locally a (generalized) cluster
variety, the overlap transformations between charts being dictated by a cluster algebra [33]. The
BPS spectrum can also be seen as the set of stable representations of the quiver underlying this
cluster algebra [1] and has a deep connection with integrable systems [6].

In many physical cases the situation is similar and the study of the structure of the set of
supersymmetric states leads to several layers of increasing complexity. In this paper we take
a step back and ask the following question: is there any structure at the topological level? In
particular we can consider a collection of supersymmetric states simply as a set and study its
properties using topological methods. The purpose of this note is to investigate the presence
(or absence) of any noticeable topological feature in certain samples of supersymmetric states.
In particular we will be interested in how these features change as the parameters of the theory
are changed, or if one considers a similar problem in different settings.

To be more precise, with topological features we mean the properties of the spectra as seen
from the perspective of persistent homology [25, 66]. Persistence is a relatively new approach
to homological features of a space or a set, and is at the core of what is by now known as
topological data analysis [4, 24, 35]. This field proposes to handle multidimensional and large
sets of data using methods based on topology. This approach has been quite useful in disparate
fields, such as biology, neuroscience or complex systems [3, 5, 7, 56, 58]. In this note we will
apply such methods to supersymmetric spectra, computed directly or extracted from certain
number theoretical functions.

In essence topological data analysis is a multi-scale approach to extracting homological fea-
tures out of a set of data, focused on identifying those features which persist over a long range
of scales. The idea consists in defining a family of simplicial complexes which depend on a con-
tinuous proximity parameter ε. For each value of ε one can pass to the homology of the complex
and study how it varies as a function of ε. At each length scale the homology is characterized
by its homology classes; as the length scale changes new homology classes can form or already
existing classes can disappear, depending on the evolution of the underlying simplicial complex.
The set of data is characterized by the lifespans, or persistence, of said homology classes. These
lifespans can be more easily visualized as a collection of intervals on the ε line, which begin at
the value of ε at which the homology class appears and end when it disappear. Such collections
of intervals are called barcodes.

We will consider a supersymmetric spectrum as a dataset, where each point is labelled by the
charges or the relevant quantum numbers of a state, and by its degeneracy, or BPS enumerative
invariant. We will then proceed to apply the methods of topological data analysis to compute
the homology of this set as a function of a proximity parameter ε and compute its barcodes
for each non-trivial homology group. The set of barcodes gives a complete characterization of
the persistent homological features of the supersymmetric spectra. We will then discuss how
these topological characteristics vary between different datasets. Roughly speaking we will do
so in two ways: or by comparing spectra obtained within the same physical theory but as the
parameters are varied; or by studying different models which can be however associated with
a very similar physical problem.

We will discuss at length how the expected physical features show up in the topological
analysis. In many cases this will be apparent from the barcodes, in others a bit more care will
be required. Overall we will learn how to apply the methods of topological data analysis to BPS
counting problems and argue which kind of information we can hope to extract. We will do so
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with many examples. In this paper we will focus more in detail on supersymmetric spectra, but
the formalism is more general and can be applied to other counting problems. Applications of
persistent homology to the study of string vacua will appear in [11].

To keep this note readable we have included very brief reviews of the physical problems at
hand. This material is known, but we have chosen to present it in such a way as to highlight the
role played by BPS invariants. All the computations in persistent homology have been done with
the program matlab using the library javaplex, made available in [64]. The accompanying
software and datasets are available in [14]. For the extraction of the BPS invariants and the
manipulations of the relevant series we have used mathematica.

This paper is organized as follows. Section 2 will give some background about BPS states,
their wall-crossing behavior and their enumerative interpretation. In Section 3 we will give an
elementary introduction to the ideas of persistence and discuss the methods of topological data
analysis. This section is meant to be readable by non-experts and to quickly convey the main
ideas. Section 4 contains our first application, to N = 2 SU(3) super Yang–Mills, where we
compare the topological features of the BPS spectrum in two adjacent chambers. The interplay
between persistent homology and wall-crossing is also the focus of Section 6, which discusses
the case of the conifold in detail, using some approximation schemes introduced in Section 5.
Section 7 takes a different approach; here we compute the Donaldson–Thomas invariants for a
few distinct one parameter compact Calabi–Yaus, compare their distributions and discuss the
implications for black hole physics. Section 8 is about a different class of black holes, in N = 4
string compactifications. In this case the relevant partition functions have modular properties
and we discuss the interplay between modularity and topology. Section 9 takes a similar ap-
proach, now in the context of elliptic genera in the Mathieu moonshine correspondence. In this
case, the technical details of the topological analysis are postponed to the Appendix A. We
summarize our finding in Section 10.

2 BPS states and wall-crossing

In this note we will consider certain field and string theories with extended supersymmetry.
In this section we will quickly review some general properties and postpone a more detailed
description to later sections on a case by case basis. The theories we shall consider all have moduli
spaces of quantum vacuaM. These moduli spaces often have a direct geometrical interpretation,
for example parametrizing deformation of a compactification manifold or solutions of certain
differential equations. DeterminingM captures the vacuum structure of the theory. In theories
with extended supersymmetry one can often give a remarkably precise local description of the
moduli spacesM, in the form of an answer determined at weak coupling plus a series of quantum
corrections.

On top of the geometry of M, there is other physical information which can be computed
exactly. In this note we will be interested in the spectrum of BPS states, which is very closely
related to the series of quantum corrections which determine the moduli space of quantum
vacua M. These quantities are particularly important because due to the amount of super-
symmetry preserved, they allow for the extrapolation of weakly coupled computations to strong
coupling. In other words they are one of the few available sources of non-perturbative informa-
tion in quantum theories.

Supersymmetric theories have a Hilbert space of states H upon which the supersymmetry
generators act as operators. States in H can be organized according to the representation theory
of the supersymmetry algebra. BPS states are characterized by the fact that a certain number of
supersymmetry generators are represented trivially. The fact that a BPS state is annihilated by
certain operators is a rather strong constraint, in many cases strong enough to reduce quantum
corrections to a computable form.



4 M. Cirafici

To be concrete consider N = 2 theories in four dimensions. We denote by Γ the lattice of
electric and magnetic conserved charges, as measured at spatial infinity and at a point in the
moduli space of vacua. For example in a string theory compactification or engineering, this
lattice can be realized as the homology of a certain variety. The lattice of charges is endowed
with the antisymmetric Dirac pairing

〈 , 〉 : Γ× Γ −→ Z.

This pairing vanishes identically on the charges of particles which are mutually local. The
conserved charges of Γ divide the Hilbert space of states into superselection sectors. The BPS
degeneracies Ω(γ;u) count with signs the number of BPS states with charge γ ∈ Γ. They are
defined as traces over the single particle BPS Hilbert space HBPS

u =
⊕

γ∈ΓHBPS
γ;u , filtered by the

charge measured at spatial infinity.

The single particle Hilbert spaces Hγ;u and the BPS degeneracies Ω(γ;u) depend explicitly
on a point u ∈M. The constraints arising from supersymmetry are such that Ω(γ;u) has a very
specific dependence on u ∈ M: it is a piecewise constant function, almost independent on the
physical parameters except for certain codimension one walls inM, at which it jumps suddenly.
This is the wall-crossing phenomenon. At walls of marginal stability the change in the BPS
degeneracies Ω(γ;u) describe physical processes of fusion or fission of BPS particles from or into
elementary constituents. The wall-crossing of the BPS degeneracies is a very strong constraint on
the consistency of a theory at the quantum level [59]. The moduli space of vacuaM is divided by
the walls of marginal stability into chambers C . Solving the BPS spectrum of a theory amounts
in finding the Ω(γ;u) in each chamber.

Walls of marginal stability MS are defined as the loci in moduli space where the central charges
of two or more BPS particles become parallel. In theories with extended supersymmetry the
central charge is realized as an holomorphic function over the moduli space M,

Z : M−→ Hom(Γ;C).

For example, a two body decay of a state with charge γ into two elementary constituents γ1

and γ2 is kinematically allowed at the locus

MS(γ1, γ2) = {u ∈M| argZγ1(u) = argZγ2(u)} .

In many cases the central charge function has a very explicit description: in four dimensional
quantum field theories is given by the integral of the Seiberg–Witten differential λ over a cycle
of the Seiberg–Witten curve whose homology class correspond to a charge γ ∈ Γ. Similarly in
Calabi–Yau compactifications of the type II string it is given by an integral of the holomorphic
(3, 0)-form over 3-cycles.

More formally we can usually describe BPS states as objects in some abelian category A. In
concrete examples A could be the category of representations of a certain quiver with potential
rep(Q,W), or the category of coherent sheaves on a Calabi–Yau threefold X, coh(X). This is
not completely correct as a more precise account would require objects in the bounded derived
category D(A), but for the purpose of this section we will neglect these issues. In these cases
there is an isomorphism which identifies the lattice of conserved charges Γ with the topological
Grothendieck group K(A). In the above cases the isomorphism is given by the Chern character
in the case of coh(X) and by the identification of the simple representations with a basis of
BPS states in the case of rep(Q,W). In any case we can regard the central charge as a stability
function on A, at fixed u ∈M

Zu : K(A) −→ C,
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which to any object E ∈ A associates a complex number Zu(E). We say that a BPS state
described by an object E is Z-stable if argZu(F ) < argZu(E) for any proper sub-object F
of E. Note that the stability condition explicitly depends on u ∈ M and therefore on the
parameters of the theory. As these parameters are varied, the stability condition changes and
a stable object may become unstable.

Since all that matters is the phase of the complex number Zu(E), we will loosely speak of
a BPS state as a BPS ray `γ associated with the BPS state of charge γ, a vector in the complex
plane C (which we will refer as the central charge plane), as is by now common use [1, 31].

The change in Ω(γ;u) across a wall of marginal stability is governed by a wall-crossing formula
[42, 44, 52]. The Kontsevich-Soibelman wall-crossing formula (KSWCF) states that a certain
product of operators, which depends on the stable BPS charges and on the BPS degeneracies,
remains invariant across walls of marginal stability as to compensate for the change in the
degeneracies Ω(γ;u). To describe the KSWCF we need a few more ingredients. We introduce
the torus TΓ = Γ⊗Z C∗ and formal variables Xγ for each γ ∈ Γ, which enjoy the property

XγiXγj = (−1)〈γi,γj〉Xγi+γj .

The operators Kγ are automorphisms of the algebra of functions on TΓ which act as

Kγ(Xδ) =
(
1− (−1)〈γ,δ〉Xγ

)〈γ,δ〉
Xδ.

To state the KSWCF we choose an angular sector A in the central charge plane. Then the
KSWCF states that the phase ordered product∏

γ : argZγ(u)∈A

KΩ(γ;u)
γ (2.1)

is invariant across walls of marginal stability, under the assumptions that no BPS state enter or
leaves the sector A. See [54] for a more in depth review.

The situation for N = 4 theories is similar. One can still define a central charge function Z as
a moduli dependent function which at a point in the moduli space associates to a state a charge
dependent complex vector. The BPS condition now depends on the amount of supersymmetry
preserved. It is customary to use the notation (P ,Q) to indicate the charge of a generic 1/4
BPS dyon, while 1/2 BPS states are necessarily purely electrically or magnetically charged. The
degeneracies of BPS states can be defined as certain helicity supertraces over the Hilbert space
of states. The main difference in the wall-crossing behavior respect to the N = 2 case is that
now only two bodies decays are allowed, namely of a 1/4 dyon into two 1/2 BPS states.

In this section we have review very briefly some basic properties of BPS states in supersym-
metric theories. The set of stable BPS states has clearly a lot of structure, which has lead to
deep physical insights and beautiful mathematics. These structures have deep algebraic and ge-
ometrical origin in the theory of generalized Donaldson–Thomas invariants and of wall-crossing
structures [44, 45]. In this note we want to investigate their features from a rather different per-
spective: we will look at the set of BPS states as a distribution of points and try to understand
its topological properties, and how these change upon crossing walls of marginal stability. But
first we have to set up the appropriate tools.

3 Persistent homology

In this section we will introduce the concept of persistent homology and explain its uses in
the context of topological data analysis. The idea behind persistence is to study topological
features of a space as a function of the length scale [25, 66]. When applied to a set of datas,



6 M. Cirafici

the topological analysis extract qualitative features, which are independent on any particular
metric or coordinate system used, and robust to noise. In our exposition we will mainly follow
the reviews [4, 24, 35].

