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Abstract. The Burchnall–Chaundy problem is classical in differential algebra, seeking
to describe all commutative subalgebras of a ring of ordinary differential operators whose
coefficients are functions in a given class. It received less attention when posed in the (first)
Weyl algebra, namely for polynomial coefficients, while the classification of commutative
subalgebras of the Weyl algebra is in itself an important open problem. Centralizers are
maximal-commutative subalgebras, and we review the properties of a basis of the centralizer
of an operator L in normal form, following the approach of K.R. Goodearl, with the ultimate
goal of obtaining such bases by computational routines. Our first step is to establish the
Dixmier test, based on a lemma by J. Dixmier and the choice of a suitable filtration, to give
necessary conditions for an operatorM to be in the centralizer of L. Whenever the centralizer
equals the algebra generated by L and M , we call L, M a Burchnall–Chaundy (BC) pair.
A construction of BC pairs is presented for operators of order 4 in the first Weyl algebra.
Moreover, for true rank r pairs, by means of differential subresultants, we effectively compute
the fiber of the rank r spectral sheaf over their spectral curve.
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1 Introduction

In the 1923 seminal paper by Burchnall and Chaundy [3], the authors proposed to describe
all pairs of commuting differential operators that are not simply contained in a polynomial
ring C[M ]1, M ∈ D (cf. Section 2 below for notation). We note that, whenever two differential
operators A, B, commute with an operator L of order greater than zero, then they commute
with each other (cf. Corollary 2.4), and therefore maximal-commutative subalgebras of D are
centralizers; these are the main objects we seek to classify. In addition, we will always assume
that a commutative subalgebra contains a normalized element L = ∂n + un−2∂

n−2 + · · · + u0,
although some proviso is needed (cf., e.g., [2]), except in the ‘formal’ case when the coefficients
are just taken to be formal power series. We will say that the Burchnall–Chaundy (BC) problem
asks when the centralizer CD(L) of an operator L is not a polynomial ring (which we regard as
a ‘trivial’ case, for example C[G], with L a power of some G ∈ D) and we call such an L a “BC

This paper is a contribution to the Special Issue on Algebraic Methods in Dynamical Systems. The full
collection is available at https://www.emis.de/journals/SIGMA/AMDS2018.html

1Although the field of coefficients is not mentioned in [3], we work over the complex numbers C in this paper
unless otherwise specified.
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solution”. Burchnall and Chaundy immediately make the observation that if the orders of two
commuting L and B are coprime, then either one is a BC solution. Eventually [4], they were able
to classify the commutative subalgebras C[L,B] of rank one – the rank, defined in Section 2.2
for any subset of D, is the greatest common divisor of the orders of all elements of C[L,B]. The
classification problem is wide open in higher (than one) rank, although a theoretical geometric
description was given [18, 32].

In 1968 Dixmier gave an example [10] of BC solution: he showed that for any complex number
α in C the differential operators

L = H2 + 2x and B = H3 +
3

2
(xH +Hx), with H = ∂2 + x3 + α (1.1)

identically satisfy the algebraic equation B2 = L3 − α, and moreover, that the algebra C[L,B]
is a maximal-commutative subalgebra of the first Weyl algebra A1(C), since it is the centrali-
zer C(L) of the operator L in A1(C), thus providing the first example of BC solution with
C[L,B] of higher rank2 provided α 6= 0.

To give a rough idea of the difference between rank one and higher, we recall that centrali-
zers CD(L) have quotient fields that are function fields of one variable, therefore can be seen as
affine rings of curves, and in a formal sense these are spectral curves. Burchnall and Chaundy’s
theory for rank one shows that the algebras that correspond to a fixed curve make up the
(generalized) Jacobian of that curve, and the x flow is a holomorphic vector field on it. We
may (formally) view this as a “direct” spectral problem; the “inverse” spectral problem allows
us to reconstruct the coefficients of the operators (in terms of theta functions) from the data of
a point on the Jacobian (roughly speaking, a rank-one sheaf on the curve). The case of rank r > 1
corresponds to a vector bundle of rank r over the spectral curve: there is no explicit solution to
the “inverse” spectral problem (despite considerable progress achieved in [19, 20, 21]), except
for the case of elliptic spectral curves; we will refer to some of the relevant literature below,
but we will not attempt at completeness because our goal here is narrower, and the higher-rank
literature is quite hefty.

We now describe the goals and results of this paper. There are several properties, relevant to
the classification and explicit description of commutative subalgebras, both in the case of D and
of A1(C), that are difficult to discern: our plan is to address them with the aid of computation.

First, a centralizer CD(L) is known to be a finitely generated free C[L]-module and we use
a result by Goodearl in [12] to the effect that the cardinality of any basis is a divisor of n =
ord(L). By restricting attention to polynomial coefficients, in Section 5 we determine the initial
form of the elements in the centralizer of L, by automating the “Dixmier test” by means of
a suitable filtration. As a consequence, we can guarantee in Section 6.1 that the centralizer of an
operator of order 4 in the first Weyl algebra A1(C) is the ring of a plane algebraic curve in C2

(this, given that all centralizers are affine rings of irreducible, though not necessarily reduced,
curves, amounts to saying that there is a plane model of the curve which only misses one smooth
point at infinity, cf. [31], or equivalently, that the centralizer can be generated by two elements).

Additionally, given a differential operator M that commutes with L, we have the sequence
of inclusions C[L] ⊆ C[L,M ] ⊆ CD(L) and all of them could be strict. In this paper we are
interested in testing, again for polynomial coefficients, whether a differential operator B exists
such that CD(L) equals C[L,B]. In such case we call L, B a “Burchnall–Chaundy (BC) pair”
and CD(L) will be the free C[L]-module with basis {1, B}, as a consequence of Goodearl’s the-
ory [12], cf. Section 4. Given an operator M in the centralizer of L, we give a procedure to
decide if M belongs to C[L], that is C[L] = C[L,M ]; this “triviality test” can be performed
by means of the differential resultant, see Section 6.2. Next, to the question whether L, M

2In fact, the rank is two, but under the antiautomorphism of A1(C) that interchanged differentiation and
independent variable, C[L,B] also provides an example of rank three.
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is a BC pair, we give an answer for operators L = L4 of order 4 in A1(C). Moreover we de-
sign an algorithm, “BC pair” in Section 6.2, that given a commuting pair L4, M returns a BC
pair L4, B. Our algorithm relies on a construction given in Section 6.2 and its accuracy is
guaranteed by Theorem 6.11. By means of iterated Euclidean divisions it produces a system of
equations whose solution allows reconstruction of a good partner B such that L, B is the desired
BC pair. Explicit examples of the performance of this construction are given in Section 6.2.

Another issue is that of “true” vs. “fake” rank; this will be defined in more detail, with
examples, in Section 2.2. Here we briefly say that a pair L, M of commuting operators whose
orders are both divisible by r, is called a “true rank r pair” if r is the rank of the algebra C[L,M ].
We prove in Theorem 4.4 that BC pairs are true-rank pairs. Of course, not every true-rank pair
is a BC pair and, in the process of searching for new true-rank pairs, by means of Grünbaum’s
approach [14], one obtains families of examples, see Example 6.15. One of our goals is to give
true rank r pairs and important contributions were made by Grinevich [13], Mokhov [27, 28,
29, 30], Mironov [25], Davletshina and Shamaev [9], Davletshina and Mironov [8], Mironov and
Zheglov [26, 46], Oganesyan [34, 35, 36], Pogorelov and Zheglov [37]. To check our results we
constructed new true rank 2 pairs, by means of non self-adjoint operators of order 4 with genus 2
spectral curves, see Examples 3.2 and 6.14.

Lastly, for commuting pairs L, M , it is easy to observe the existence of a polynomial h(λ, µ)
with constant coefficients such that, identically in the independent variable, h(L,M) = 0: Burch-
nall and Chaundy showed that the opposite is also true [3, 5]. This is the defining polynomial
of a plane curve, commonly known as spectral curve Γ, and it can be computed by means of the
differential resultant of L− λ and M − µ. Furthermore for a true rank r pair we have

∂Res(L− λ,M − µ) = h(λ, µ)r,

see for instance [38, 45]. By means of the subresultant theorem [7], we prove in Section 3,
Theorem 3.1: Given a true rank r pair L, M , the greatest common (right) divisor for L−λ0 and
M − µ0 at any point P0 = (λ0, µ0) of Γ is equal to the rth differential subresultant Lr(L− λ0,
M−µ0), and is a differential operator of order r. In this manner we obtain an explicit presentation
of the right factor of order r of L− λ0 and M − µ0 that can be effectively computed. Hence an
explicit description of the fiber FP0 of the rank r spectral sheaf F in the terminology of [2, 39],
where the operators are given in the ring of differential operators with coefficients in the formal
power series ring C[[x]]. The factorization of ordinary differential operators using differential
subresultants, for non self-adjoint operators, is an important contribution of this work.