The techniques of topological data analysis are increasingly common in many fields such as
biology, neuroscience, complex systems or the study of language, see [3, 5, 7, 56, 58] for a sample
of the literature. An application of these techniques to the study of string vacua appears in [11].

3.1 Homology of simplicial complexes

Homology captures intrinsic topological information of a space. To a topological space X we
assign a collection of abelian groups Hi(X) whose independent elements formally correspond to
topological features of X, such as its number of components or holes. The computation of the
homology of a space is a standard procedure to study its topology. There are several ways to
do this, as well as several homology theories which can be defined.

A very convenient approach uses simplicial complexes. We can think of a simplicial complex
as a triangulation of a space, whose elements are vertices, edges and faces and so on, and
which can be studied with combinatorial or algebraic techniques. A simplicial complex S is
a pair consisting of a finite set V of vertices and a family Σ of non-empty subsets of V . The
collection Σ is defined by the property that if σ ∈ Σ and τ ⊆ σ, then τ ∈ Σ, which for example
implies that if a certain simplex is part of Σ, so are its faces. The k-simplexes of Σ form the
subset Σk of simplexes with cardinality k + 1.

For example a standard simplicial complex associated to a metric space X is the Čech com-
plex. Let Bε(x) be the standard ball of radius ε centered at x ∈ X. Assume that we can find
a set V ⊂ X so that X =

⋃
v∈V Bε(v). Then the Čech complex is defined as

Čechε(X) =

{
σ = [v0, . . . , vk] |

k⋂
i=0

Bε(vi) 6= ∅

}
.

This is a particular example of the nerve construction.
In this note we will be interested in a version of this construction, applied to a very particular

case. We define a point cloud X as a collection of points {xi}i∈I in RN . To a point cloud X we
associate the Vietoris–Rips complex VRε(X) as

VRε(X) = {σ = [v0, . . . , vk] | d(vi, vj) ≤ ε for all i, j} ,

where d( , ) is the standard distance function on RN . In other words a simplex is identified
by the pairwise intersection of radius ε/2 balls. Note that we can generalize immediately the
definition of the Čech complex to point clouds. The fact that the Vietoris–Rips complex VRε(X)
is defined only in terms of pairwise intersection makes it much more amenable to algorithmic
computations than the Čech complex Čechε(X). These complexes are related by the inclusions

Čechε(X) ⊆ VR2ε(X) ⊆ Čech2ε(X),

which imply that the Vietoris–Rips complex is a good approximation to the Čech complex.
Note also that the two complexes have a natural orientation which follows by declaring that
a k-simplex [v0, . . . , vk] changes sign under an odd permutation.

To a simplicial complex S we can associate its homology as follows. We define the group of
k-chains Ck by taking formal linear combinations of k-simplices as c =

∑
i aiσi where ai ∈ Zp

for a prime number p. On Ck we define the boundary operator ∂k : Ck −→ Ck−1

∂k([v0, v1, . . . , vk]) =

k∑
i=0

(−1)i[v0, . . . , v̂i, . . . , vk],
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where the element v̂i is omitted in the right-hand side. This operator can be used to define the
chain complex

· · · −→ Ck+1 −→ Ck −→ Ck−1 −→ · · ·

and out of this the homology of S. To this end we introduce the spaces of k-cycles Zk(S) = ker ∂k
and of k-boundaries Bk(S) = Im ∂k+1. Then the k-th homology group Hk(S) is defined as
the quotient Zk(S)/Bk(S). The Betti numbers are the ranks of the homology groups, bk =
dimHk(S) = dimZk(S) − dimBk(S), and measure the number of k-cycles which are not k-
boundaries.

A very important feature of this construction is its functoriality. A simplicial map f between
two simplicial complexes S1 and S2, is a map between the corresponding vertex sets such that
a simplex σ of S1 is mapped into a simplex f(σ) of S2. A simplicial map takes a p-simplex
into a k-simplex, with k ≤ p. A simplicial map f : S1 −→ S2 induces a map between the vector
spaces of p-chains, Cp(f) : Cp(S1) −→ Cp(S2). Collecting all the induced maps we form the
chain map C•(f), that is a collection of maps

· · · // Cp(S1)
∂
S1
p //

Cp(f)

��

Cp−1(S1) //

Cp−1(f)

��

· · ·

· · · // Cp(S1)
∂
S2
p // Cp−1(S1) // · · ·

such that

Cp−1(f) ◦ ∂S1
p = ∂S2

p ◦ Cp(f).

In particular a chain map C•(f) induced by the simplicial map f , induces a map between
homology groups

f? : Hi(S1) −→ Hi(S2).

It will be important for us the case when the simplicial map f is the inclusion. Then by
functoriality f? keeps track of the individual homology classes of Hi(S1) inside Hi(S2), that is
it contains the information whether an homology class remains non-trivial or not.

3.2 Persistent homology and barcodes

In order to define persistent homology we need to introduce a few preliminary notions. Consider
a field K. An N-persistence K-vector space (or module) is a collection of vector spaces {Vn}n∈N
over K indexed by a natural number n ∈ N together with a collection of morphisms ρi,j : Vi −→ Vj
for every i and j so that i ≤ j. We further require a compatibility condition, that is ρi,k·ρk,j = ρi,j
whenever i ≤ k ≤ j. Morphisms between N-persistence vector spaces {Vn} and {Wm} are
naturally defined as a collection of maps fi : Vi −→Wi such that the diagrams

Vi

fi
��

ρi,j // Vj

fj
��

Wi
τi,j //Wj

commute. The same construction can be generalized to abelian groups, simplicial complexes,
chain complexes and so on. More formally a version of these arguments can be applied to any
category Cat to define the category of N-persistence objects Npers(Cat).
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There is a particular class of N-persistence modules which are of interest in topological data
analysis. A persistence module {Vi}i∈N is called tame if: i) each Vi is finite dimensional, and
ii) ρn,n+1 : Vn −→ Vn+1 is an isomorphism for large enough n. The reason such modules are
interesting is that N-persistence tame K-modules are in one to one correspondence with finitely
generated modules over the graded ring K[t]. The fact that the latter are finitely generated
allows for a classification theorem for persistence modules, in terms of their barcodes [66].

In order to explain this classification theorem, we define the N-persistence module K(m,n)
as

K(m,n) =

{
0, if i < m or i > n,

K, otherwise,

where m ≤ n are two integers, m is non-negative and n can be infinity. The morphism ρ is
simply ρi,j = idK for m ≤ i < j ≤ n. K(m,n) is also known as an interval module, which assigns
a non-trivial vector space only to a certain interval.

The classification theorem then states that a given tame N-persistence K-module admits the
unique (up to ordering of factors) decomposition

{Vi}i '
N⊕
j=0

K(mj , nj).

A tame persistence module is therefore completely specified by a collection of N intervals, for
a certain N ∈ N, to which we assign a non-trivial vector space. An important consequence of
this theorem is that we can completely specify a persistence module by its barcode. A barcode
is simply the collection of non-negative integers (mi, ni), where 0 ≤ m ≤ n and eventually n
can be +∞, which specify when the persistence module is non-trivial. This classification result
is a generalization of the well known fact from elementary algebra that ordinary vector spaces
are classified up to isomorphisms by their dimension. In a similar fashion persistence modules
are characterized by a sequence of intervals. We will represent graphically such a collection of
intervals by drawing a series of bars (hence the name barcode).

The reason these facts are important for us is that the persistent homology of a point cloud
(or of any topological space) gives a persistent module. Then a barcode becomes a very effective
tool to summarize and visualize homological features.

Consider a point cloud X, a collection of points in RN . We denote by Xε the point cloud X
where every point x ∈ X has been replaced by a ball Bε(x) of radius ε centered at x. We regard Xε
as a continuous family of topological spaces indexed by the real variable ε ∈ R≥0, with X0 = X.
For any fixed collection of values 0 = ε0 < ε1 < ε2 < · · · , we have the sequence of inclusions

Xε0 ↪→ Xε1 ↪→ Xε2 ↪→ · · · .

Similarly for each Xε we construct the associated Vietoris–Rips complex VRε/2(X). Again this
is a continuous family of simplicial complexes parametrized by ε. On the other hand only for
certain values of ε the simplicial complexes will be distinct, and again for those parameters we
have a sequence of inclusions

VRε0(X) ↪→ VRε1(X) ↪→ VRε2(X) ↪→ · · · . (3.1)

For each VRε(X) we construct the associated chain complex with coefficients in Zp, with p
a prime. Then passing to the i-th homology gives the N-persistence module

Hi(VRε0(X);Zp) ↪→ Hi(VRε1(X);Zp) ↪→ Hi(VRε2(X);Zp) ↪→ · · · . (3.2)
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Technically both VRε(X) and the Hi(VRε(X);Zp) are really R-persistence modules, indexed by
the real variable ε. However only for a finite number of ε’s these complexes are really distinct,
and we can therefore talk of N-persistence modules. More formally we pick any order preserving
map N −→ R and construct the N-persistence modules out of the R-persistence modules we
have just defined, as explained more in detail in [4].

Note that all this construction relies essentially on the functoriality of homology. The maps
in (3.2) are those induced by the inclusions of (3.1). Without these maps (3.2) would just be
a collection of vector spaces. It is immediate to see, and follows just from the definition of
homology and from its functoriality, that these maps obey all the required properties to define
a persistence module.

In particular this means that for every i the N-persistence module in (3.2) is completely
characterized by a collection of barcodes. These barcodes capture topological features of the
point cloud X.

In this case we can also give a perhaps more direct description of the barcodes. The inclusions
between topological spaces lift to maps between the homology groups; we call this map

fa,bi : Hi(VRεa(X);Zp) −→ Hi(VRεb(X);Zp)

for εa ≤ εb. Then we define the i-th persistent homology group Ha,b
i = Im fa,bi , or more explicitly

Ha,b
i =

Zi(VRεa(X))

Bi(VRεb(X)) ∩ Zi(VRεa(X))
,

where for simplicity we have not written down the inclusions. The i-th persistent Betti number
is naturally defined as βa,bi = rank Ha,b

i . The persistent Betti number βa,bi is given by the number
of barcodes of Hi(VRε(X);Zp) which span the whole interval [εa, εb].

3.3 Barcodes and topological features

Let us expand a bit on the interpretation of the barcodes. Barcodes are a visual device which
represent the number of persistent generators in the i-th homology group Hi(VRε(X);Zp). Given
two values of the proximity parameter ε1 < ε2, a persistent homology class along the interval
[ε1, ε2] is a non-trivial homology class in Hi(VRε1(X);Zp) which is mapped into a non-trivial
homology class in Hi(VRε2(X);Zp).

Consider the barcodes at a fixed value of ε. This means that we are looking at the point
cloud X at a certain characteristic scale given by ε. At this scale the generators of Hi(VRε(X);Zp)
capture topological features of the data set: they represent i-dimensional configurations of points
shaped as cycles which are not boundaries, meaning delimiting “holes” which are not filled up
by other points. The persistence of these generators is a measure of how long these holes last
as the value of the proximity parameter ε increases. Intuitively the clearer is the topological
feature, for example if a certain hole contains none or very few points in its interior, the longer
the persistent homology class lasts. A non-trivial long-lived persistent class in Hi(VRε(X);Zp)
indicates that the points in the data set cluster around a i-cycle without “filling it up”.

For example persistent homology classes in H0(VRε(X);Zp) measure the number of connected
components in the point cloud as a function of the length scale. At very small values of ε each
barcode correspond to a point in the original point cloud X. As ε increases, neighbor points will
form a single connected component. Long-lived barcodes are evidence for clustering of data into
different regions. This could indicate for example that the data have a tendency to accumulate
towards a certain point or area. A clear division into connected areas with similar behavior, for
example the repetition of the same pattern in the barcodes, could also be regarded as evidence
of an existing symmetry in the underlying physical problem.
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A similar reasoning holds for higher homology groups. A persistent generator of H1(VRε(X);
Zp) which is long-lived implies that at different length scales a certain area of the point cloud X
is naturally well approximated by a one-dimensional manifold with the topology of an empty
circle S1. Similarly non-trivial elements of Hi(VRε(X);Zp) will generically suggest that a certain
region of the point cloud X can be approximated by a higher dimensional manifold with a given
topology. The fact that data live on a certain shape can for example suggest a good coordinate
system to approximate the point cloud; in general the presence of non-trivial persistent topologies
in X is a hint of the existence of correlations between the data points, for example in the form
of a set of equations which constrain regions of X.

When discussing the barcode distribution for Hi(VRε(X);Zp), we will loosely use the termi-
nology: barcodes at Betti number i, barcodes in degree i, or barcodes for Hi.

3.4 An example

Before we proceed to apply these techniques to the study of BPS states, let us go through
a simple example. We take for our point cloud X the simple configuration of points shown in
Fig. 1. We want to understand its topological features using persistent homology, and in the
process explain how to apply the relevant techniques step by step.

The configuration of points in Fig. 1 has a clear hexagonal shape. From a topological per-
spective this is equivalent to say that the points are distributed along a circle. While this is
clear just by looking at the Figure, we would like to abstract this information in a collection of
barcodes. What we gain in this abstraction will be clear in the following sections, where we will
have to confront higher dimensional point clouds where no simple visualization tool is available.
We draw the relevant barcodes in Fig. 1 on the right. As with all the persistent homology com-
putations in this paper, to obtain the barcodes we wrote a matlab program available in [14].
Let us follow the formation and demise of persistent homology classes in “time” ε.

Figure 1. Left. A configuration of points which form the vertices of an hexagon. Right. The corre-

sponding barcodes computed from the Vietoris–Rips complex. The non-trivial barcode at Betti number 1

makes precise the statement that the six points look like an hexagon, which is topologically a circle.

We draw different stages of the ε evolution in Fig. 2. At ε = 0 we just have the original six
points and there is nothing worth noticing: the homology obviously gives six distinct connected
components and no further feature. At ε = 1 two edges form, as shown in Fig. 2. As a con-
sequence the first homology of the Vietoris–Rips complex should capture the four connected
components of Xε=1. Indeed we see that precisely at ε = 1 two homology classes disappear,
corresponding to the formation of two edges connecting the respective vertices. Therefore im-
mediately before ε = 1 there are six persistent homology classes in degree 0 corresponding to six
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barcodes; immediately after two of these classes have become trivial in homology (two vertices
are the boundary of an edge) and only four barcodes are left.

At ε = 1.5 we see that a 1-cycle form has formed. Any point has an edge connecting it to
its two nearest neighbors. By now each individual zeroth homology class but one has died by
merging into a single class, and the only barcode left forH0 signals the only connected component
of the simplex. On the other hand we see a non trivial barcode for H1, corresponding to the
non-trivial cycle in the Vietoris–Rips complex.

Figure 2. The Vietoris–Rips complex (in blue) at various values of the proximity parameter ε as shown

by the red line in the barcodes’ plot. In yellow the balls around the points of the point cloud X, whose

radius ε/2 is determined by the proximity parameter. At ε = 1 we see the formation of two edges and

at ε = 1.5 a complete one-cycle. As we increase ε new simplexes form and the one-cycle becomes the

boundary of a face in the Vietoris–Rips complex, thus disappearing from the homology.

When we reach ε = 2.5 each one of the six original points of the hexagon is now at a distance
less then ε from each other point. As a consequence a face of the simplex has formed. The
persistent homology class of H1 has already disappeared, corresponding to the fact that the
non-trivial one cycle we saw at ε = 1.5 is now the boundary of the face shown in Fig. 2.

In this way the persistent homology of the point cloud X captures its essential topological
features: the number of points is determined by the H0 barcodes at small values of the proximity
parameters; the existence of a long-lived persistent homology class at H1 is tantamount to the
statement that the point cloud X has “the shape of a circle”; finally the number of H0 barcodes
present at large values of ε, in this case just one, is an information on the number of clusters in
the distribution of points.

Note that whether we call a class long-lived or short-lived depends somewhat on the context.
In this case we could identify the barcode at H1 directly as an interesting topological feature of
the hexagonal point cloud X because we knew of its shape. In general one needs some physical
input from the problem at hand, as we will see repeatedly in the following sections.

4 BPS spectra in theories of class S[AK]

We have discussed techniques to extract topological information out of a distribution of points.
In this section we will apply these techniques to BPS states in supersymmetric quantum field
theory. We will consider N = 2 SU(3) super Yang–Mills and construct two point clouds X out of
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the distribution of BPS states in two different chambers. Then we will use the tools of persistent
homology to compare their features. We will also learn how to extract physical information out
of the barcodes.

Most of the recent progress in understanding BPS spectra has been focussed on theories of
class S[AK ]. These theories can be seen as the low energy limit of the compactification on
R3,1 × C of the six dimensional N = (2, 0) superconformal theory. This perspective provides an
alternative description of many physical quantities in terms of the geometry of the curve C.

In this context the moduli space of quantum vacua is the Coulomb branch B which para-
metrizes tuples u = (φ2, . . . , φK) of meromorphic differentials with prescribed singularities.
The Wilsonian effective action of the theory in the Coulomb branch is completely determined
by a family of curves Σu, which are K-fold branched coverings of C. Σu inherits a natural
holomorphic one form λu which descends from the Liouville one-form on C.

The lattice of electric and magnetic charges Γ is identified with a quotient of H1(Σu;Z) by
the lattice of flavor charges. For any state of charge γ ∈ Γ, the central charge is given by

Zγ(u) =
1

π

∫
γ
λu,

where we have identified the charge γ with an homology class in H1(Σu;Z). Given the pair
(Σu, λu) the central charge is in principle known at any point u ∈ B.

The BPS spectra of theories of class S[AK ] have striking and unexpected features for K > 2.
Firstly these theories will generically have higher spin BPS supermultiplets at generic points
in their Coulomb branch. Secondly, and more surprisingly, they have wild spectra: chambers
where the number of BPS states with mass less or equal to a given mass M grows exponentially
with M . These features were demonstrated explicitly for SU(3) super Yang–Mills with N = 2
in [34] and are believed to hold generically. This phenomenon gives a striking example of the type
of understanding of quantum field theory that we gain by studying the wall-crossing behavior
of BPS states. With these techniques available to perform controlled computations at various
values of the coupling constant, even a relatively simple quantum field theory such as SU(3)
Yang–Mills with N = 2 is full of surprises.

We will now apply the formalism outlined in Section 3 to this theory. In particular we will
discuss the topological features of the BPS spectrum in a weak coupling chamber and study
their behavior as we cross a wall of marginal stability into a wild chamber. We will see that the
differences are quite striking, even at the topological level.

In this particular case, the Seiberg–Witten curve Σ is a three sheeted covering of C, which
has the topology of a cylinder, with six ramification points:

λ3 − u2

z2
λ+

(
1

z2
+
u3

z3
+

1

z4

)
= 0.

One way to compute the BPS spectra is to start from a chamber where the spectrum is known
and then apply the wall-crossing formula (2.1). The strong coupling region is characterized by
small values of the moduli u2 and u3 and has a finite spectrum consisting of six hypermultiplets.
The spectrum generator decomposes as

Kγ4Kγ3Kγ2+γ4Kγ1+γ3Kγ2Kγ1 .

For this theory the rank of the charge lattice Γ is four and we have picked a basis {γi}, with
i = 1, 2, 3, 4, so that 〈γ1, γ2〉 = 〈γ2, γ3〉 = 〈γ3, γ4〉 = −2 and 〈γ1, γ3〉 = 〈γ2, γ4〉 = 1 and all the
other parings are vanishing.
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4.1 Wild wall crossing

To obtain the relevant BPS spectra we will borrow several results from [34]. The strategy is to
start in the strong coupling chamber and follow a path p in the Coulomb branch B. The path is
defined by crossing the following walls of marginal stability in this order: MS(γ1 + γ3, γ2 + γ4),

MS(γ1, γ2), MS(γ3, γ4) and MS(γ1, γ2 + γ4). It ends within a chamber that we will call C
SU(3)
1 .

For each of these walls the two charges whose central charge becomes parallel have pairing equal
to two: each time the situation is a direct analog of the transition from strong to weak coupling
in pure SU(2) super Yang–Mills, and each time a similar spectrum is generated consisting of
a vector multiplet shrouded by an infinite cloud of hypermultiplets. In this chamber the spectrum
can be written down explicitly. Following [34] we introduce the notation

Πn,m(γa, γb) =

 ∞∏
k↗n
K(k+1)γa+kγb

K−2
γa+γb

 ∞∏
k↘m

Kkγa+(k+1)γb

 ,

where k ↗ n means that the product is taken in order so that the value of k increases from left

to right starting from n, and similarly for k ↘ m. The spectrum in the chamber C
SU(3)
1 was

computed explicitly in [34] and is given by

Π(0,0)(γ3, γ4)Π(0,1)(γ1 + γ3, γ2 + γ4)Π(0,0)(γ1, γ2 + γ4)Π(1,0)(γ1, γ2).

This spectrum contains four vectormultiplets and an infinite series of dyonic stable hypermulti-
plets.

Now we look at the topological structures of this spectrum, using the Rips–Vietoris complex.
That is we consider a point cloud X in R5 where each vector has the form x = (d1, d2, d3, d4,

Ω(γ;u)), where γ =
∑4

i diγi is the charge of a stable particle and u ∈ C
SU(3)
1 . After constructing

the filtered Rips–Vietoris complex as explained in Section 3, we pass to the homology over Z2

and compute the barcodes. They are shown in Fig. 3. The point cloud consists of 84 states
and the construction of the filtered Vietoris–Rips complex involves a total of 5348 simplices.1

Non-trivial persistent homology classes are present only for H0 and H1.
For future reference we show in Fig. 3 on the right the barcodes with the logarithm of the

(absolute value of the) degeneracies, that is obtained from the point cloud (d1, d2, d3, d4, log |
Ω(γ;u)|). Note that this change does not really modify the BPS point cloud substantially,
since all the non vanishing degeneracies are 1 or −2 for hypermultiplets and vector multiplets
respectively. On the other hand the relative distance between points are now different and
as a consequence the total number of simplices changes, in this case increases to 13708. The
distribution of barcodes does not deviate significantly between Fig. 3 on the left and on the
right, as expected.

Now we cross the wall MS(2γ1 +γ2, γ2 +γ4) to enter into the wild chamber C
SU(3)
2 . Note that

〈2γ1 + γ2, γ2 + γ4〉 = 3, which implies that in this chamber the BPS quiver has a representative
in its mutation class which contains the 3-Kronecker quiver as a subquiver. In crossing the wall
a plethora of higher spin multiplets is generated with wild degeneracies. The spectrum is given by

Π(0,0)(γ3, γ4)Π(0,1)(γ1 + γ3, γ2 + γ4)Π(0,1)(γ1, γ2 + γ4)Ξ(2γ1 + γ2, γ2 + γ4)Π(2,0)(γ1, γ2),

where Ξ(2γ1 +γ2, γ2 +γ4) is a so-called 3 cohort in [34]. The 3 cohort does not have a closed form

1This number is a function of the proximity parameter ε, as well as of how many homology groups Hk are
included in the computation, in the sense that if one decides to truncate the computation at some Hk, higher
dimensional simplices can be neglected. In the following we will by convention only show barcodes up to a value
of the proximity parameter ε and of the Betti numbers, which contain interesting topological features, or at least
the topological features we want to discuss. We will use the terminology “number of simplices” in a similar way,
referring only to the simplices used in the homology computations under these conditions.
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Figure 3. Barcodes corresponding to the BPS spectrum in the chamber C
SU(3)
1 . Left. The point

cloud X is constructed from vectors of the form x = (d1, d2, d3, d4,Ω(γ;u)). Right. The logarithm of the

degeneracies log |Ω(γ;u)| is now used in the point cloud.