Explicit computations for true rank 2 self-adjoint and non self-adjoint operators in the first
Weyl algebra A1(C) are shown in Sections 3 and 6.2. We use these examples to show the
performance of our effective results. Although at this stage we have only implemented our project
for rank two, this is the first step in which complete explicit results were available (cf. [14]), but
we believe that our computational approach to the set of issues we described has the potential to
streamline the theory and be extended to any rank. We note, without attempting at complete
references, that in rank three Grünbaum’s work was extended by Latham (cf., e.g., [22]) and
Mokhov [29, 30] (independently); as for the Weyl algebra, cf. the references we gave above.
Computations were carried with Maple 18, in particular using the package OreTools.

2 Preliminaries

We are primarily interested in the ring of differential operators D, but it is useful to view it as
a subring of the ring of formal pseudodifferential operators Ψ, namely the set

Ψ =


N∑

j=−∞
uj(x)∂j , uj analytic in some connected neighborhood of x = 0

 .
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If we think of these symbols as acting on functions of x by multiplication and differentiation:
(u(x)∂)f(x) = u d

dxf , and formally integrate by parts:
∫

(uf ′) = uf −
∫

(u′f), we can motivate
the composition rules

∂u = u∂ + u′,

∂−1u = u∂−1 − u′∂−2 + u
′′
∂−3 − · · ·

and easily check an extended Leibnitz rule for A,B ∈ Ψ:

A ◦B =
∞∑
i=0

1

i!
∂̃iA ∗ ∂iB,

where ∂̃ is a partial differentiation w.r.t. the symbol ∂ and ∗ has the effect of bringing all
functions to the left and powers of ∂ to the right. Observe that the first Weyl algebra A1(C) is
a subring of the ring of differential operators C(x)[∂] with ∂ = ∂ = ∂/∂x and [∂, x] = 1. Hence
a subring of Ψ.

The differential ring Ψ contains the differential subring D of differential operators A =
N∑
0
uj∂

j

and we denote by ( )+ the projection B+ =
N∑
0
uj∂

j where B =
N∑
−∞

uj∂
j .

We also see that if L has order n > 0 and its leading coefficient is regular, i.e., un(0) 6= 0,
then L can be brought to standard form

L = ∂n + un−2(x)∂n−2 + un−3(x)∂n−3 + · · ·+ u0(x)

by using change of variable and conjugation by a function, which are the only two automorphisms
of D; we shall always assume L to be in standard form, i.e., u1(x) = 0. We note that in [2],
for completeness, the authors recall a(n essentially formal) proof of the facts we mentioned, to
bring L into standard form.

Remark 2.1. The coefficients uj(x) in the definition of Ψ are often required to be analytic
functions near x = 0, because the algebro-geometric constructions preserve this restriction;
typically, statements of differential algebra hold formally, and in particular, our results are
mostly concerned with polynomial coefficients, therefore we do not aim at complete generality.
Analytic/formal cases of the ring Ψ are treated in [41], with emphasis on certain types of modules
over Ψ.

2.1 Centralizers for ODOs

Unless otherwise specified, we will work with a differential field (K, ∂), with field of constants the
field of complex numbers C, and the ring of differential operators D = K[∂]. Given a differential
operator L in D in standard form, we denote its centralizer in D as

CD(L) = {M ∈ D | [L,M ] = 0}.

We recall the reason why centralizers are maximal-commutative subalgebras ofD. We cite two
lemmas [44], the first being straightforward to check; the second is proved in [44] by a beautiful
Lie-derivative argument.

Lemma 2.2 ([44]). If A = an∂
n + an−1∂

n−1 + · · ·+ a0, B = bm∂
m + bm−1∂

m−1 + · · ·+ b0 ∈ D
are such that n > 0 and ord[A,B] < n + m − 1, then ∃α ∈ C s.t. bnm = αamn . Moreover, if an
and bm are constant and ord[A,B] < n+m− 2, then ∃α, β ∈ C s.t. bm−1 = αan−1 + β.
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Lemma 2.3 ([44]). If A is a commutative subalgebra of D and M ∈ D, ∃ p ∈ Z ∪ {−∞}
s.t. ∀L ∈ A, ordL > 0, ord[M,L] = p+ ordL.

Corollary 2.4. If ordL > 0 and A,B ∈ D both commute with L, then [A,B] = 0; in particular,
CD(L) is commutative, hence every maximal-commutative subalgebra of D is a centralizer.

Remark 2.5. The analog of Corollary 2.4 is not true for operators on finite-dimensional spaces
(it is easy to find two noncommuting matrices that commute with a third one).

In Ψ any (normalized) L has a unique nth root, n = ordL, of the form

L = ∂ + u−1(x)∂−1 + u−2(x)∂−2 + · · · .

The next result can be shown by using the fact that Ψ is a graded ring.

Theorem 2.6 (I. Schur, [42]).

CD(L) =

{
N∑
−∞

cjLj , cj ∈ C

}
∩ D.

Remark 2.7. Schur’s theorem shows that the quotient field of CD(L) is a function field of one
variable; indeed, a B which commutes with L must satisfy an algebraic equation f(L,B) = 0
(identically in x), by a dimension count as sketched in [33], moreover the degree of f in B
is bounded; Burchnall and Chaundy show the existence of f(L,B) by using the dimension of
the vector space of common eigenfunctions of L − λ0 and B − µ0 for a pair (λ0, µ0) such that
f(λ0, µ0) = 0. We will use this idea to give the equation of the curve algorithmically. Schur’s
point of view has the advantage that L can be viewed as the inverse of an (analytic) local
parameter z at the point at infinity of the curve defined by f(λ, µ) = 0 on the affine (λ, µ)-
plane. Think of an eigenfunction ψ of L = ∂ as ekx; the differential operators in CΨ(L) act on ψ
as polynomials in k, and correspond to the affine ring of the spectral curve. The non-trivial case
is achieved by conjugating with the “Sato opertor”, S−1∂S = L; this equation can be solved
formally for any normalized L.

2.2 True rank

The rank of a subset of D is the greatest common divisor of the orders of all the elements of that
subset. However, we are mainly interested in the rank of the subalgebra generated by the subset.
In particular, given commuting differential operators L and M , let us denote by rk(L,M) the
rank of the pair, which we will compare with the rank rk(C[L,M ]) of the algebra C[L,M ] they
generate.

A polynomial with constant coefficients satisfied by a commuting pair of differential operators
is called a Burchnall–Chaundy (BC) polynomial, since the first result of this sort appeared is
the 1923 paper [3] by Burchnall and Chaundy. In fact, they showed that the converse is also
true, namely if two (non-constant) operators satisfy identically a polynomial in two indetermi-
nates λ, µ that belongs to C[λ, µ], then they commute.

Let us assume that n = ord(L) and m = ord(M). The idea is that by commutativity M acts
on Vλ, the n-dimensional vector space of solutions y(x) of Ly = λy (L is regular); f(λ, µ) is the
characteristic polynomial of this operator; to see that f(L,M) ≡ 0 it is enough to remark that
f(λ, µ) = 0 iff L, M have a “common eigenfunction”:

Ly = λy,

By = µy,
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hence f(L,M) would have an infinite-dimensional kernel (eigenfunctions belonging to distinct
eigenvalues λ1, . . . , λk are independent by a Vandermonde argument).

What brings out the algebraic structure of the problem, and of the polynomial f , is the
construction of the Sylvester matrix S0(L,M). This is the coefficient matrix of the extended
system of differential operators

Ξ0(L,M) =
{
∂m−1L, . . . , ∂L, L, ∂n−1M, . . . , ∂M,M

}
. (2.1)

Observe that S0(L,M) is a squared matrix of size n + m and entries in K. We define the
differential resultant of L and M to be ∂Res(L,M) := det(S0(L,M)). For a recent review on
differential resultants see [24]. It is well known that

f(λ, µ) = ∂Res(L− λ,M − µ) (2.2)

is a polynomial with constant coefficients satisfied by the operators L and M , see [38, 45].
Moreover the plane algebraic curve Γ in C2 defined by f(λ, µ) = 0 is known as the spectral
curve [3].

Remark 2.8. Since the algebra C[L,B] has no zero-divisors, it can be viewed as the affine
ring C[λ, µ]/(h) of a plane curve, with h(λ, µ) an irreducible polynomial. The BC curve =
{(λ, µ) |L, B have a joint eigenfunctionLy = λy, By = µy} is included in the curve Spec C[L,B]
and since the latter is irreducible, they must coincide; this shows in particular that the BC
polynomial is some power of an irreducible polynomial h : f(λ, µ) = hr1 , see Theorem 2.11.

Remark 2.9. It is clear from the form of the matrix of the extended system (2.1) associated
to L − λ and M − µ that its term of highest weight is of the form (−λ)m + (−1)mnµn. Let us
define the semigroup of weights

W = {an+ bm | a, b nonnegative integers}.