Figure 4. Barcodes for the BPS spectrum in the wild chamber C
SU(3)
2 . Left. The point cloud is X

constructed out of vectors of the form (d1, d2, d3, d4,Ω(γ;u)). Right. Vectors in the point cloud are of

the type (d1, d2, d3, d4, log |Ω(γ;u)|).

expression and its BPS degeneracies have been computed in [34] up to a total charge γ of 15.
The explicit results of the computations can be found in [34, Appendix A.2]. Using these results
we construct a sample of 144 points corresponding to as many BPS states. The Vietoris–Rips
complex runs over a total of 210156 simplices and its persistent homology classes (again over Z2)
are shown in the left in Fig. 4. The exponential growth of the degeneracies shows up as the
presence of many very long-lived barcodes in degree 0. This is easy to understand; due to the
exponential growth of the point cloud the homology of the Vietoris–Rips complex sees many
points as individual connected components for very large values of the proximity parameter ε.

Since the degeneracies are exponentially growing it is useful to consider also the point cloud
obtained by taking the logarithm of the modulus of the degeneracies. This is merely a trick to
simplify the computations of the simplices. This significantly reduces the lifespan of long-lived
homology classes, also altering the number of simplices. On the other hand the features of the
barcode distribution are easier to visualize, and shown in Fig. 4 on the right. The total number
of simplices for which there are interesting topological features is now reduced to 27766.

Across the wall we see distinctively a transition at the level of the topology of the point cloud.
This is clear for example in Fig. 4 (left) where the barcodes for H0 are very long-lived. If we
compare with Fig. 3 (left) we see that the wild chamber has a much larger number of connected
component at very large scales ε. This is indeed a consequence of the exponential growth in
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the number of states: since the degeneracies Ω(γ;u) grow exponentially the points are further
and further apart and therefore at the same scale ε at which the points in Fig. 3 are already
grouped in a single cluster, the degeneracies in Fig. 4 still look like many connected components.
In other words at a certain threshold the values of the degeneracies begin to grow too far apart
for the Vietoris–Rips complex to form edges and the homology sees each point as an individual
connected component.

To have a more meaningful comparison, we turn to the logarithm of the degeneracies, so
to damp the exponential growth. We will see in the next sections that there are more refined
methods, but for the moment this will be enough. We now compare the results in Figs. 3
and 4 (right). The transition between the two chambers is still very clear: the barcodes in the

chamber C
SU(3)
1 are very regular and the dependence on the scale ε rather mild. On the other

hand we see in Fig. 4 how persistent homology captures the wilderness of the BPS spectrum.
The homological features are very irregular, especially for H1 and non-trivial 1-cycles persist
at every ε-scale. This features terminate in Fig. 4 at a certain value of ε only because we are

using a finite sample, with roughly the same number of points as in the chamber C
SU(3)
1 , but

would continue indefinitely were we to increase the number of degeneracies computed via the
wall-crossing formula in [34].

This is an example of the kind of information we can get on the BPS spectra using the forma-
lism of persistent homology. In this section we have just compared the topological features of the
BPS spectrum in two different chambers. Topology gives a clear meaning to the statement that
these chambers are qualitatively different. The topological features of the two distributions are
captured by the basic topological invariants of the N-persistence modules, namely the barcodes.
It is remarkable that upon crossing the wall of marginal stability, the transition between the two
chambers is very sharp even at the topological level.

We will now discuss a similar problem in a string theory compactification, namely the BPS
spectra in various chambers of the conifold. But before that we need to refine our techniques in
the next section.

5 Witness and lazy witness

We have shown how to use the Vietoris–Rips complex VRε to extract topological information
from the BPS spectra in the form of barcodes. The computation of the barcodes is done exactly
by evaluating the homology of the simplicial complex for any value of the proximity parameter
ε. However in many cases the point cloud X is too large for a direct computation. In this cases
certain approximation schemes are available, which we will now describe. These approximation
schemes are suited to deal efficiently with large sets of data. The main idea is to use certain
criteria to select only a certain subset L of the point cloud X, which is then used to form
a simplicial complex which approximates the Vietoris–Rips complex [4].

The operator which performs such a choice is a landmark selector. The most used landmark
selectors are:

1. Random selector. The most straightforward way to choose a subset L ⊂ X is by picking
a number of points at random. This procedure is quite useful, although in practice it is
better to choose various random subsets L and perform homological computations for each
one separately. Indeed it is quite possible that a random selection would miss essential
features of a point cloud X. The limitations of random selection are well known from
Monte Carlo algorithms and will not be repeated here.

2. Minmax selector. This operator selects a collection of points L which, in a very specific
sense, is as spread out as possible. The minmax algorithm works inductively by maximizing
the distance of a point from a previously chosen set. More in detail, the algorithm starts
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from a randomly chosen point x0. Let d( , ) : X2 −→ R be the standard distance function
between points (which is inherited from the ambient metric of RN where the point cloud is
embedded). The choice of the remaining points in the set L proceeds by induction. Denote
by Li the minmax selection of i points in X. Then Li+1 consist of the same set to which
a single point z is added, in such a way that the function d(xj , z) is maximized for each
xj ∈ Li. Because of this inductive definition, the landmark selected set L will consists of
points which are spread apart from each other as much as possible. Therefore in general we
expect this selector to capture features of a point cloud X better than a random selector.
On the other hand one has to keep in mind that there are cases where this expectation
will fail: for example since the minmax selector will generically pick out outlier points,
a random selector might work better with very dense sets.

Having chosen a landmark set L, we can define a version of the Vietoris–Rips complex which
is based on it. We shall use two such simplicial complexes, the witness complex W(X, L, ε) and
the lazy witness complex LWν(X, L, ε). In both cases the vertex set is given by L; what changes
is the definition of the simplices. These are defined as follows:

1. Witness complex W(X, L, ε). Let x be a point in X. Denote by dk(x), for k > 0, the distance
between x and its (k + 1)-th closest landmark point. Now we declare that a collection of
vertices li ∈ L for i = 0, . . . , k form the simplex [l0, . . . , lk] if all of its faces are in W(X, L, ε)
and there exists a witness point x ∈ X so that the following condition holds

max{d(l0, x), d(l1, x), . . . , d(lk, x)} ≤ dk(x) + ε.

2. Lazy Witness complex LWν(X, L, ε). Let ν ∈ N, and let dν(x) be the distance between x and
the ν-th closest landmark point (with dν(x) ≡ 0 if ν = 0). Then for l1 and l2 points of L,
[l1, l2] is an edge in LWν(X, L, ε) if there exists a witness point x ∈ X so that the following
condition holds

max{d(l1, x), d(l2, x)} ≤ dν(x) + ε.

A higher dimensional simplex defines an element of LWν(X, L, ε) if and only if all of its
edges are in LWν(X, L, ε)

These definitions are those implemented in javaplex. It is easy to see that if ε1 < ε2, then we
have W(X, L, ε1) ⊂W(X, L, ε2) and LWν(X, L, ε1) ⊂ LWν(X, L, ε2).

We can now use the same arguments of Section 3 to argue that by letting ε vary we induce
filtrations of witness and lazy witness complexes and that taking the i-th homology of any such
sequence as a function of ε defines a N-persistence module. Therefore we can easily define
persistent homology groups and barcodes and use the complexes W(X, L, ε) and LWν(X, L, ε) to
study persistent topological features of distributions of BPS states. Unless specified otherwise,
when using the lazy witness complex we will always set ν = 1 and omit it from the notation.

6 BPS invariants on the conifold

In our second example we consider BPS states in a local string theory compactification, the
resolved conifold. The geometry is given by the total space of the fibration X = O(−1) ⊕
O(−1) −→ P1 and has one Kähler modulus t, the complexified size of the base P1. We are
interested in a particular class of BPS states which are given by bound states of a gas of light
D0 branes and D2 branes wrapping the P1, with a single D6 brane wrapping the full non compact
total space. Such invariants have been computed in quite some detail at any point of the moduli
space [2, 41, 55, 63].
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Since the geometry is non-compact, to properly define the charges it is necessary to embed it
into a compact Calabi–Yau and then take a local limit. This is done by considering a compact
Calabi–Yau X̃ and taking the limit where the Kähler moduli of all the homology classes become
large, with the sole exception of the Kähler class of a rigid rational curve.

Since we are taking a local limit, it is enough to consider the compact Calabi–Yau X̃ in the
large radius approximation. BPS states are labeled by charge vectors γ ∈ Γ, where

γ ∈ Γ = Γm ⊕ Γe =
(
H0
(
X̃,Z

)
⊕H2

(
X̃,Z

))
⊕
(
H4
(
X̃,Z

)
⊕H6

(
X̃,Z

))
.

By Poincaré duality D-branes wrapping p-cycles correspond to charges as

Dp←→ H6−p(X̃,Z) = Hp

(
X̃,Z

)
, p = 0, 2, 4, 6.

The Dirac–Schwinger–Zwanziger pairing has the geometric definition

〈γ, γ′〉Γ =

∫
X̃
γ ∧ (−1)deg/2γ′.

In the large radius limit the central charge of a BPS state with charge γ is given by the integral

ZX̃
(
γ; t̃
)

= −
∫
X̃
γ ∧ e−t̃,

where t̃ = B+iJ is the complexified Kähler form given by the background supergravity two-form
B-field and the Kähler (1, 1)-form J of X̃.

Now we take the local limit, following [41]. We parametrize the Kähler form as

t̃ = tP1 + Leiϕt⊥,

where tP1 and t⊥ are classes in H2
(
X̃;C

)
such that∫

P1

tP1 = z,

∫
P1

t⊥ = 0.

Now we take the local limit by sending L −→ +∞.
In this limit the relevant BPS configurations are multi-centered solutions with core charge

γc = (1, 0, 0, 0) and halo charge γh = (0, 0,−β, n). Conventionally we write the latter as γh =
(0, 0,−m,n), where m denotes the number of times the class β wraps2 the P1, β = m[P1]. Walls
of marginal stability can be computed explicitly as a function of m and n. In the local limit the
central charges retain some dependence on the parameter ϕ. Therefore the walls of marginal
stability can be parametrized on the space (z, ϕ), where the Kähler moduli space is extended by
the parameter ϕ due to the local limit. Physically ϕ represent the density of the components of
the B-field normal to the exceptional locus.

The walls of marginal stability are [2, 41, 55]

MSmn =

{
(z, ϕ) : ϕ =

1

3
arg
(
z +

n

m

)
+
π

3

}
,

MS−mn =

{
(z, ϕ) : ϕ =

1

3
arg
(
z − n

m

)}
,

MS−m−n =

{
(z, ϕ) : ϕ =

1

3
arg
(
z +

n

m

)}
,

with n ≥ 0 and m ≥ 0. We will denote a chamber between two walls as C
[
MSm1

n1
,MSm2

n2

]
.

2We use a different notation from [41]: we call β the homology class of a curve, while in [41] β is the 4-form
Poincaré dual to the P1.
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Now we will study the topological features of the BPS spectra in various chambers and
compare them. From a physical perspective this is similar to what we have done in Section 4,
except that the BPS spectra count states in string theory and not in quantum field theory (albeit
we have rendered gravity non-dynamical by taking a local limit).

This problem is also interesting from a mathematical perspective. Indeed a proper treatment
of BPS particles in string theory requires to work at the level of a derived category, in this
case D(coh(X)). However for practical computations one typically chooses to work in a simpler
abelian category. Indeed choosing a stability condition on D(coh(X)) corresponds to the choice
of an abelian category A and a stability condition on A. In this case we will discuss, for example,
BPS states computed from the moduli space of ideal sheaves at large radius, or from the moduli
space of cyclic modules of a quiver in a certain chamber. These objects are mathematically
quite different, yet describe the same physical setting up to wall-crossings. We will provide
a new viewpoint using persistent topology.

6.1 Chamber structure

We begin by considering the chambers of the form C
[
MS1

n+1,MS1
n

]
. These chambers are directly

connected to the core region, where only the D6 brane exists as a stable state, situated near
the wall with ϕ = 1

3 arg z + π
3 . The partition function in each chamber can be obtained by

applying the KSWCF (2.1). Because of the particularly simple charge configuration of the bound
states, the wall-crossing formula reduces to the semi-primitive version [21], which amounts in
multiplying the partition function by the partition function of a halo of D0 and D2 branes. After
crossing the appropriate walls of marginal stability, the core D6 brane will be bound to a halo
of charge γh = (0, 0,−m,n). In decreasing ϕ from the core region, the first walls encountered
are of the form MS1

n.