In the coprime case gcd(n,m) = 1 (thus rank 1), by analyzing the general solution (a+ cm)n+
(b− cn)m, it is easy to prove the following useful statements [5]: (i) every number in the closed
interval [(m−1)(n−1),mn−1] belongs toW and exactly half the numbers in the closed interval
[1, (m− 1)(n− 1)] do not; (ii) in this range, a solution (a, b) to an+ bm = k is unique.

To explain the significance of the weight, we compactify the BC curve following [33] to
X = ProjR, where R is the graded ring

R = ⊕∞s=0As, with As = {A ∈ A | ordA ≤ s}

and the operator 1 is represented by an element e ∈ A1 (in our case the commutative algebra A
is C[L,B], but the construction holds for any commutative subalgebra of D that contains an
element of any sufficiently large order [43, Remark 6.3]). That the point P∞ which we added is
smooth can be seen as follows: the affine open e 6= 0 is Spec

(
R
[

1
e

]
0

)
= SpecA (the subscript 0

signifies the degree zero component); the affine open where L 6= 0 is Spec
(
R
[

1
L

]
0

)
and the

completion of this ring in the e-adic topology is C[[z]] if z corresponds to LiBj/Lk with in+jm =
kn − 1 (basically we are using L−1 as a local parameter, with L = L1/n). Thus, the weight is
the valuation at P∞ of a function in A, W is the Weierstrass semigroup and the number of gaps
g = (m−1)(n−1)

2 is the genus of X if there are no finite singular points.

Lemma 2.10 ([3]). If [L,B] = 0 then there exists a polynomial in two variables f(λ, µ) ∈ C[λ, µ]
such that f(L,B) ≡ 0, if we assign “weight” na + mb to a monomial λaµb where n = ordL,
m = ordB, gcd(n,m) = 1, then the terms of highest weight in f are αλm + βµn for some
constants α, β.
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The first result of this sort appeared is the 1928 paper [3] by Burchnall and Chaundy. More
general rings were later studied in [12, 16, 40] in the case of Ore extensions.

There are some potentially misleading features of the rank of the algebra C[L,M ], but the
next result settles the issue. Obviously

rk(L,M) ≥ rk(C[L,M ]).

Theorem 2.11 ([45, Appendix for a rigorous proof]). Let K be the field of fractions of the
ring C[[x]] or C{x}. Given L, M commuting differential operators in K[∂]. Let r be the rank
of the algebra C[L,M ], f the BC polynomial of L and M in (2.2) and Γ their spectral curve.
The following statements hold:

(1) f = hr, where h is the unique (up to a constant multiple) irreducible polynomial satisfied
by L and M ;

(2) r = gcd{ord(Q) |Q ∈ C[L,M ]};
(3) r = dim(V (λ0, µ0)) where V (λ0, µ0) is the space of common solutions of Ly = λ0y and

My = µ0y, for any non-singular (λ0, µ0) in Γ.

Observe that whenever f is an irreducible polynomial then r = 1 and otherwise the trac-
ing index of the curve Γ is r > 1. Furthermore, r can be computed by means of (2.2) and
Theorem 2.11(1). It may happen that rk(L,M) > rk(C[L,M ]).

Definition 2.12. Let (K, ∂) be a differential field, and commuting differential operators L, M
with coefficients in K. If r = rk(L,M) = rk(C[L,M ]), we call L, M a true rank r pair otherwise
a fake rank r pair.

The first example of a true rank 2 pair was given by Dixmier in [10, Proposition 5.5]. Other
families of true rank pairs were provided in [29, 30]. In [25], Mironov gave a family of operators
of order 4 and arbitrary genus, proving the existence of their true rank 2 pairs.

We define the true rank of a commutative algebra as the rank of the maximal commutative
algebra that it is contained in.

Proposition 2.13. If a commutative subalgebra of the Weyl algebra has prime rank, then it is
a true-rank algebra.

Proof. Let W be a commutative subalgebra of rank r. A larger commutative subalgebra would
have rank s divisor of r because it would correspond to a vector bundle of rank s over a curve Σ
that covers the spectral curve Γ of W by a map of degree d, so that r = s · d. In our case s = 1,
and by Krichever’s theorem on rational KP solutions [17] they must vanish as |x| approaches
infinity, thus if polynomial they must be zero. �

Note, however, that a true-rank algebra need not be maximal-commutative.

Remark 2.14. In that context, we note two misleading features of the rank and we highlight
the fact that the rank is a subtle concept:

1. If L, B are of order 2, 3 and satisfy B2 = 4L3 − g2L − g3, then C[L,L2 + B] has rank 1
even though the generators have order 2, 4.

2. Note also that C[L] has rank ord(L), which shows that an algebra of rank 1 cannot be of
type C[L] except for the trivial (normalized) L = ∂.

3. We produce fake-rank commutative subalgebras of the first Weyl algebra. Working with
Dixmier’s operators L of order 4 and B of order 6 in (1.1).
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• We use the new pair M = B3, N = L3 to construct an algebra of fake rank 6 =
gcd(18, 12). Since B2 = L3 + α, the equation of an elliptic curve E, B6 equals
a polynomial of degree three in N , M2 = (N − a)(N − b)(N − c), which is again the
equation of a (singular) elliptic curve F . Since C[M,N ] ⊂ C[L,B], there is a map
τ : E → F , in fact of degree three so that the direct image of a rank 2 bundle on E
has rank six on F , as expected for the common solutions of N −λ, M −µ. In fact, by
the Riemann–Hurwitz formula 2− 2h = d(2− 2g)− b, where d is the degree (3) and b
the total ramification, in the elliptic case of g = 1, h = 0 and b given by the singular
point and the point at infinity. Therefore, the true rank of C[M,N ] must also be 2.

• For one more example of fake rank, instead we can take the square of the previous
equation to obtain B4 = L6 +2αL3 +α2, which gives an elliptic curve, and its algebra
C
[
B4, L6 + 2αL3

]
, which has rank 6 being the same as C[B].

4. The (3,4) curve, cf. [11, Section 2 (first paragraph)], provides an elliptic algebra of fake
rank 2: by taking µ1, µ3, µ5, µ9 = 0 we get an elliptic equation for y and x2, the functions
on the curve that play the role of the two commuting operators L and B of orders 4, 6
respectively. However, this is not a Weyl algebra because the coefficients are more general
functions than polynomials.

3 GCD at each point of the spectral curve

For a differential field (K, ∂), the ring of differential operators D = K[∂] admits Euclidean
division. For instance in [45] K is the field of fractions of the ring C[[x]] or C{x}. Given L, M
in D, if ord(M) ≥ ord(L) then M = qL+ r with ord(r) < ord(L), q, r ∈ K[∂]. Let us denote by
gcd(L,M) the greatest common (right) divisor of L and M .

The tool we have chosen to compute the greatest common divisor of two differential operators
is the differential subresultant sequence, see [7, 23]. We summarize next its definition and main
properties.

We introduce next the subresultant sequence for differential operators L and M in K[∂] of
orders n and m respectively. For k = 0, 1, . . . , N := min{n,m}−1 we define the matrix Sk(L,M)
to be the coefficient matrix of the extended system of differential operator

Ξk(L,M) =
{
∂m−1−kL, . . . , ∂L, L, ∂n−1−kM, . . . , ∂M,M

}
.

Observe that Sk(L,M) is a matrix with n + m − 2k rows, n + m − k columns and entries
in K. For i = 0, . . . , k let Sik(L,M) be the squared matrix of size n + m − 2k obtained by
removing the columns of Sk(L,M) indexed by ∂k, . . . , ∂, 1, except for the column indexed by ∂i.
Whenever there is no room for confusion we denote Sk(L,M) and Sik(L,M) simply by Sk and Sik
respectively. The subresultant sequence of L and M is the next sequence of differential operators
in K[∂]:

Lk(L,M) =
k∑
i=0

det
(
Sik
)
∂i, k = 0, . . . , N. (3.1)

Given commuting differential operators L and M with coefficients in K. Let us assume
that L, M is a true rank r pair. The differential subresultant allows closed form expressions of
the greatest common factor of order r of L− λ0 and M − µ0 over a non-singular point (λ0, µ0)
of their spectral curve Γ, defined by f(λ, µ) = 0. From the main properties of differential
resultants [24], we know that f(λ0, µ0) = 0 is a condition on the coefficients of the operators
L − λ0, M − µ0 that guarantees a right common factor. Then, for any non-singular (λ0, µ0)
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in Γ, the nontrivial operator (found by the Euclidean algorithm) of highest order for which
M − µ0 = T1G0, L− λ0 = T2G0 is G0 = gcd(L− λ0,M − µ0).

The next theorem explains how to compute G0 using differential subresultants when we
consider operators in the first Weyl algebra in Section 6.

Theorem 3.1. In the previous notations, consider commuting differential operators L and M
with coefficients in C(x). Assume L, M is a true rank r pair, then for any non-singular (λ0, µ0)
in Γ the greatest common divisor G0 of L− λ0 and M − µ0 is the order r differential operator

G0 = gcd(L− λ0,M − µ0) = Lr(L− λ0,M − µ0). (3.2)

Furthermore, the subresultants Ln(L− λ0,M − µ0) are identically zero for n = 0, . . . , r − 1.

Proof. Recall that, the gcd(L − λ0,M − µ0) is nontrivial (it is not in C(x)) if and only if
f(λ0, µ0) = ∂Res(L − λ0,M − µ0) = 0, because of [38] and [7, Theorem 4]. Furthermore, from
Theorem 2.11 and Theorem 4 from [7], if the pair L, M is true rank r, then the greatest common
divisor of L − λ0, M − µ0 can be computed using the rth subresultant, for any non-singular
point (λ0, µ0) in Γ. Summarizing, we obtain the result. �

By this theorem, we obtain an explicit presentation of the right factor of order r of L − λ0

and M − µ0 that can be effectively computed. Hence an explicit description of the fiber FP0 of
the rank r spectral sheave F in the terminology of [2, 39], where the operators are given in the
ring of differential operators with coefficients in the formal power series ring C[[x]].

The next example illustrates the computation of greatest common divisors using differential
subrestultants for a pair of true rank 2 operators over a spectral curve of genus 2.

Example 3.2. Using a Grünbaum’s style approach [14], we search for operators of order 4
in A1(C) that commute with a nontrivial operator (not in C[L4]) of order 10. We fix

L4 =
(
∂2 + x4 + 1

)2
+ U(x)∂ +W (x), (3.3)

where U(x) = u3x
3 + u2x

2 + u1x + u0 and W (x) = w2x
2 + w1x + w0 in C[x]. Forcing the

commutator [L4,M10] = 0, for an arbitrary operator M10 of order 10, we obtain that the only
nontrivial answers are:

1. U(x) = 0 and W (x) = 4x2 +w0 or W (x) = 8x2 +w0, which are self-adjoint examples given
in [34], with g = 1 and g = 2 respectively.

2. U(x) = ±4i and W (x) = 4x2 +w0, which is a non self-adjoint case, with g = 1, see [14, 46].

3. U(x) = ±8i and W (x) = 16x2 +w0, which is a non self-adjoint case with g = 2, as we will
prove in Section 6.2, Example 6.14.

4. U(x) = ±12i and W (x) = 12x2 + w0, which is a non self-adjoint case, with g = 2 as we
will prove in Section 6.2, Example 6.14.

To illustrate the computation of the greatest common divisor using differential subresultants
let us consider the differential operator

L4 =
(
∂2 + x4 + 1

)2
+ 8i∂ + 16x2. (3.4)

From a family of operators of order 10 commuting with L4 we choose

B10 = ∂10 + 5
(
x4 + 1

)
∂8 + 20

(
4x3 + i

)
∂7 + 10

(
x8 + 2x4 + 64x2 + 1

)
∂6

+ T5∂
5 + T4∂

4 + T3∂
3 + T2∂

2 + T1∂ + T0, (3.5)
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for some Ti ∈ C[x] (not included due to their length). Moreover, the differential resultant
∂Res(L4 − λ,B10 − µ) = h(λ, µ)2 with

h(λ, µ) = µ2 +R5(λ) = µ2 + λ
(
−λ4 − 56λ2 + 288λ− 1296

)
. (3.6)

Thus, by Theorem 2.11, L4, B10 is a true rank 2 pair that verifies (B10)2 = R5(L4).

By Theorem 3.1, for any P0 = (λ0, µ0) in the spectral curve Γ defined by (3.6), the greatest
common divisor of L4−λ0 and B10−µ0 is given by the second subresultant L2(L4−λ0, B10−µ0),
see (3.1). In fact the subresultants Ln(L4 − λ0, B10 − µ0), n = 0, 1 are zero. For details,

L0(L4 − λ0, B10 − µ0) = h(λ0, µ0)2 = 0,

L1(L4 − λ0, B10 − µ0) = φ1 + φ2∂ = 0

with

φ2 = det
(
S1

1

)
= 4i

(
18x2 + λ0

)
h(λ0, µ0) = 0,

φ1 = det
(
S0

1

)
= −

(
8λ0x

2 + 72x4 + 36 + λ0
2 + 72ix

)
h(λ0, µ0) = 0.

The greatest common divisor of L4 − λ0 and B10 − µ0 equals

L2(L4 − λ0, B10 − µ0) = det
(
S2

2

)
∂2 + det

(
S1

2

)
∂ + det

(
S0

2

)
(3.7)

with

det
(
S2

2

)
= 576λ0x

6 + 192λ0
2x4 + 16λ0

3x2 + λ0
4 + 56λ0

2 − 288λ0 + 1296,

det
(
S1

2

)
= 4
(
−24λ0x

3 − 4λ0
2x+ iµ0

)(
18x2 + λ0

)
,

det
(
S0

2

)
= 1296 + 5184ix+ 1296x4 +

(
56 + 288ix5 + 80ix+ 192x8 + 248x4 + 288x2

)
λ0

2

+
(
−288 + 576ix7 − 864ix3 − 1152ix+ 576x10 + 576x6 + 1440x4

)
λ0

+
(
−36− 72ix− 72x4

)
µ0 +

(
x4 + 1

)
λ0

4 − 8λ0µ0x
2 − λ0

2µ0

+
(
8ix3 + 16x2 + 16x6

)
λ0

3.

Observe that L2(L4 − λ0, B10 − µ0) is an order 2 differential operator in A1(C) and also that
the monic greatest common divisor is ∂2 − χ1∂ − χ0 with

χ1 = −
det
(
S1

2

)
det
(
S2

2

) , χ0 = −
det
(
S0

2

)
det
(
S2

2

) .
Therefore the fiber FP0 at P0 of the rank r = 2 spectral sheave F over the curve Γ is the order
two operator ∂2 − χ1∂ − χ0 in total agreement with [2].

Remark 3.3. We would like to point out that the operators L4 in Cases 3 and 4 of Example 3.2
are not self-adjoint and their spectral curves have genus g = 2. We believe they are new examples
of rank 2 fourth order non self-adjoint operators with nontrivial centralizers.

The factorization of ordinary differential operators using differential subresultants, for non
self-adjoint operators, is an important contribution of this work. The determinantal formulas
obtained by means of (3.2) can be effectively computed. See for instance (3.7), for which we
have used Maple 18 to give the final formulas.
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4 Centralizers and BC pairs

In this section, we review a theorem by Goodearl [12] on the description of a basis of the
centralizer CD(L) as a free C[L]-module and give the notion of BC pair.

Given commuting differential operators L and M in D, we observe that

C[L,M ] ⊆ CD(L),

but they can be different. Since CD(L) is a maximal subalgebra by Corollary 2.4, we wonder
when is C[L,M ] a maximal subalgebra and therefore equal to the centralizer. The next result
about the description of the centralizer will allow us to reach some conclusions.

The following theorem was proved in [12] in as wide a context as reasonable (more general
rings of differential operators D). For instance, the ring C∞, of infinitely many times differen-
tiable complex valued functions on the real line, is not a field but by [12, Corollary 4.4], the
centralizer CC∞(P ), P = an∂

n+ · · ·+a1∂+a0 is commutative if and only if there is no nonempty
open interval on the real line on which the functions ∂(a0), a1, . . . , an all vanish. Details of the
evolution of the next result from various previous works are given in [12].

Theorem 4.1 ([12, Theorem 1.2]). Let L be an operator of order n in D = K[∂]. Let X be
the set of those i in {0, 1, 2, . . . , n− 1} for which CD(L) contains an operator of order congruent
to i module n. For each i ∈ X choose Qi such that ord(Qi) ≡ i (modn) and Qi has minimal
order for this property (in particular 0 ∈ X, and Q0 = 1). Then CD(L) is a free C[L]-module
with basis {Qi | i ∈ X}. Moreover, the cardinal t of a basis of CD(L) as a free C[L]-module is
a divisor of n.

The cardinal t of a basis of CD(L) as a free C[L]-module is known as the rank of the module.
We will not use this terminology to avoid confusion with the notion of rank of a set of differential
operators that is being analyzed in this paper.

Remark 4.2. If the cardinal of a basis of CD(L) as a free C[L]-module is t = 2 then it is a free
C[L]-module with basis {1, B}, that is

CD(L) = {p0(L) + p1(L)B | p0, p1 ∈ C[L]} = C[L,B].

The question we will try to answer, in some cases, in this paper is: Given a commutative true
rank r pair L, M , is L, M a basis of CD(L) as a free C[L]-module? In the affirmative case then

rk(L,M) = rk(C[L,M ]) = rk(CD(L)) = r.

Definition 4.3. Let L be an irreducible operator in D. Given a pair L, M of differential
operators in D, with M /∈ C[L], we will call L, M a Burchnall–Chaundy (BC) pair if C[L,M ] =
CD(L).

Theorem 4.4. Let L, M be a commutative pair of rank r ≥ 1 in D, with M /∈ C[L]. If L, M
is a BC pair then L, M is a true rank r pair.