We introduce the standard notation q = eλ where λ is the topological string coupling, and
Q = e−z. The resulting partition function in the chambers C

[
MS1

n+1,MS1
n

]
is

Zn(q,Q) =
n∏
k=1

(
1− (−q)kQ

)k
. (6.1)

In these chambers the physical BPS spectrum is particularly simple and can be obtained simply
by expanding (6.1) at any fixed n ≥ 0.

At large radius the effective dynamics of the bound states is captured by a six dimensional
topological field theory, which arises as the topological twist of the N = 2 supersymmetric
abelian theory obtained as low energy approximation to the DBI action on the D6 brane
worldvolume [15, 40]. To reach this chamber one has to cross all the chambers of the form
C
[
MS−1

n+1,MS−1
n

]
by taking smaller values for ϕ, for n −→ ∞. A notable feature of the large

radius chamber, as well as other chambers in local threefolds, is that walls of marginal stability
accumulate towards it, leaving a certain ambiguity to the statement “crossing all the walls”.
The behavior is similar to what happens in quantum field theory with BPS rays, which accu-
mulate to higher spin fields. Luckily in this situation the limit can be taken analytically. The
computation of the BPS spectrum can also be done directly by other means, confirming the wall
crossing prediction. The gauge theory partition function

ZXgauge(q,Q) =
∑
kβ

qkQβDTk,β(X)

can be evaluated explicitly by equivariant localization. In our notation Qβ = e−mz. Such
a partition function receives contributions from point like instantons located at the toric fixed
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points, say at the north and south pole of the base P1, as well as extended instantons fibered
over the P1. In the case of the conifold the result can be written in closed form as [40]

ZXgauge(q,Q) = M(−q)2
∞∏
k=1

(
1− (−q)kQ

)k
. (6.2)

We have used the partition function (6.2) to compute a large number of enumerative invariants
and used them to construct a point cloud.

In the noncommutative crepant resolution (NCCR) chamber, geometrical concepts are re-
placed by algebraic ones. We reach this chamber by taking smaller and smaller values of ϕ,
crossing all walls of the form MS−1

n until we reach the region 1
3 arg z < ϕ < 1

3 arg(z − 1). The
conifold point lies at the boundary of this region. Indeed in a noncommutative crepant reso-
lution ordinary geometrical notions don’t hold anymore and geometry is replaced by a certain
algebra. Such a phenomenon is generic in toric threefolds. This algebra is the Jacobian algebra
of an appropriate quiver [63]. The center of this algebra is the equation of the singular limit of
the threefold; in this sense the Jacobian algebra is a “resolution” of the singularity. The physics
of such resolutions can be understood in terms of a certain deformation of a cohomological
TQFT, called “stacky gauge theory”, which has been discussed at length in [15, 16, 17]. We
refer the interested reader to the review [12] for more details. The result can be summarized in
the partition function [63]

ZNCCR(q,Q) = M(−q)2
∞∏
k=1

(
1− (−q)kQ

)k(
1− (−q)kQ−1

)k
. (6.3)

Again we can compute the BPS degeneracies by a direct expansion and we will momentarily use
persistent homology to study their distribution.

Now we move to the study of the chambers C
[
MS−1
−n,MS−1

−n−1

]
. In those chambers, a different

qualitative phenomenon happens, namely the crossing of certain conjugation walls S after which
the core charge of the bound states, identified with the D6 brane at large radius, changes [2].
These conjugation walls are associated with particles becoming massless. As a consequence
there is a monodromy around the locus where the state becomes massless in the moduli space.
Upon crossing such walls the core charge changes according to the monodromy, while an extra
halo of particles appears to ensure charge conservation.

The partition function can be computed using the wall-crossing formula, giving [2]

Zn(q,Q) =

(
n∏
k=1

(
qkQ

)k)
M(−q)2

∞∏
k=1

(
1− (−q)kQ−1

)k ∞∏
k=n+1

(
1− (−q)kQ

)k
. (6.4)

Here the presence of the factor
( n∏
k=1

(
qkQ

)k)
is a consequence of the monodromy

Γ0 −→ Γ0 −
n∑
l=1

〈Γ0, γ1,l〉γ1,l,

which a core charge Γ0 undergoes after crossing the conjugation walls S (γ1,l,Γ0) for l = 1, . . . , n.
Each time a conjugation wall S (γ1,l,Γ0) is crossed, the core charge changes accordingly to the
above monodromy, and an halo appears, made of a filled Fermi sea of particles with charge γ1,l.
Therefore the nature of the bound states changes in a qualitative fashion, and we are interested
in seeing how does this change affects the distribution of BPS invariants.
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6.2 Topological analysis

As we have seen the structure of BPS states on the conifold has very distinctive features in
each chamber. We want now to understand at the qualitative level offered by the topological
analysis how the nature of the BPS bound states differs from one chamber to another. We
use the partition functions we have described above to generate a rather large number of BPS
invariants, as the coefficients of the expansion

ZC (q,Q) =
∑
k,m∈Z

Ω (γ = (1, 0,−m, k); C = (z, ϕ)) qkQm.

In our case this partition function is given by (6.1), (6.2), (6.3) and (6.4) respectively. We have
shown explicitly the chamber dependence as well as the charge vector of a state.

Figure 5. Spectra of BPS states for the conifold. The barcodes have been obtained using the lazy

witness complex LW(X, L, ε) on a point cloud of the form x = (k,m, log |Ω(γ; C )|). Left. Chambers of the

form C [MS1
n+1,MS1

n] for n = 90. The point cloud is made out of 1093 BPS invariants and the filtered

homology computation involves 3457 simplices. Right. The large radius chamber. The point cloud is

constructed with 1183 invariants and the filtered homology computation involves 3632 simplices.

Since for Calabi–Yau manifolds the degeneracies of BPS states grow rather fast, we take
the log of Ω(γ; C ). Therefore in all the cases our point cloud X contains vectors of the form
x = (k,m, log |Ω(γ; C )|), where the chamber C is specified by the value of the moduli (z, ϕ).

For each of the chambers under consideration we take around a thousands of BPS invari-
ants. For those partition functions in chambers C which depend on a choice of an integer n,
namely (6.1) and (6.4), we chose this integer high enough to provide enough invariants. Due to
the large number of states, we employ the lazy witness complex LW(X, L, ε), with 200 landmark
points. The computation of persistent homology leads to the barcode distributions shown in
Figs. 5, 6 and 7.

Let us understand what kind of topological information we can infer. Consider firstly Fig. 5.
On the left we have the chambers close to the core region, while on the right the large radius
chamber. The transition is very clear and by looking at the homology in degree one, we see
that the large radius chamber presents many more topological features. In a sense moving
towards large radius there is an increase in complexity as more cycles form in an irregular
pattern. We interpret this as evidence that the stability condition which identifies the large
radius chamber offers more possibilities to construct BPS states, while the enumerative problem
in chambers nearby the core region is comparatively poorer. Interestingly the length of the
long-lived persistent classes is roughly comparable. Looking at the zeroth Betti number in both
cases most homology classes have died by ε ' 1.5.
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Figure 6. Spectra of BPS states for the conifold. The barcodes have been obtained using the lazy witness

complex LW(X, L, ε) on a point cloud of the form x = (k,m, log |Ω(γ; C )|). Left. The noncommutative

crepant resolution chamber. The point cloud is made of 1165 invariants and the number of simplices is

4361. Right. Chambers of the kind C [MS−1
−n,MS−1

−n−1] for n = 45. The point cloud has 1230 points and

the number of simplices is 5095.

Also quite interesting are the similarities between the large radius chamber, Fig. 5 on the right,
where BPS invariants count ideal sheaves on the resolved conifold, and the noncommutative
crepant resolution chamber, Fig. 6 on the left, where BPS invariants count cyclic modules over
the path algebra of the framed conifold quiver. Despite the difference between the enumerative
problems the shapes of the barcode diagrams are roughly comparable, the main dissimilarity
being the presence of more homology classes in degree zero which persist over ε ' 3 in the
large radius region. Of course while we are discussing the distribution of barcodes, the actual
homology classes have a different behavior in both cases, and it would be very interesting to
try to interpret each interval, especially in degree one. The abundance of non-trivial 1-cycles
in both cases points out that, if we try to interpret the point clouds as a discretization of an
underlying geometry, at a generic point within this geometry there should exist a canonical set
of circle coordinates.3

Another intriguing phenomenon happens when continuing beyond the noncommutative cre-
pant resolution chamber, to chambers of the form C

[
MS−1
−n,MS−1

−n−1

]
. We have computed the

persistent homology in Fig. 6 on the right and Fig. 7 for two values of the chamber label n. As n
increases the barcode distribution interpolates between the noncommutative chamber and the
large radius chamber. In Fig. 7 the similarities with Fig. 5 on the right, are striking, despite the
actual generating functions being distinct. A physical interpretation of these chambers is non
straightforward; as explained in [2], proceeding by keeping z fixed while sending ϕ to zero, makes
the large radius approximation to the periods used to compute the central charges, less reliable.
What we seem to be finding is that getting further and further from the noncommutative cham-
ber, one reproduces a similar structure to large radius. Indeed this is reminiscent of the result
of [63] which relates the partition function of large radius Donaldson–Thomas invariants, and
the partition function of noncommutative Donaldson–Thomas invariants, with the large radius
partition function of the flipped conifold, where a topology changing transition has replaced the
exceptional divisor with a topologically distinct P1. According to this interpretation, the shape
of the barcode distribution in Fig. 7 seem to imply that the only difference with the large radius

3Canonical in the sense of being associated to the 1-form dual to the 1-cycle. More precisely, assuming there
is no torsion, one can lift cohomology from Z2 to R, and then pick the harmonic representative of the 1-form,
which locally integrates to a smooth coordinate function.
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Figure 7. Chambers of the kind C [MS−1
−n,MS−1

−n−1] for n = 90. The point cloud has 1183 points and

the number of simplices is 3632.

BPS states is the core charge, which has changed due to crossing a large number of conjugation
walls S . It would be very interesting to have an independent check in the low energy effective
theory.

7 Quantum geometry of compact threefolds

Now we want to discuss BPS invariants for a few compact Calabi–Yau varieties. So far we have
fixed an underlying compactification and we have studied how the BPS spectra are affected
by crossing walls of marginal stability. We will now take a somewhat different perspective, by
comparing BPS spectra in different compactifications but in the “same” chamber, at large ra-
dius. What we mean by the same chamber is as follows. The topological string on a compact
Calabi–Yau X captures a particular collection of BPS states which play a role in the micro-
scopic description of certain five dimensional black holes [43], the Gopakumar–Vafa invariants
[36, 37]. It is generically believed, and in some cases proven, that the generating function of
Gopakumar–Vafa invariants coincides with the generating function of Donaldson–Thomas in-
variants in a certain chamber, upon a change of variables. This chamber captures physically
BPS spectra of bound states of D0/D2 branes with a single D6 brane. Having a single D6 brane
means that the relevant moduli space is the moduli space of ideal sheaves on X. Implicit in the
definition of an ideal sheaf, is a notion of a chamber, for which ideal sheaves represent stable
objects. We will compare BPS spectra in such a chamber for different Calabi–Yaus.

We have chosen certain one parameter varieties for which a great deal is known about
Gopakumar–Vafa invariants, and the topological string explicitly solved up to a certain ge-
nus [39]. Thanks to Castelnuovo’s theory of curves, these results allow for the computation of
several Donaldson–Thomas invariants [38].

7.1 Topological strings on one parameter CY

We will discuss the distributions of BPS invariants on certain one-parameters models where
the topological string amplitudes were computed explicitly in [39] to high genus. These models
have all the form of complete intersection Calabi–Yaus in weighted projective spaces. Complete
intersection manifolds are constructed as the zero locus of a finite number of homogeneous
polynomials in a product of projective spaces. If we denote a weighted projective space by
Pn−1(w1, . . . , wn), then a complete intersection CY of degree (d1, . . . , dk) will be denoted by
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Xd1,...,dk(w1, . . . , wn) and wm will denote the m times repetition of the weight w. For example
the quintic threefold X5(1) is obtained as the zero locus of a single degree 5 polynomial in P4.