Proof. Let n, m be ord(L) and ord(M) respectively. Since L, M is a BC pair and a rank r
pair, we have C(L) = C[L,M ] and r = gcd(ord(L), ord(M)). Next we will proof that the algebra
C[L,M ] is a rank r algebra.

Let s be the rank of C[L,M ]. Then s|r. There exists Q ∈ C(L) with s = gcd(ord(L), ord(Q)).
Observe that s < n and r < n. But, by Theorem 4.1 we have X = {0, r}, where X is the set
of those i in {0, 1, 2, . . . , n − 1} for which CD(L) contains an operator of order congruent to i
module n. Hence s = r, and the pair L, M is a true rank r pair. �
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Observe that the converse of Theorem 4.4 is not true in general. See examples in Section 6.2.

Remark 4.5. The ring C[L,B] is a priori only a subring of the affine ring of the spectral
curve, as is clear from Remark 2.7. This is a crucial problem, around which we built our
algorithm BC pair, as stated in the Introduction. Using the parameter k, Segal and Wilson
give an illustration of what can be viewed as a containment of commutative subalgebras, and
the surjective morphisms between the attendant spectral curves [43, Section 6]. In particular,
if CD(L) = C[L,B], the spectral curve is special, in that it can be embedded in the plane with
only one smooth point at infinity; the noted Klein quartic curve gives a non-example of such
a curve [15]. Of course, in the case of a hyperelliptic curve defined by B2 equalling a polynomial
in L, the ring of the affine curve is indeed C[L,B], unless the curve has singular points and
in that case the ring of the desingularization is larger; examples of this can be constructed by
transference, but in order to stay in the Weyl algebra, one has to ensure that after conjugation
the ring still has polynomial coefficients.

5 Gradings in A1(C) and the Dixmier test

In the remaining parts of this paper we will consider differential operators in the first Weyl
algebra A1(C). In this section we define an appropriate filtration of A1(C) to use a lemma by
Dixmier [10] that we call the Dixmier test.

Next, we present some well known techniques for grading the first Weyl algebra A1(C),
for a field of zero characteristic C, see for instance [1, 6]. For non zero P ∈ A1(C), say
P =

∑
i,j aijx

i∂j , we denote by N (P ) its Newton diagram N (P ) =
{

(i, j) ∈ N2 | aij 6= 0
}

.
Given non negative integers p, q such that p+ q > 0, we consider the linear form

Λp,q(i, j) = pi+ qj.

Lemma 5.1 (see [6]). With the previous notation, the function

δ : A1(C)→ Z ∪ {−∞}, δ(P ) = max{Λp,q(i, j) | (i, j) ∈ N (P )}

is an admissible order function on A1(C). Moreover, the family of C-vector spaces

Gsδ = {P ∈ A1(C) | δ(P ) ≤ s}, s ∈ Z,

is an increasing exhaustive separated filtration of A1(C), and it is called the δp,q-filtration
of A1(C) (associated to the linear form Λp,q).

Let us consider the commutative ring of polynomials C[χ, ξ] and the C-algebra isomorphism:

φ : C[χ, ξ]→ grδ(A1(C)), φ(χ) = σ(x), φ(ξ) = σ(∂),

where σ(P ) is the principal symbol of the operator P with respect to the δp,q-filtration. More-
over φ is an isomorphism of graded rings where the degree function in C[χ, ξ] is given by the
linear form Λp,q, that is deg

(
χiξj

)
= Λp,q(i, j) = pi+ qj. Moreover

σ(LM) = σ(L)σ(M). (5.1)

Let P be an operator with m = δ(P ). We call the initial part of the operator P the homoge-
neous operator:

Ini(P ) =
∑

Λ(i,j)=m

aijx
i∂j .
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Remark 5.2. From now on we identify σ(P ) and φ−1(σ(P )) for each operator P .

For the convenience of the reader we recall a result from Dixmier work [10] that will be useful
in the next sections. The next result is [10, Lemma 2.7], using the previous terminology. We
will call this result the Dixmier test.

Lemma 5.3 (Dixmier test). With the previous notation, let us consider the δp,q-filtration
of A1(C). Given L and M two non-zero operators in A1(C), with v = δ(L) and w = δ(M).
The following statements hold:

1. There is a unique pair T , U of elements of A1(C) with the following properties:

(a) [L,M ] = T + U ;

(b) N (T ) = N (Ini(T )) and δ(T ) = v + w − (p+ q);

(c) δ(U) < v + w − (p+ q).

2. The following conditions are equivalent:

(a) T = 0;

(b) ∂σ(L)
∂χ

∂σ(M)
∂ξ − ∂σ(L)

∂ξ
∂σ(M)
∂χ = 0;

(c) σ(M)v = cσ(L)w, for some constant c.

3. If T 6= 0, then the symbol of [L,M ] is σ([L,M ]) = ∂σ(L)
∂χ

∂σ(M)
∂ξ − ∂σ(L)

∂ξ
∂σ(M)
∂χ .

By means of Lemma 5.3(2c), we can decide on the divisors of the orders of the operators of
the centralizer of a given differential operator L.

Lemma 5.4. Let L 6= ∂n be an order n operator in normal form in A1(C). There exists
a unique linear form Λp,q(i, j) = pi + qj with p, q non negative integers, p + q > 0, such that
δp,q(L) = Λp,q(0, n) = Λp,q(a, b) for some (a, b) ∈ N (L) \ {(0, n)}.

We will call the δp,q-filtration associated to the linear form defined in Lemma 5.4, the test-
filtration for L.

Corollary 5.5. Let L be an order n operator in normal form in A1(C). Let us consider the
test-filtration for L in A1(C). We will assume that φ−1(σ(L)) is a power of an irreducible
polynomial g ∈ C[χ, ξ]. Given M in the centralizer C(L) then φ−1(σ(M)) is also a power of g.

Corollary 5.6. Given L and M two non-zero operators in A1(C). Assume φ−1(σ(L)) =
(
ξp +

χ2
)2

for some positive integer p. If M is in the centralizer C(L), then ord(M) is congruent with
0 or p modulo 2p.

Proof. Take Λ(i, j) = pi+ 2j and consider the δp,2-filtration of A1(C). Then, by Corollary 5.5,
the order of M is ord(M) = pb for some non negative integer b. But, b = 2s+ ε with ε = 0 or 1.
Then the result follows. �

Example 5.7. Let us consider L2p =
(
∂p + x2 + α

)2
+ 2∂ for some positive integer p. Take

Λ(i, j) = pi + 2j and consider the δp,2-filtration of A1(C). By Corollary 5.6, for any monic
operator M in the centralizer C(L2p), we have

ord (M) = 0 mod(2p) or ord (M) = p mod(2p).

By Theorem 4.1 if the centralizer is nontrivial, it equals C(L2p) = C[L2p, Xp] with Xp the
operator of minimal order p(2s + 1), s 6= 0, in C(L2p). Observe that for p = 3 this is the
Fourier transform of Dixmier’s example (1.1) [10]. In this case by Theorem 4.1 the centralizer
is nontrivial and X3 has order 9. The pair L, B = X3 is true rank 3.
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6 Order 4 operators in A1(C)

In this section we apply the previous results to operators of order 4 in A1(C). We will prove
that for any operator of order 4, if non trivial, its centralizer is the ring of a plane curve (see
Corollary 6.5 and important consequences in Proposition 6.8).

First, recall that, as in Grünbaum’s work [14], a general fourth order differential operator
in K[∂] can be given by(

∂2 +
c2

2

)2
+ 2c1∂ + c′1 + c0, with c0, c1, c2 ∈ K, (6.1)

after a Liouville transformation. For this reason, in this section we will consider operators of
order 4 in A1(C) of the form

L4 =
(
∂2 + V (x)

)2
+ U(x)∂ +W (x), (6.2)

with U(x), V (x) and W (x) polynomials in C[x].

Remark 6.1. In [14] it is proved that equation (6.1) with c1 ≡ 0 is the self-adjoint case.
Moreover, A. Mironov (see [25]) considered the self-adjoint case in the first Weyl algebra, that
is U ≡ 0 in (6.2). He proved the Novikov’s conjecture: the existence of M in C(L4) such
that h(L4,M) = 0 for h(λ, µ) = µ2 + R2g+1(λ) the defining polynomial of a genus g curve Γ;
furthermore this operator L4 has an order 2 factor at each point of Γ.

6.1 Centralizers

Our goal is to prove that the centralizer C(L4) of L4 in D = A1(C) is either equal to C[L4]
or to C[L4, B], for an operator B of order 4k + 2 such that L4, B is a true rank 2 pair. To

avoid trivial cases, we assume L4 to be irreducible in D. For instance if L4 =
(
∂2 + V (x)

)2
and

B = ∂2 + V (x) then C(L4) = C(B) is a rank 1 algebra.

Theorem 6.2. Let L4 be an irreducible operator of order 4 in A1(C) as in (6.2). Assume that
deg(V ) > max

{
1
2 deg(U), 1

2 deg(W )
}

. Then any M commuting with L4 has even order.

Proof. Let p = deg(V ) be an odd integer. Let us consider the δ2,p-filtration of A1(C), with

Λ2,p(i, j) = 2i + pj. By (5.1), we have σ(L4) =
[
σ
(
∂2 + V

)]2
=
(
ξ2 + χp

)2
. But, by Dixmier

test (Corollary 5.5), σ(M)4p = σ(L4)pm =
(
ξ2 + χp

)2pm
, with m = ord(M). Therefore, since

ξ2 + χp is irreducible in k[χ, ξ], σ(M) =
(
ξ2 + χp

)q
for some q. Then 4pq = 2pm. Thus, M has

even order in this case. Next assume p = 2s = deg(V ), an even integer. Now, we have

σ(M)4p = σ(L4)pm =
(
ξ2 + χp

)2pm
=
(
ξ + iχs

)2pm(
ξ − iχs

)2pm
, with m = ord(M).

Then σ(M) =
(
ξ + iχs

)a(
ξ − iχs

)b
, because k[χ, ξ] is an unique factorization domain. Hence,

comparing multiplicities, we have 4pa = 2pm and 4pb = 2pm. So, M has even order, as was
stated in the theorem. �

Remark 6.3. The previous result was proved in [9] for the case V (x) = α3x
3 +α2x

2 +α1x+α0,
U(x) = 0 and W (x) = α3g(g+ 1), with α3 6= 0, using different methods than those described in
this work.

Lemma 6.4. Let L4 be an irreducible operator of order 4 in A1(C) as in (6.2). If C(L4) 6= C[L4]
then deg(V ) > max

{
1
2 deg(U), 1

2 deg(W )
}

.
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Proof. Let us consider the δ2,p-filtration, with p = deg(V ). Observe that if deg(V ) ≤ 1
2 deg(U)

= u
2 , the leading form of L4 is ∂4 + c1x

u∂; or if deg(V ) ≤ 1
2 deg(W ) = w

2 , this leading form is
∂4 +c2x

w. In neither case its leading form is the square of another form of lower degree, thus the
centralizer is trivial. Consequently the statement follows, because of Dixmier’s lemma 5.3. �

We recall that by Theorem 4.1 the centralizer of and operator L4 is the free C[L4]-module
with basis X = {Xj | j ∈ J}, being J the subset of I = {0, 1, 2, 3} of those j ∈ I for which there
exists an operator Xj ∈ C(L4) of minimal order congruent with j mod 4. Therefore, we can
establish the following claim.

Corollary 6.5. Let L4 be an irreducible operator of order 4 in A1(C) as in (6.2), such that
C(L4) 6= C[L4]. Then

C(L4) = C[L4]〈1, X2〉 = C[L,X2]

for an operator X2 of minimal order 2(2g + 1), for g 6= 0, that is C(L4) equals the free C[L4]-
module with basis {1, X2}. Furthermore the pair L4, X2 is BC and true rank 2.

Proof. By Lemma 6.4, Theorem 4.1, and Theorem 6.2 and the hypothesis, the centralizer of L4

is the free C[L4]-module with basis {1, X2}, in notations of Theorem 4.1, that is

C[L4]〈1, X2〉 = {p0(L4) + p1(L4)X2 | p0, p1 ∈ C[L4]}.

By (6.4), it equals C[L4, X2]. The pair L4, X2 satisfies Definition 4.3 and Theorem 4.4 implies
it is true rank 2. �

Remark 6.6. The previous corollary is only the first example of how to apply Dixmier test

to prove results on the structure of the basis of the centralizer of an operator of the first Weyl
algebra. We believe that similar results can be obtained for higher order operators.

By Theorem 2.11, given a true rank 2 pair L4, M in A1(C) , the spectral curve Γ is defined
by a polynomial h in C[λ, µ] that verifies

f = ∂Res(L4 − λ,M − µ) = h2. (6.3)

In addition Γ is a hyperelliptic curve defined by an equation µ2 = b0(λ)+b1(λ)µ with b0(λ), b1(λ)
∈ C[λ]. Thus M2 = b0(L4) + b1(L4)M and

C[L4,M ] =
{∑

αi,jL
i
4M

j |αi,j ∈ C
}

= {p0(L4) + p1(L4)M | p0, p1 ∈ C[L4]}. (6.4)

Remark 6.7. Assume C(L4) = C[L4, X2] 6= C[L4], for an operator X2 of minimal order 2(2g+
1), for g 6= 0.

1. Observe that if M = p0(L4) + p1(L4)X2 has order 4q, q > 0 then it means that

ord(p0(L4)) ≥ ord(p1(L4))X2.

Note that a nonzero M1 = M − p0(L4) has order 4q + 2, for some q > 0.

2. In particular, we can detect if M = p0(L4) by means of the differential resultant. In fact,
by the Poison formula for the differential resultant (see [7]) then ∂Res(L4 − λ,M − µ)
equals (p0(λ)− µ)4. Obviously, in this case C[L4,M ] = C[L4].

3. If ord(M) = ord(X2) then M − X2 ∈ C[L4] and C[L4,M ] = C[L4, X2]. Otherwise, if
ord(M) > ord(X2) then C[L4,M ] ⊂ C[L4, X2], the equality cannot hold.
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The next result contains essential claims to establish an algorithm.

Proposition 6.8. Let L4 be an irreducible operator of order 4 in A1(C) as in (6.2). Assume
C(L4) = C[L4, X2] 6= C[L4], for an operator X2 of minimal order 2(2g + 1), for g 6= 0. Given
M = p0(L4) + p1(L4)X2 in C(L4) with p1 6= 0, then:

1. There exists an operator Bg in C(L4) such that C[L4, X2] = C[L4, Bg] and the spec-
tral curve associated to the pair L4, Bg is a hyperellipctic curve defined by a polynomial
h(λ, µ) = µ2 −R2g+1(λ), with R2g+1(λ) ∈ C[λ] of degree 2g + 1.

2. ∂Res(L4−λ,M −µ) =
(
µ2− b1(λ)µ− b0(λ)

)2
, with b0, b1 ∈ C[λ] and p0(L4) = b1(L4)/2.

3. M1 = M − p0(L4), has order 2(2q + 1), with p1 ∈ C[λ] of degree 4(q − g) and it verifies
M2

1 = R2q+1(L4), for R2q+1(λ) = p1(λ)R2g+1(λ).

Proof. 1. We know that X2
2 = b0(L4) + b2(L4)X2. We easily check that B = X2 − (1/2)b1(L4)

verifies B2 = Ra(L4), for Ra(λ) ∈ C[λ] of degree a. Since C(L4) = C[L4, B] it remains to prove
that a = 2g + 1. Let us consider the δ2,p-filtration of A1(C), with p = deg(V ). Taking symbols
in B2 = Ra(L4), we have

σ(B)2 = σ(L4)a =
(
ξ2 + χp

)2a
.

Then 2(2g + 1) = 2a. Finally a = 2g + 1.
2. We know that (6.3) holds for h = µ2 − b1(λ)µ− b0(λ) with h(L4,M) = 0. Let us prove 2.

On one hand (M − p0(L4))2 equals p1(L4)2X2
2 = p1(L4)2R2g+1(L4) and on the other it equals

b1M + b0 + p2
0 − 2p0M = (b1 − 2p0)p1X2 + b0 + b1p0 − p2

0.

Thus p2
1R2g+1 = (b1 − 2p0)p1X2 + b0 + b1p0 − p2

0. But, since {1, X2} is a basis of the free
C[L4]-module C[L4, X2], it holds that p0(L4) = b1(L4)/2.

3. In order to have 3, it is enough to compute ∂Res(L4 − λ,M1 − µ) taking into account 1
and 2. �

Remark 6.9. One can decide if a nontrivial M of a given order exists in the centralizer of L4, we
computed it through a Grünbaum approach [14] (solving [L4,M ] = 0 directly), see examples in
Section 6.2. For certain families of operators in the Weyl algebra C(L4) 6= C[L4] it is guaranteed
in [8, 25, 26, 29, 30], see also [37].

6.2 The algorithm

Let L4 be an irreducible operator of order 4 in A1(C) as in (6.2). Let us assume that C(L4) 6=
C[L4]. By Proposition 6.8, there exists an operator Bg of minimal order 2(2g + 1), g 6= 0, such
that

C(L4) = C[L4, Bg] and B2
g = R2g+1(L4).

Now, let us suppose we are given an operator M in the centralizer C(L4) \ C[L4]. Then
rk(L4,M) = 2. The goal of this section is to decide effectively if L4, M is a BC pair and if not
to compute a suitable Bg from L4 and M to have L4, Bg a BC pair; then

C[L4] ⊆ C[L4,M ] ⊆ C[L4, Bg] = C(L4).