A collection of 13 such threefolds was discussed in [39]. All these one-parameter models have
the property that their mirror has a Picard–Fuchs system with three regular singular points.
The moduli spaces have the formM(X) = P1 \{0, 1,∞} where the point denoted by∞ denotes
the point of maximal monodromy at large radius, where we will discuss BPS spectra of D-branes
bound states. The other two points correspond to a conifold point and a point with rational
branching, for example an orbifold point corresponding to a Gepner model. The constraints
imposed by modularity on the topological string amplitudes implies that these can be written
as polynomials over a ring generated by certain modular objects.

In particular the holomorphic ambiguity in the topological amplitude is fixed by the specific
form of the amplitude near the conifold and orbifold points; for example at the conifold points,
the “gap condition” determines the form of the poles in the amplitude via knowledge of the light
BPS states, and this structure is universal [39].

7.2 BPS invariants

To the Calabi–Yaus X under consideration one can associate the partition function

ZGV(X; q, t) =
∞∏
d=1

 ∞∏
r=1

(
1− qre−dt

)rGV0,d ∞∏
g=1

2g−2∏
l=0

(
1− qg−l−1e−dt

)(−1)g+l
(

2g−2
l

)
GVg,d

 .
The topological string free energy F (X; q, t) = logZGV(X; q, t) was computed in [39] using the
techniques outline above, up to high genus. Here t represents the Kähler modulus of the Calabi–
Yau, while q = eiλ, with λ the topological string coupling. The integers GVg,d are the Gopakumar–
Vafa invariants of [36, 37]. The free energy F (X; q, t) has an interpretation as a certain coupling
in the low energy N = 2 supergravity. This term can be obtained by a one-loop computation in
a constant graviphoton background, where it receives contribution from BPS particles engineered
by an M2 brane wrapping a degree d curve, in the M-theory limit of the type IIA string.
The Gopakumar–Vafa invariant GVg,d is a twisted supersymmetric index which captures the
contribution of these particles to the effective coupling. The quantum numbers of these particles
can be labelled by the representation of the little group SO(4) ∼ SU(2)L⊗SU(2)R. It turns out
that only supersymmetric particles with quantum number g associated with representations of
SU(2)L of the form[

2(0) +

(
1

2

)]⊗g
contribute to the index.

These couplings and the invariants GVg,d play a very important role in the microscopical
description of black holes in quantum gravity. A five dimensional black hole can be engineered
via an M-theory compactification on a Calabi–Yau, by an M2 brane wrapping a curve β =
dt ∈ H2(X,Z). The microscopic degeneracies of such a black hole, with charge β and angular
momentum m in SU(2)L can be computed as functions of the invariants GVg,d, and reproduce
precisely the macroscopic entropy [43].

In this section we will be more interested in certain D-brane bound states which are dual
to the above description. We will study numerical Donaldson–Thomas invariants of the moduli
space of ideal sheaves of X which physically represent the degeneracies of BPS bound states of
a D6 brane wrapping X with a gas of D0/D2 branes. Conjecturally the duality has the form

ZDT(X; q, t) =
∑
n,d

DTn,dq
ne−dt = ZGV(X; q, t)M(−q)χ(X), (7.1)
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where

M(q) =

∞∏
n=1

(
1− qn

)−n
is the MacMahon function. Using the knowledge of the topological string amplitude computed
in [39] we will follow the approach of [38] to compute the BPS invariants DTn,d up to a certain d.
By expanding (7.1) one sees that the invariant DTn,d with fixed d, receives contributions from all
the invariants GVg,d′ with d′ ≤ d, but arbitrary g. Therefore in principle one should know the full
right hand side of (7.1) to compute the invariants DTg,d. However for the models at hand there
is an enormous simplification coming from Castelnuovo theory. Roughly speaking Castelnuovo’s
theory provides a bound on the genus g of a degree d curve in a projective space, and certain
generalizations thereof. For the models we are studying, the Castelnuovo bound is either known
or estimated in [38]. Due to the Castelnuovo bound, given a degree d, there is a gmax so that
for g > gmax all the GVg,d are vanishing. For example for the quintic X5(1)

gmax ≤
1

10

(
10 + 5d+ d2

)
.

Taking as inputs the invariants GVg,d of [38, 39] and using Castelnuovo’s theory, we have com-
puted all the BPS degeneracies DTn,d up to d = 9 and n = 9 for the complete intersection
varieties X5(1), X3,3

(
16
)
, X4,2

(
16
)
, X3,2,2

(
17
)
, X2,2,2,2

(
18
)

and X4,3

(
15, 2

)
, to have an homoge-

nous set of data to use as a point cloud. We have similar computations for the remaining of
the 13 one parameter models, but with less data; the results are in line with what we will discuss
momentarily but we will not include them here.

7.3 Topological analysis

We collect and discuss here our results. Out of our physical settings we construct a number of
point clouds X which have the form x = (d, n, log |DTn,d|) for x ∈ X. Again we are taking the
logarithm of the degeneracies. As we have already stressed this should be handled with care,
since the logarithm is likely to wash out more subtle topological features in the BPS spectra.
However as already explained this is not a problem in our case, since we are not using persistent
homology to determine the properties of a BPS spectrum on its own, but to compare various
spectra. From a purely computational perspective, taking the logarithm is almost a necessity.
The BPS degeneracies that we are discussing correspond to black hole microstates and on general
grounds in quantum gravity these numbers grow exponentially.

Let us apply our formalism. We construct the point cloud X with BPS spectra consisting of
108–135 states, depending on the geometry. These are all the non-vanishing Donaldson–Thomas
invariants DTn,d of the compact threefold up to degree d = 9, and n = 9 (chosen in order to
have point clouds of roughly the same order). Out of X we construct the family of topological
spaces Xε and the Vietoris–Rips complex VRε(X). Then we pass to the homology Hi(VRε(X);Z2)
and look at the topological features of the N-persistence modules.

One immediate feature of Figs. 8–10 is that they all look rather similar. The differences
between the distributions of barcodes are minimal. For certain geometries the H0 barcodes are
slightly more long-lived and for others the H1 distribution is a bit more regular. However these
differences, despite the damping due to the logarithmic scale, are still very small and it is natural
to think that there is a physical mechanism behind this.

Of course there is a natural candidate for the problem at hand: the universality expected for
black hole physics. The degeneracies of black hole microstates must be such as to recover the
macroscopic entropy, given by the area law: for the large charges the entropy scales with the area
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Figure 8. Barcodes for the distribution of Donaldson–Thomas invariants on compact Calabi–Yaus. The

computation uses the Vietoris–Rips complex VRε(X) build on a point cloud X whose generic element is

x = (d, n, log |DTn,d|). We give explicitly the number of simplices used in the computation. Left. The

quintic X5(1), with 135 BPS invariants, from 2662 simplices. Right. The variety X3,3(16), with 121 BPS

invariants, from 3472 simplices.

Figure 9. Barcode computation, same as in Fig. 8. Left. The variety X4,2(16), with 126 BPS invariants,

from 3200 simplices. Right. The variety X3,2,2(17), with 115 BPS invariants, from 3795 simplices.

of the black hole horizon. Furthermore the area law receives an infinite series of higher derivative
corrections [51] which are expected to be determined by the topological string [21, 49, 50, 57].

What we are seeing here is that also the topological features of the BPS spectra (but not the
actual values of the BPS invariants, which fluctuate wildly between different geometries) appear
to be universal. Note that the usual ideas about black hole universality refers to the emergence
of universal features in the large charges expansion. Here we are dealing with the BPS spectrum
without any limit (although it should be noted that from a similar partial knowledge, the authors
of [38] could extrapolate a large order result which agrees with the macroscopic predictions).

It is instructive to compare this behaviour with the results of Section 6, as seen in the
Figs. 5, 6 and 7. Consider first the H0 barcodes. In the case of compact threefolds they are
evenly distributed, not too distant from an average lifespan at around ε ∼ 2. On the other
hand in the case of the conifold, we see in all chambers a tendency to cluster rather rapidly,
with many barcodes disappearing almost immediately; here the main topological feature is
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a smaller number of connected components. Similarly in the conifold case the behaviour of the
H1 barcodes is very irregular, with relatively long lived cycles appearing at every length scale.
This is contrasted with the case of compact threefolds. Indeed from Figs. 8, 9 and 10 we see that
the appearance of non trivial cycles is mostly contained within a certain length scale, around
ε ∼ 3. These topological features imply that in the case of compact threefolds the distribution
of BPS degeneracies appears more regular and uniform, when compared with the case of the
conifold where the BPS degeneracies cluster in fewer connected components.

Figure 10. Barcode computation, same as in Fig. 8. Left. The variety X2,2,2,2(18), with 108 BPS

invariants, from 4163 simplices. Right. The variety X4,3(15, 2), with 133 BPS invariants, from 2988

simplices.

It is natural to believe that what we are seeing in the case of compact threefolds is how
universal aspects of black hole physics impact the topological features of the distribution of BPS
states. In particular it is not just the shape of the barcode distribution, but the actual lengths
and positions of the barcodes which are comparable, both in degree zero and one. We stress again
that the values of the BPS invariants and the corresponding point clouds are very different from
case to case. It is natural to conjecture that this phenomenon would become more pronounced
were we to increase the number of BPS invariants in the point clouds. To be more precise we
put forward the following conjecture, which we expect to be valid at least for one-parameter
Calabi–Yaus: as the number of BPS invariants increases, approaching the large charge limit,
the N-persistence modules associated with H0 and H1 tend to universal N-persistence modules.
Note that if we interpret the point clouds as a discretization of an underlying surface, we can
rephrase the above statement in terms of a single universal homotopy class of surfaces, governing
the distribution of BPS states.

Assuming that such a conjecture is true, it would seem natural to imagine that such a homo-
topy class of surfaces is determined by the attractor mechanism. Unfortunately we do not now
how such an explicit link could be realized.

It is clear that we cannot draw any conclusive statement from the limited spectra we have
analyzed here. To check our conjecture directly would require a better knowledge of the BPS
spectra to higher values of the curves’ degree, and possibly for a larger sample of Calabi–Yaus.

8 N = 4 dyons and quantum black holes

As next example we now consider dyons in an N = 4 compactification on K3× T2. The reason
to consider this example is that contrary to the cases discussed in the previous section, the BPS
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invariants are directly constrained by modularity and appear as coefficients of certain number
theoretical functions. Indeed in this case the high degree of supersymmetry and the action
of the modular group SL(2;Z) × SO(22, 6;Z) of S- and T-dualities allows for explicit counting
functions for BPS states [22]. The number of 1/4 BPS states can be written as coefficients of the
Fourier expansion of 1/Φ10, where Φ10 is the Igusa cusp form of weight 10. These coefficients
represent indices of BPS bound states computed at weak string coupling; as the string coupling
grows the geometry backreacts and a black hole can form. Certain Fourier coefficients of this
expansion then represent degeneracies of black holes microstates which can then be compared
with the macroscopic thermodynamical quantities [18, 48, 49, 61]. We will be interested in the
interplay between such counting functions and modularity; the relevant counting functions are
meromorphic Jacobi forms and the associated mock Jacobi forms are interpreted as partition
functions of single-centered black holes [19]. We want to discuss how (mock) modularity of
the microscopic degeneracies impacts the topological features of the distribution of BPS states.
For a macroscopic supergravity perspective on how modularity affects the counting functions,
see [46, 47].