Consequently, by means of the differential resultant (see [38]), we can compute the spectral curve
Γ = Spec(C(L4)). Moreover, by Corollary 6.5, the centralizer C(L4) is a free C[L4]-module;
hence, M = p0(L4) + p1(L4)Bg for some polynomials p0, p1 ∈ C[λ].
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Recall that as L4 and M commute, by Proposition 6.8, they are related by an algebraic
equation of the type µ2 − b1(λ)µ− b0(λ) = 0. Even if we assume that M2 = R2q+1(L4), that is
M = p1(L4)Bg, in general it will not be clear how to identify p1(λ) or g from the factorization
of R2q+1(λ).

Remark 6.10. One method to identify p1 would be to compute the roots λj of R2q+1(λ) with
multiplicities and then check if L4 − λj is a factor of M . We should observe that factoring
R2q+1(λ) can generate important problems since the roots can have multiplicity greater than
one (since the curve can be singular). In addition, it may not be possible to compute exactly the
complex roots of R2q+1(λ), this is the case of R5(λ) in (3.6) of Example 3.2 or R9(λ) in (6.11) of
Example 6.15. Having approximate roots of the polynomial R2q+1(λ) = h(λ, µ)− µ2 from (6.3)
does not guarantee the correct factorization of the operator M , since the factorization occurs
at each point of the spectral curve and this point cannot be in a nearby curve (which would be
the case if we consider approximate roots of R2q+1(λ)). Even if the roots and multiplicities are
assumed to be known exactly, the combinatorics of the problem gives multiple choices since the
genus g is also a variable in this problem.

The next construction is an alternative method to the proposal given in Remark 6.10. Our
goal is to develop a symbolic algorithm whose input is an operator M that commutes with the
fixed L4, and whose output is a generator B 6= L4 of the centralizer C(L4) and the genus g of
the spectral curve Γ. One of the achievements of this construction is the determination of the
genus of the spectral curve associated with the operator L4, in both the self-adjoint and non
self-adjoint cases, starting with any operator M that commutes with L4.

The construction. From now on we assume that M = p1(L4)Bg of order m = 2(2q + 1),
q > 0, and also that p1(0) = 1, see Proposition 6.8. We will fix a value of g from 1 to q − 1 and
check if an operator Bg of order 2(2g + 1) exists in C(L4). Moreover, if such Bg does not exist
for g = 1, . . . , q − 1, then we conclude that L4, M is a BC pair, that is C(L4) = C[L4,M ] and
Bg = M , with g = q.

The procedure to obtain Bg is based on an iterated division process. Observe that the ring
of differential operators K[∂] is a (left) Euclidean domain that contains A1(C), with K = C(x).
Moreover, we will use the construction of a system of equations for a family of free parameters ~a =
(a1, . . . , ad) for a certain length d determined by a recursive process. Theorem 6.11 guarantees
that the given construction effectively allows for an explicit operator Bg verifying the required
conditions.

Recall that ord(M) = 2(2q + 1) with q > 0. Let us fix g ∈ {1, . . . , q − 1}. We use the left
division algorithm in K[∂] to construct a sequence of quotients and remainders to rewrite M as
follows. First, by left division by L4, we compute the remainder sequence

∆(M) = {R1, . . . , Rg+1}, (6.5)

where

M = L4Q1 + R1, Qj = L4Qj+1 + Rj+1, 1 ≤ j ≤ g,

with bounds for the orders of the remainders ord(Rj) ≤ 3, and ord(Qg) = 4(q − g)− 2. Thus we
decompose M as

M =

g∑
j=0

Lj4Rj+1 + Lg+1
4 Qg+1.

Observe that R1, . . . , Rg+1 are thus known differential operators in K[∂] for the given M .
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Recall that we are looking for Bg, that could be decomposed using left division by L4 as

Bg =
g−1∑
j=0

Lj4Rj+1,B + Lg4QgB, with ord(Rj,B) ≤ 3 and ord(Qg,B) = 2. Thus, we are looking for

Rj+1,B, j = 0, . . . , g − 1 and Qg,B in K[∂].
With this purpose, for the fixed g ∈ {1, . . . , q−1} let us consider a vector ~a = (a1, a2, . . . , ad(g))

of free parameters over C that will be used to define an extended remainder sequence

∆g
~a = {R1,B, . . . , Rg,B, Qg,B}

of operators in K[~a][∂] assumed to be of order less than 4. Let us define the polynomial

p~a(λ) = 1 + a1λ+ · · ·+ ad(g)λ
d(g) + λq(λ), where d(g) := min{q − g, g}

for a polynomial q(λ) ∈ C[λ] which is taken to be equal to zero if q − g < g, and the operator

Bg
~a := Lg4Qg,B +

g−1∑
j=0

Lj4Rj+1,B in K[~a][∂]. (6.6)

Forcing now M = p~a(L4)Bg
~a, since ord(Rj,B) and ord(Rj) are smaller than the order of L4,

comparing the terms in Lj4, j = 0, . . . , g − 1 we obtain

R1 = R1,B, Rj+1 =

{
Rj+1,B + a1Rj,B + · · ·+ ajR1,B if 0 < j < d(g),

Rj+1,B + a1Rj,B + · · ·+ ad(g)Rj+1−d(g),B if j ≥ d(g).
(6.7)

From the term in Lg4

Rg+1 = Qg,B + a1Rg,B + a2Rg−1,B + · · ·+ ad(g)Rg−d(g)+1,B. (6.8)

Thus from (6.7) and (6.8) we obtain the extended remainder sequence ∆g
~a whose operators

we now define as

R1,B := R1,

Rj,B := Rj −

{
(a1Rj−1,B + · · ·+ aj−1R1,B) if j ≤ d(g),(
a1Rj−1,B + · · ·+ ad(g)Rj−d(g),B

)
if j > d(g),

for j = 2, . . . , g,

Qg,B := Rg+1 −
(
a1Rg,B + a2Rg−1,B + · · ·+ ad(g)Rg−d(g)+1,B

)
. (6.9)

Observe that the order of each Rj,B is at most 3, each Rj,B belongs to K[a1, . . . , aj−1][∂] and
Qg,B ∈ K[~a][∂].

Finally, to determine if Bg exists, we look for ~α = (α1, . . . , αd(g)) ∈ Cd(g) such that M equals
p~α(L4)Bg

~α and [L4, B
g
~α] = 0, where p~α and Bg

~α are obtained by replacing ~a by ~α in p~a and Bg
~a

respectively. Thus, forcing[
L4, B

g
~a

]
= 0

the parameters ~a can be adjusted. Observe that the numerator N of [L4, B
g
~a] is a differential ope-

rator in C[~a][x][∂]. Let us consider the system of equations obtained from the coefficients qi,j(~a)
of xi∂j in N

s(~a)g = {qi,j(~a) = 0}, with qi,j(~a) ∈ C[~a]. (6.10)

This construction proves the next result.
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Theorem 6.11. Let L4 be an irreducible operator of order 4 in A1(C) as in (6.2). Given
an operator M ∈ C(L4) of order m = 2(2q + 1), q > 0, such that M2 = R2q+1(L4) and
g ∈ {1, . . . , q − 1}, the following statements are equivalent:

1. There exists an operator Bg in C(L4) of order 2(2g+1) such that M = p1(L4)Bg, for some
p1 ∈ C[λ].

2. There exists ~α in Cd(g), where d(g) := min{q − g, g}, such that
[
L4, B

g
~α

]
= 0, or equiva-

lently ~α is a solution of s(~a)g.

Proof. The previous construction guaranties that any Bg in C(L4) such that M = p1(L4)Bg
has to be of the form (6.6). Therefore, if [L4, B

g
~a] = 0 has no solution ~α in Cd(g) then such

Bg does not exist. Conversely, if there exists ~α in Cd(g) such that
[
L4, B

g
~α

]
= 0 then Bg

~α is an
operator of order 2(2g + 1) in C(L4) such that M = p~α(L4)Bg

~α. �

Let g∗ be the minimum of the set of non negative integers

G =
{
g ∈ {1, . . . , q − 1} : ∃ ~α = (α1, . . . , αd(g)) ∈ Cd(g) solution of s(~a)g

}
.

By Corollary 6.5, G is a non empty set, and g∗ always exists. From the previous theorem we
can conclude:

Corollary 6.12. Given an operator M ∈ C(L4) of order m = 2(2q + 1), q > 0, such that

M2 = R2q+1(L4), the centralizer C(L4) equals C
[
L4, B

g∗

~α∗

]
, where ~α∗ = (α∗1, . . . , α

∗
d(g∗)) is a solu-

tion of s(~a)g∗.

Remark 6.13. The number of variables ai appearing in the system s(~a)g is equal to d(g),
which depends on the fixed values of q and g. If a new variable aj appears in iteration g of the
algorithm, the polynomials of the system are linear in aj . Furthermore, all the polynomials qi,j
in s(~a)g will have the same structure, which depends on Qg,B (see step 9 of the algorithm), they
will have the form r0 + r1a1 + · · ·+ rg+1p(a1, . . . , ad(g)), so we solve linearly a subsystem of g+ 1
nonzero polynomials qi,j in s(~a)g to obtain ~α0 and then check if ~α0 is a solution of s(~a)g. We
illustrate this method in Example 6.15.

We automate the previous construction in the following algorithm.

Algorithm (BC pair).

• Given M in C(L4).

• Compute B such that L4, B is a BC pair, and its order.

1. f := ∂Res(L4 − λ,M − µ).

2. Compute the square free part h(λ, µ) = µ2 − b1(λ)µ− b0(λ) of f .

3. M := M − 1
2b1(L4).

4. If M = 0 then return ‘M is a polynomial in C[L4]’.

5. g:=1.

6. Compute the remainder sequence ∆(M) = {R1, R2} as in (6.5).

7. Use ∆(M) and (6.9) to construct R1,B and Q1,B.

8. Bg
~a := L4Q1,B +R1,B as in (6.6).

9. From
[
L4, B

g
~a

]
= 0 compute the system s(~a)g as in (6.10).

10. If a solution ~α of s(~a)g exists then return Bg
~α and 2(2g + 1).
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11. g := g + 1.

12. If g = q return M .

13. Compute the remainder Rg+1 as in (6.7) and ∆(M) := ∆(M) ∪ {Rg+1}.
14. Use ∆(M) and (6.9) to construct Qg,B.

15. Define Bg
~a := Lg4Qg,B +Bg−1

~a and go to step 9.

We implemented the algorithm in Maple 18 and we used it to compute the next examples.

Example 6.14. Let us continue with Example 3.2 and L4 as in (3.4). From a family of operators
of order 10 commuting with L4 we fix M

M = ∂10 +
(
5x4 + 7/2

)
∂8 + 20

(
4x3 + i

)
∂7 +

(
10x8 + 14x4 + 640x2 + 4

)
∂6

+N5∂
5 +N4∂

4 +N3∂
3 +N2∂

2 +N1∂ +N0,

Ni ∈ C[x] (not included due to their length). We know that L4,M is a true rank 2 pair. We
run the algorithm BC pair to decide if L4, M is a BC pair. We fix g = 1:

• ∂Res(L4 − λ,M − µ) = h(λ, µ)2 with h(λ, µ) = µ2 − b0(λ)− b1(λ)µ where

b0(λ) = −λ5 + (9/4)λ4 + (125/2)λ3 + (7825/4)λ2 + 1548λ+ 1296,

b1(λ) = 3λ3 + 79λ+ 72.

• M := M − 1
2b1(L4) is given by (3.5) in Example 3.2.

• We compute the reminder sequence ∆(M) = {R1, R2} to obtain the third order operators

R1 = 36 + 72ix− 72ix5 + 108x4 + 72x8 + 1728x2 − 72i
(
−x6 + 12ix3 − x2 − 8

)
∂

+
(
72x4 + 36 + 504ix

)
∂2 + 72ix2∂3,

R2 = 8x2 + 16 + 8x6 − 8ix3 − 4i
(
−x4 + 12ix− 1

)
∂ + 8x2∂2 + 4i∂3.

• We construct R1,B = R1 and Q1,B = R2 − a1R1. Then B1
~a = L4Q1,B + R1,B. From[

L4, B
1
~a

]
= 0 we obtain the system s(a1)1. All the 120 polynomials qi,j(a1) in s(a1)1 have

the form r0 + r1a1. From the first two equations

−11296 + 2889216a1 = 0, 219904− 359424a1 = 0

we obtain a1 = 353/90288, and substituting in all the remaining qi,j(a1) we can conclude
that the system s(a1)1 has no solution.

Therefore, in step 11 g := g + 1 = 2 = q and the algorithm returns M = B10, the operator that
was defined in (3.5) of Example 3.2. Therefore the centralizer C(L4) = C[L4, B10] = C[L4,M ].

The BC pair Algorithm can be used to check if a given operator B is a generator of the
centralizer for L4 as in (3.3). For instance, in Case 1 of Example 3.2, for a given operator B
commuting with L4 the algorithm guarantees if B is a generator of the centralizer C(L4) or not.
If it is, then C(L4) = C[L4, B]. We run the BC pair algorithm for all cases in Example 3.2, even
if the operator L4 was non self-adjoint and we obtained: for U(x) = 0 and W (x) = 4x2 + w0,
then C(L4) = C[L4, B6], for an operator B6 of order 6, and for W (x) = 8x2 +w0, then C(L4) =
C[L4, B10]; for U(x) = ±4i and W (x) = 4x2 + w0, then C(L4) = C[L4, B6]; for U(x) = ±8i and
W (x) = 16x2 + w0, then C(L4) = C[L4, B10]; for U(x) = ±12i and W (x) = 12x2 + w0, then
C(L4) = C[L4, B10].
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Example 6.15. We use the next example to illustrate the structure of the system s(~a)g as
explained in Remark 6.13. Let us consider the self-adjoint operator

L4 =
(
∂2 + x4 + 1

)2
+ 24x2.

By [34, Theorem 2], this operator commutes with an operator of order 4q+2 with q ≥ g = 2. We
fixed 4q+2 = 18, that is q = 4, and computed an operator M of order 18 in the centralizer C(L4).
We used a Grünbaum’s style approach, forcing [L4,M18] = 0 for an arbitrary operator M18 of
order 18. From the family of operators obtained we chose

M = ∂18 + 9
(
x4 + 1

)
∂16 + 288x3∂15 +

(
36x8 + 72x4 + 4572x2 + 15

)
∂14

+H14∂14 + · · ·+H0

with Hi ∈ C[x] (not included due to their length) such that M2 = R9(λ), with

R9(λ) =
(
λ5 − 5λ4 + 346λ3 + 854λ2 + 24917λ+ 222719

)(
λ2 − 23λ− 58939

)2
. (6.11)

We run the algorithm BC pair for g = 1, computing ∆(M) = {R1, R2} and B1
~a as we did in

Example 6.14. We can check that the system s(a1)1 has no solution. Thus we set g := 2 and go
to step 13 of the algorithm:

• Compute R3 and define ∆(M) = {R1, R2, R3},

R1 = −8487216x8 + 707268x6 − 17033371x4 − 253909212x2 − 5009815

+
(
−101846592x3 + 4243608x

)
∂ +

(
−8487216x4 + 707268x2 − 8546155

)
∂2,

R2 = −3312x8 − 706992x6 + 111231x4 − 806352x2 − 3420417

+
(
−39744x3 − 4241952x

)
∂ +

(
−3312x4 − 706992x2 + 114543

)
∂2,

R3 = 144x8 − 288x6 − 58604x4 + 4032x2 − 60188

+
(
1728x3 − 1728x

)
∂ +

(
144x4 − 288x2 − 58748

)
∂2.

• Construct Q2,B = R1

(
a2

1 − a2

)
− R2a1 + R3. Define B2

~a := L2
4Q2,B +B1

~a and go to step 9.

• From
[
L4, B

2
~a

]
= 0 compute the system s(a1, a2)2. All the 112 polynomials qi,j(a1, a2) in

this system have the form r0 + r1a1 + r2(a2
1 − a2), ri ∈ C. Let us take two equations of

system s(a1, a2)2

135795456a1
2 − 52992a1 − 135795456a2 − 2304 = 0,

−5658144a1
2 − 5655936a1 + 5658144a2 + 2304 = 0.

Observe that this kind of system can be solved linearly, and its unique solution is (α∗1, α
∗
2) =

(23/58939,−1/58939). We can check that qi,j(α
∗
1, α
∗
2) = 0 for every equation in system

s(a1, a2)2. Therefore (α∗1, α
∗
2) is the unique solution of system s(a1, a2)2.

• The algorithm returns B10 = B2
(α∗1,α

∗
2)

B10 = ∂10 + 5
(
x4 + 1

)
∂8 + 80x3∂7 + 10

(
x8 + 2x4 + 66x2 + 1

)
∂6

+ E5∂
5 + · · ·+ E0,

with Ei ∈ C[λ] (not included due to their length), where B2
10 = R5(L4) with

R5(λ) = λ5 − 5λ4 + 346λ3 + 854λ2 + 24917λ+ 222719.

Therefore L4, M is not a BC pair and we constructed the BC pair L4, B10 such that

C[L4,M ] ⊂ C[L4, B10] = C(L4).
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M.A. Zurro is partially supported by Grupo UCM 910444.

References
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[6] Castro-Jiménez F.J., Narváez-Macarro L., Homogenising differential operators, arXiv:1211.1867.

[7] Chardin M., Differential resultants and subresultants, in Fundamentals of Computation Theory (Gosen,
1991), Lecture Notes in Comput. Sci., Vol. 529, Springer, Berlin, 1991, 180–189.

[8] Davletshina V.N., Mironov A.E., On commuting ordinary differential operators with polynomial coeffi-
cients corresponding to spectral curves of genus two, Bull. Korean Math. Soc. 54 (2017), 1669–1675,
arXiv:1606.01346.

[9] Davletshina V.N., Shamaev E.I., On commuting differential operators of rank 2, Sib. Math. J. 55 (2014),
606–610.
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