The charges of the BPS states take values in the lattice of electric-magnetic charges Γ6,22
e ⊕

Γ6,22
m , where each factor is isomorphic to the lattice H2(K3;Z)⊕ 3Γ1,1, and Γ1,1 is an hyperbolic

lattice. The microscopic degeneracies can be labelled by three T-duality invariants (n, l,m).
They can be extracted from the expansion of the Siegel modular form of weight 10, Φ10(τ, z, v),
which is itself a function of the chemical potentials for the T-duality invariants [22]. By writing
w = e2πiv, we can expand

1

Φ10
=
∑
m≥1

ψm(τ, z)wm,

where the functions ψm(τ, z) are meromorphic Jacobi forms of index m [19]. Similarly we will
also introduce the notation q = e2πiτ and ζ = e2πiz. A meromorphic Jacobi form ψ(τ, z) of
weight k and index m is holomorphic in τ and meromorphic in z and transforms as

ψ

(
aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)ke

2πimcz2

cτ+d ψ(τ, z), with

(
a b
c d

)
∈ SL(2,Z), (8.1)

under the modular group, and enjoys the elliptic transformation

ψ(τ, z + λτ + µ) = e−2πim(λ2τ+2λz)ψ(τ, z), (8.2)

under translations of z by Zτ + Z, where λ, µ ∈ Z.
All the expansions we shall consider in this section are meaningful for a particular choice of

the compactification moduli which correspond to the attractor region. Explicitly we can write
the meromorphic Jacobi forms ψm(τ, z) in terms of the elliptic genus of a symmetric product
of K3 surfaces [19]

ψm(τ, z) =
1

A(τ, z)

1

η(τ)24
E
(
τ, z; Symm+1(K3)

)
. (8.3)

We have introduced the standard notation

A(τ, z) =
θ2

1(τ, z)

η6(τ)
,

η(τ) = q
1
24

∏
n≥1

(1− qn)

B(τ, z) = 4

(
θ2

2(τ, z)

θ2
2(τ)

+
θ2

3(τ, z)

θ2
3(τ)

+
θ2

4(τ, z)

θ2
4(τ)

)
.
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and the last function will be used momentarily. The first few ψm functions can be written down
explicitly [19]

ψ1 =
1

4η24

(
9A−1B2 + 3E4A

)
,

ψ2 =
1

27η24

(
50A−1B3 + 48E4AB + 10E6A

2
)
,

ψ3 =
1

384η24

(
475A−1B4 + 886E4AB

2 + 360E6A
2B + 199E2

4A
3
)
,

ψ4 =
1

72η24

(
51A−1B5 + 155E4AB

3 + 93E6A
2B2 + 102E2

4A
3B + 31E4E6A

4
)
.

We have introduced the Eisenstein series Ek of weight k, with k ≥ 2,

Ek(τ) = 1− 2k

Bk

∑
n≥1

σk−1(n)qn

with σk−1(n) =
∑

d|n d
k−1 and Bk the k-th Bernoulli number. We will use the explicit form

of these functions to compute the degeneracies of single centered black holes and study their
distributions.

Meromorphic Jacobi forms are associated to mock Jacobi forms. This in practice means that
the functions ψm can be written as a sum of a finite part and a polar part

ψm = ψFm + ψPm.

Both are holomorphic in τ , but while the finite part is holomorphic also in z the polar part is not
and is indeed completely determined by the poles of ψm. The finite part ψFm does not transform
as a Jacobi form, but (8.1) is recovered upon adding the polar part ψPm. Both ψFm and ψPm still
enjoy the elliptic transformation (8.2).

Physically this decomposition corresponds to the fact that the Fourier coefficients of ψFm
capture the degeneracies of single centered black holes, while the polar part ψPm determines
the jump in the degeneracies due to decay into two centered black holes at walls of marginal
stability [19]. More complicated decays are forbidden by N = 4 supersymmetry (in the sense
that too many supercharges realized non-linearly produce too many fermionic zero modes to
contribute to the relevant indices). The presence of the polar part is necessary by consistency
with wall-crossing, but its contribution has to be subtracted to determine the degeneracies of
single centered black holes [19]. In particular the polar part of ψm is known for all m

ψPm(τ, z) =
p24(m+ 1)

η24(τ)

∑
s∈Z

qms
2+sζ2ms+1

(1− ζqs)2
.

The function pn(m) counts integer partitions of m with n available slots. The finite part ψFm is
a mock Jacobi form of index m, which means that it can be completed by ψPm to give the Jacobi
form ψm. If we expand

ψFm =
∑
n,l

c(n, r)qnζ l,

then the precise physical statement is that the microscopic degeneracies d(n, l,m) corresponding
to single centered black holes are related to the coefficients of ψm as d(n, l,m) = (−1)l+1c(n, l)
for n ≥ m. Furthermore on can restrict to the range 0 ≤ l ≤ m due to elliptic invariance of ψm.

We have computed the barcodes for the coefficients of ψFm and ψm for m = 1, 2, 3, 4, up to
a certain value of n. We want to understand the impact on the degeneracies of subtracting the
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Figure 11. Barcodes for the spectrum of single-centered BPS N = 4 dyons. The point cloud is

constructed out of vectors of the form x = (log |d(n, l,m)|,m, l, n). The degeneracies are obtained from

the coefficients of ψFm, having subtracted the polar part from ψm. To compute the persistent homology

we use the Vietoris–Rips complex VRε(X) with 254 BPS states, running over 254073 simplices.

two centered contribution. We have also computed the persistent homology for ψFm relaxing the
condition 0 ≤ l ≤ m to see explicitly the constraint imposed by elliptic invariance on the data
set. The results are presented in Figs. 11 and 12. Let us now discuss them.

Consider Fig. 11. The point cloud is constructed out of degeneracies d(n, l,m) of microstates
of single centered black holes, obtained from subtracting the polar part from ψm. Differently
from all the cases we have seen in the previous sections, the persistent homology of N = 4
single centered black hole degeneracies has non-trivial classes in degree 2. These are not much
long-lived, albeit their lifespan is comparable with those we see in the classes for the first Betti
number. These classes represent 2-cycles regularly distributed within the point cloud. One
interesting feature is that their lifespans are mostly distributed around the same scale ε ∼ 3.
Around this scale a number of 2-cycles appear simultaneously and with the same size, since
all the lifespans have comparable lengths. This pattern is somewhat reminiscent of the “voids”
found in the distribution of flux vacua in rigid Calabi–Yaus in [20]. In those class of type IIB
string flux compactification the only complex structure parameter in the flux superpotential is
the axion-dilaton τad. When one studies the distribution of minima of the flux superpotential
in a fundamental domain of SL(2;Z) in the τad-plane, one discovers empty regions of the form
of circles of various sizes, with a big degeneracy of vacua at the center. This pattern is due to
the SL(2;Z) symmetry. It is natural to suspect that the similar structure we see in Fig. 11 is
due to the (mock) modularity of the degeneracy partition function. Partial evidence comes from
a persistent homology study of the flux vacua of [20], discussed in [11], where a similar pattern
in the persistent homology is reproduced.

In Fig. 12 on the left, we show the results of the same computation, now done including also
two-centered black holes. The generating function is now the full ψm and not ψFm. The barcode
distributions are essentially identical to those in Fig. 11 (again we stress that the actual numbers
in the point cloud are in general different). In other words the presence of two-centered solutions
has no effect whatsoever at the level of persistent homology. One should note however that the
expansions we are using are valid in a region of the moduli space corresponding to the attractor
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Figure 12. Barcodes for the spectrum of N = 4 dyons, the point cloud has the same form as in

Fig. 11. Left. The degeneracies include the contribution of two-centered states, and are obtained from

the expansion of ψm. The point cloud contains 254 BPS states and the persistent homology computation

runs over a total of 255260 simplices. Right. Single centered degeneracies, but now relaxing the condition

0 ≤ l ≤ m, that is including modular elliptic images. The point cloud contains 707 states and the

homological computation runs over 1318999 simplices.

region. It is therefore natural that the contribution of single centered black holes is dominating.
The situation in other regions of the moduli space might be rather different.

Finally Fig. 12 on the right, shows again the persistent homology of single centered black holes,
but relaxing the condition 0 ≤ l ≤ m. We are therefore computing the coefficients of ψFm this
time including the images under elliptic transformations. Perhaps unsurprisingly the barcode
distribution is again basically the same, where however every feature is more pronounced.4 Here
we see at the level of topology the structure of a (mock) modular form: the barcodes give a visual
representation of the mechanism which connects various coefficients via elliptic transformations.

9 Mathieu moonshine

As a final example we will apply our techniques to study the coefficients of certain number
theoretical functions which play an important role in string theory compactifications on K3 geo-
metries. Mathieu moonshine is based on the observation of Eguchi, Ooguri and Tachikawa [27]
that the coefficients of the Fourier expansion of the elliptic genus of K3 can be written as sum
of dimensions of the irreducible representation of the Mathieu group M24. This observation is
a generalization of the monstrous moonshine, where the fact that sums of the dimensions of
the irreducible representations of the monster group appear as coefficients in the J-function,
has an explicit realization via certain modules in bosonic conformal field theory. These facts
have been reviewed in [9, 23, 30], to which we refer the reader for further references, and whose
presentation we will follow. We shall also assume that the relevant conjecture formulated in the
moonshine literature are true.

In the case at hand the monster group, the largest sporadic group, is replaced by the Mathieu
group M24, which is a subgroup of the group of permutations with 24 elements which preserves

4In the comparison one should take into account that this point cloud contains many more BPS invariants
that in the previous cases, which alters the precise position at which features appear and disappear. Also since
the figure has to accommodate all the degree zero homology classes provided by the initial points, many features
are pushed up. For example the bump at around ε ∼ 2 of Fig. 11 in degree zero, is now visible in Fig. 12 in the
first upper third of the frame.
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a certain fixed set, known as the extended binary Golay code. The conformal field theory is
a N = 4 superconformal sigma model with target space K3. The spectrum of supersymmetric
string states is encoded in the elliptic genus

E (τ, z) = trHRR

(
(−1)J0+J0yJ0qL0− c

24 qL0− c
24

)
, (9.1)

where q = e2πiτ and y = e2πiz, and L0, L0, J0 and J0 are the zero modes of the corresponding
operators in the superconformal algebra. The trace is taken over the Ramond–Ramond sector
and only the right moving ground states contribute. As a result the elliptic genus is independent
of τ . Such states form a subspace of HRR which decomposes according to the representations of
the N = 4 supersymmetry algebra. As a consequence the elliptic genus can be decomposed as

E (τ, z) = 20H 1
4
,0(τ, z)− 2H 1

4
, 1
2

+
∞∑
n=1

AnH 1
4

+n, 1
2
(τ, z), (9.2)

where

Hh,j(τ, z) = trHh,j

(
(−1)J0yJ0qL0− c

24

)
are the characters over the irreducible representation spaces Hh,j labeled by the conformal
dimension h and the su(2) spin j. In particular the An are dimension of representations Rn
of M24 (the same is also true for the first two coefficients interpreted as virtual representations).

Of course this construction is closely related to the situation of Section 8. In that case the
partition function of N = 4 dyons in a string compactification on K3×T2 is proportional to the
generating function of the elliptic genera of the symmetric products of K3s, via (8.3). In this
section we will focus on elliptic genera from a different perspective.

The elliptic genus (9.1) has an interesting equivariant (or twisted) generalization. Given an
element g ∈M24, we have

Eg(τ, z) = trHRR

(
g(−1)J0+J0yJ0qL0− c

24 qL0− c
24

)
. (9.3)

In this case a version of (9.2) holds, where the dimension of the representations are replaced by
trRng (e similarly for the virtual representations).5 In particular we can rewrite (9.3) as

Eg(τ, z) =
θ2

1(τ, z)

η3(τ)
(χgµ(τ, z) +Hg(τ)) ,

where χg = trRg is the character of the defining representation Rn of M24 and

µ(τ, z) =
iy1/2

θ1(τ, z)

∑
n∈Z

(−1)n
ynqn(n+1)/2

1− yqn
,

is an Appell–Lerch sum. The Mathieu McKay–Thompson series Hg(τ) are weight 1
2 mock

modular forms, with shadow χgη(τ)3, and can be expanded as

Hg(τ) = q−
1
8

(
−2 +

∞∑
n=1

qntrKng

)
, (9.4)

5We have been a bit imprecise with the definitions since K3 sigma models have a moduli space. Implicitly we
are always choosing a point in the CFT moduli space where the subgroup of M24 generated by g is a symmetry
of the Hilbert space.
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where K =
⊕∞

n=1Kn is an infinite dimensional M24 module [8, 26, 28, 29]. When g = 11,
(9.4) is the generating function of the degeneracies of massive irreducible representations of the
worldsheet N = 4 conformal algebra, as they appear in (9.1) and (9.2).

One can see that Eg(τ, z) only depends on the conjugacy class [g] of g ∈M24. The conjugacy
classes lead to 21 distinct elliptic genera; they are labelled by g =1A, 2A, 2B, 3A, 3B, 4A,
4B, 4C, 5A, 6A, 6B, 7AB, 8A, 10A, 11A, 12A, 12B, 14AB, 15AB, 21AB, 23AB. The notation
is standard and used in [9]. For each conjugacy class [g], Table 2 of [9] gives χg and the non
universal ingredients needed to construct the function Hg(τ).

The equivariant elliptic genus has the Fourier expansion

Eg(τ, z) =
∑

n≥0,l∈Z
cg(n, l)q

nyl. (9.5)

Due to modularity one has cg(n, l) = cg(4n − l). These coefficients satisfy cg(k) = strK̂kg,

where K̂k is the degree k component of a certain infinite dimensional Z-graded M24 module,
obtained from K, and whose precise form is known but not relevant for the present discussion.
The coefficients cg(n) thus have a precise relation to the irreducible representations of M24.
From the determination of the exact coefficients, their distribution and asymptotic formulae,
one gathers essential informations about the representation theory of M24 and its realization as
a vertex operator algebra.

Now we want to address the problem from a different angle and use our formalism to un-
derstand topological features of the distributions of the coefficients of the equivariant elliptic
genera Eg(τ, z).

We construct a point cloud Xg whose elements have the form x = (log |cg(n, l)|, n, l) for each
conjugacy class associated to an element g ∈M24. Using the results of [9] we construct explicit-
ly Eg(τ, z) and compute the first non-vanishing coefficients up to q20. Again the coefficients are
growing very fast, and the logarithm of the degeneracies makes it easier to capture the essential
features using persistent topology. In all cases the point cloud consists of 259 points. For
each [g] listed as above, we construct the N-persistence modules Hi(VRε(Xg);Z2) and compute
their barcodes.

We collect all the results in Appendix A. All the conjugacy classes present similar topological
features. It is quite likely that the explanation for this fact is modularity, which as we have
seen in the previous section produces strong constraints on the allowed persistent homology
classes. We stress that we are not suggesting any relation whatsoever between the coefficients of
different elliptic genera; apparently modularity has a subtle way of showing up in the topological
characterization of point clouds. It would be very interesting to pursue this issue further, if one
general grounds given the information of modularity one can predict persistent features in the
distribution of barcodes. Also note that the persistence modules as discussed in Appendix A,
have only non trivial H0 and H1. On the other hand we have seen in Section 8 that a non
trivial H2 was present and we interpreted this fact as a consequence of modular invariance. Note
however that in Section 8, the point cloud was constructed out of the black hole degeneracies,
related to the coefficients of the elliptic genus by a multiplicative lift. To properly compare
the effects of modularity in the two cases, we should consider the multiplicative lift of the
equivariant elliptic genera (9.5). The idea of investigating a precise relation between modularity
and topological features is very interesting, but we shall leave it to the future.

Taking at face value that modularity affects the persistent homology groups, there are still
interesting more subtle feature in the barcode spectra. Indeed, even at the qualitative level, the
barcode distributions associated with the elliptic genera Eg(τ, z), fall into two families.

The first family contains the conjugacy classes: 2B, 3B, 4A, 4C, 6B, 10A, 12A, 12B, 21AB;
the second family the remaining classes. What singles out the first class is that, despite having
a similar form, the barcodes for the zeroth and first homology are consistently more short-lived
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than those in the second family. In the Betti number zero distribution, the persistent classes all
die for values of the proximity parameter ε ∼ 2. In degree one the features are less clear-cut,
the barcode distribution tends to be centered around smaller values of ε, and most persistent
classes disappear before ε ∼ 3. Another striking feature is the number of simplices involved in
the computation of persistent homology, which is not apparent just by looking at the figures in
Appendix A. All the classes in the second family, namely 1A, 2A, 3A, 4B, 5A, 6A, 7AB, 8A,
11A, 14AB, 15AB and 23AB generate a number of simplices roughly comparable, around 65000–
68000. On the other hand the number of simplices generated in the Vietoris–Rips complex for
the first family fluctuates wildly, roughly in the range 38000–135000. This indications are very
qualitative, but from the behavior of the persistent homology it is natural to wonder if there is
any particular property that distinguish these families.

Indeed there is. The above classes in the first family are precisely the only conjugacy classes
in M24 which do not have a representative in the subgroup M23 of M24. Some classes of M23

are singled out by Mukai’s theorem, which states that given a finite subgroup of the group of
symplectic automorphisms of a K3 surface, it can be embedded into M23. The other classes
in M23 do not have a geometrical interpretation.

At the technical level there is a simple explanation of the appearance of these two families.
The above classes in the first family all appear to have χg = 0, which therefore acts as a relative
shift of the coefficients with respect to the elliptic genera of the second family. What is however
interesting here is that, with a bit of hindsight, such behavior could have been predicted just
by looking at the equivariant elliptic genera, for example computed via conformal field theory,
without any knowledge of the representation theory of Mathieu’s groups. At a very qualitative
level such features are captured by persistent homology.

10 Discussion

In this paper we have taken the perspective of persistent homology to analyze certain enumera-
tive BPS invariants which arise in some physical and number theoretical problems. The focus of
this paper has been the comparison between the topological features which characterize different
distributions. We have done so in different ways, by studying the same theory in different limits
or chambers, or by studying different theories in a similar situation. The underlying theme has
been that the distributions of supersymmetric states are rich in topological information, which
often can be clearly traced back to physical properties of the system under consideration. This
information is qualitative, and concerns the overall structure of the space of supersymmetric
states. In a sense it is a measure of its topological complexity.

On a more practical level, this note has taken to the task of exemplifying the uses of new
methods based on persistent homology to study physical problems in string and field theory;
as well as calling the attention of the computational topology community on the wealth of
enumerative and number theoretical datasets which arise in string/field theories. From a physical
perspective, to have a meaningful enumerative problem it is necessary to resort to protected
quantities, in this case supersymmetric states.

In the first part of the paper we have applied the tools of topological data analysis to the wall-
crossing phenomenon in N = 2 theories. The indices of BPS protected quantities jump at walls
of marginal stability and the effect of the jump can be in principle computed using a wall-crossing
formula. In Sections 4 and 6 we have studied how the topological properties of the BPS spectra
change upon crossing certain walls. We have done so for a quantum field theory, namely SU(3)
N = 2 pure Yang–Mills, which is the simple example of a theory containing wild chambers, and
for string theory on the conifold. Both theories exhibit physically interesting phenomena and we
have shown their impact on the persistent homology of the BPS spectra. In SU(3) Yang–Mills we
have analyzed the difference at the topological level between the spectra in the weak coupling and
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wild chamber, where there is an exponential growth of states and higher spin particles appear.
At the level of the barcodes the transition is striking, going from an ordered simple pattern to
an irregular (“wild”) distribution. This provides a qualitative measure of the complexity of the
spectrum in wild chambers. In the case of the conifold the transitions are less apparent. In this
case the physical features, for example the fact that physical states are realized as very different
objects in the large radius geometrical chamber or in the noncommutative crepant resolution
chamber, or the presence of conjugation walls where the core of the bound states changes, appear
as rather small fluctuations in the BPS barcodes. On the other hand the conifold is known to
be a very simple geometry, where all the BPS generating functions are known in closed form. It
would be interesting to carry on this analysis for more complicated non-compact threefolds.

In this context the main result that we have obtained is the explicit verification that in certain
cases one can indeed distinguish chambers by their topological features. To fully understand
how general is this result, and if one can turn it into a more quantitative statement, one should
undertake a systematic study of the distributions of BPS states over all chambers in several
models, both in field and in string theory. Practically this consists in starting from a chamber
where the spectrum is known, if available, and then using repeatedly the wall-crossing formula
until all the moduli space of vacua is covered. Repeating this for several theories will generate
a large amount of data. Then a natural direction for this research program is to try to classify
the typology of chambers by the topological features of the BPS distributions. Indeed we have
seen examples in Section 4 and 6 where the topological features between different chambers
differ drastically or are almost identical. However to make this ideas more concrete one should
devise more quantitative methods to compare barcodes.

In Sections 7, 8 and 9 we have considered BPS spectra in compact Calabi–Yaus. Interestingly
the series of Donaldson–Thomas invariants corresponding to black hole microstates in the large
radius limit of one parameter compact threefolds, all exhibit very similar persistent features.
We interpret this fact as another sense in which the microstate counting of black holes is uni-
versal. Note that in general when talking about black hole universality, one refers to the large
charge limit, where the supergravity approximation is reliable. In this limit the entropy obeys
the area law and the subleading corrections are expressed in terms of certain higher derivative
terms [51]. Here we are looking at the first few hundreds of microstates; these data are enough
to extrapolate the large order behavior, which agrees with the supergravity expectations [38].
Therefore some universal behavior is somewhat expected; it is interesting to see it arise at the
level of the barcodes.

Sections 8 and 9 are concerned with another aspect of the enumerative BPS problems, more
precisely in a few cases where the degeneracies of microstates arise as coefficients of known
functions. In this cases the relevant functions have modular properties, and we have focused on
the interplay between modularity and topology. Indeed we have seen experimentally in a series
of examples that modularity strongly constrains the shape of the barcode distributions. For
example we have seen in Section 9 that the barcodes associated with different elliptic genera
present clear similarities. Note that these functions are very different, in the sense that there
is no relation between the coefficients of the Fourier expansions of different elliptic genera.
On the other hand their topological features are quite similar and we interpret this fact as
a consequence of modularity, although we don’t have any a priori argument based on topology.
Quite remarkably, the subtle differences in the barcode distributions can be explained in term
of the different families of conjugacy classes of the Mathieu group M24.

We consider this note as a first step to understand the role that topological data analysis can
play in string/field theory problems. Clearly much is left to be understood and more extensive
computations of enumerative invariants are needed to put the results of this paper on firmer
grounds. Also there are several other problems which seem to be amenable to a topological
analysis as we have done in this paper. We list here a few which we are currently investigating:
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• It would be interesting to generalize this formalism to the study of string vacua. In par-
ticular a lot of compactifications of string theory are known, with N = 2 or N = 1
supersymmetry. The vacuum selection problem consists in the choice of one compactifi-
cation, or a class thereof, over the others due to some particular features. It is natural to
wonder if persistent homology has anything to say about this, if for examples the distri-
butions of vacua with certain features have distinctive topological properties with respect
to others. A first step in this direction appears in [11].

• A similar problem concerns the distribution of attractor points in the Calabi–Yau moduli
space. These points corresponds to black holes via the attractor mechanism, and as argued
in [53] they are deeply related to certain arithmetic aspects of string compactifications.

• One of the original motivations of this paper was if there is any particular distinctive feature
of BPS states in quantum field theory in the presence of defects. When a theory is modified
by the presence of a defect, new BPS states appear, those which can bound to the defect.
For example in six dimensional topological quantum field theories such a modification
is related to the conjectural enumerative problem of Donaldson–Thomas invariants for
moduli spaces of parabolic sheaves [10]. In four dimensions, it was shown in [13] that for
theories in which a line defect can be engineered via laminations on a curve [32], line defects
come in distinct families, which are generated by the action of a cluster algebra. Each
family is generated by the repeated action of a certain sequence of cluster transformations
and can contain an infinite number or a finite number of elements (including just one
element). It is natural to wonder if the analysis we have performed in Section 4 can be of
any use in the classification problem for defects.

• Persistent homology is very closed in spirit to Morse theory. It would be interesting to give
a more physical description of persistent homology classes via the correspondence between
Morse theory and supersymmetric quantum mechanics [65]. Viceversa, generalization of
this correspondence, for example along the lines of Floer theory, are likely to provide
interesting variants of persistent homology.

• The equivariant elliptic genera that we have discussed in Section 9 are just a small set of
functions which arise in the field of moonshine. It would be very interesting to generalize
our formalism to other similar problems. For example, it is an open problem to understand
the distribution of coefficients of the McKay–Thompson series for the monster moonshine
modules. Partial results on the asymptotics are in [23] and it would be interesting to see
what are the persistent features of these distributions.

We hope to report on these matters in the near future.

A Moonshine barcodes

In this appendix we collect all of the barcodes computed in Section 9. Every point cloud Xg

is constructed out of vectors of the form x = (log |cg(n, l)|, n, l) computed via the equivariant
elliptic genus Eg(τ, z). The labels of the conjugacy classes [g] are indicated on top of each figure.
Each point cloud consists of 259 states. For each conjugacy class [g] we use the Vietoris–Rips
complex to compute the persistence modules Hi (VRε(Xg);Z2). This appendix contains all the
associated barcodes distributions, each figure labelled by the conjugacy class.
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