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Abstract. In this paper, we study the differential invariants and the invariant heat flow in
centro-affine geometry, proving that the latter is equivalent to the inviscid Burgers’ equa-
tion. Furthermore, we apply the centro-affine invariants to develop an invariant algorithm to
match features of objects appearing in images. We show that the resulting algorithm com-
pares favorably with the widely applied scale-invariant feature transform (SIFT), speeded
up robust features (SURF), and affine-SIFT (ASIFT) methods.
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1 Introduction

The main objective in this paper is to study differential invariants and invariant curve flows –
in particular the heat flow – in centro-affine geometry. In addition, we will present some basic
applications to feature matching in camera images of three-dimensional objects, comparing our
method with other popular algorithms.

Affine differential geometry is based on the Lie group A(n,R) = GL(n,R)nRn consisting of
affine transformations x 7−→ Ax + b, A ∈ GL(n,R), b ∈ Rn acting on x ∈ Rn. Basic references
include Nomizu and Sasaki [29] and Simon [43]. Keep in mind that, in most of the literature,
the term “affine geometry” usually refers to “equi-affine geometry”, in which one restricts to the
subgroup SA(n,R) = SL(n,R) n Rn of volume-preserving affine transformations. A key issue
is to study the resulting invariants associated with submanifolds M ⊂ Rn. In particular, the
classical theory for equi-affine hypersurfaces was developed by Blaschke and his collaborators, [4].

Centro-affine differential geometry refers to the geometry induced by the general linear group
x 7−→ Ax, A ∈ GL(n,R), x ∈ Rn, which is the subgroup of the affine transformation group that
keeps the origin fixed. Similarly, centro-equi-affine differential geometry refers to the subgroup
SL(n,R) of volume-preserving linear transformations. These cases are usually discussed in pass-
ing in books that are devoted to (equi-)affine geometry [29].

Several methods have been developed to construct differential invariants and other invariant
quantities in such Klein geometries, [14, 34, 35, 39, 45]. In particular, invariants can be straight-
forwardly and algorithmically obtained by the method of equivariant moving frames introduced
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in [12]. They play a prominent role in the study of the geometric properties, including equiv-
alence and symmetry, of curves, surfaces, and more general submanifolds, as well as invariant
geometric flows, [32], with many applications to computer vision and image processing.

The term “invariant submanifold flow” refers to the motion of a curve or surface by a pre-
scribed partial differential equation that admits an underlying transformation group as a sym-
metry group, e.g. the Euclidean group of rigid motions (translations and rotations). Invariant
curve and surface flows arise in an impressive range of applications, including geometric op-
tics, elastodynamics, computer vision, visual tracking and control, interface dynamics, thermal
grooving, and elsewhere. A celebrated example is the curve shortening flow (CSF), in which
a plane curve moves in its normal direction in proportion to its curvature. The CSF was first
introduced by Mullins [28] as a model for the motion of grain boundaries. It was shown by
Gage and Hamilton [13] and Grayson [15, 16] that a simple closed Jordan curve will remain
simple when evolving under the CSF, first becoming convex and then shrinking to a point in
finite time while becoming asymptotically circular, often referred to as a “circular point”. These
results were an important preliminary step on the road to Hamilton’s celebrated analysis of
the higher dimension counterparts such as mean curvature flow and Ricci flow; the latter was
extended by Perelman to in his famous solution to the Poincaré conjecture, [9]. The corre-
sponding affine curve shortening flow (ACSF) was introduced and studied by Angenent, Sapiro,
and Tannenbaum [2, 42], and it was proved that a closed convex curve when evolves according
to the ACSF will shrink to an “elliptical point”. See also [1, 6] and the references therein for
further developments. In computer vision, [35, 37, 38], Euclidean curve shortening and its equi-
affine counterpart have been successfully applied to image denoising and segmentation and are
actively used in practical computer implementations, both academic and commercial. Euclidean-
invariant three-dimensional curve flows include the integrable vortex filament flow appearing in
three-dimensional fluid dynamics, [19, 22], while mean curvature and Willmore flows of surfaces
have been the subject of extensive analysis and applications, [10, 21]. More recently, similar
results were obtained for the heat flow in centro-equi-affine geometry [46]. Heat flows in more
general Klein geometries were proposed [32, 37].

In this paper, we are interested in the heat flow in centro-affine geometry. Interestingly, we
find that the heat flow for the centro-affine curvature κ(t, s) is equivalent to the well-known
inviscid Burgers’ equation κt = κκs. This result is in contrast to the behavior of heat flows
in Euclidean, equi-affine, and centro-equi-affine geometries, which yield second order nonlinear
parabolic equations for the associated curvature invariant.

A challenging problem arising in computer vision and pattern recognition, is feature matching
under viewpoint changes between different images. Image and feature matching has wide range
of applications, including robotic vision, medical image registration, 3D reconstruction, optical
character recognition, object classification, content-based image retrieval, and so on. Traditional
methods, such as scale invariant feature transform (SIFT) [24] and speeded up robust features
(SURF) [3], have excellent performance and high precision. However, when the images have
less texture complexity and color diversity, it is not easy to extract and describe the feature
points. Another drawback to these detectors is that they are only invariant under the planar
Euclidean group consisting of rigid motions (rotation, translation, and, possibly, reflection). In
fact, the apparent deformations of three-dimensional objects caused by changes of the camera
position can be locally approximated by affine maps, and hence, during the image matching
process, the Euclidean transformation group should be extended to the affine transformation
group by including stretching and skewing transformations. Applications of equi-affine and
affine invariance to image processing can be found, for instance, in [25, 26, 44]. An affine-
invariant extension of the SIFT algorithm (ASIFT) has been proposed in [40, 47], which detects
feature points in two images that are so related by simulating many affine transformations
of each image and performing the SIFT algorithm between all image pairs. Going beyond
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affine-invariant detectors, projective invariance and moving frame-based signatures have also
been successfully applied in computer vision applications [17]. Recently, Damelin, Ragozin and
Werman investigated the best uniform approximation to a continuous function under affine
transformations, which has applications in the rapid rendering of computer graphics [8].

In contrast to the above mentioned methods, a centro-affine invariant detection method offers
the following features:

(1) It depends on the centro-affine differential invariants of smooth closed curves, in contrast
to the ordinary discrete mode matching methods.

(2) Centro-affine differential invariants involve lower order derivatives of the curve paramet-
rization, and hence are more accurate and less error prone than their fully affine counter-
parts.

(3) In some situations, centro-affine invariance is equivalent to fully affine invariance if we
can find a pair of exact corresponding points (a point-correspondence) with respect to an
affine transformation. More precisely, for every closed curve, its barycenter can serve as
that point-correspondence (or local origin) for its local centro-affine invariants.

(4) The method relies solely on edge detection, and hence can be applied to untextured images.

The remainder of this paper is organized as follows. In Section 2, we provide a brief review
discussion on the moving frame method and differential invariants. In Section 3, a classification
for the planar curves with constant centro-affine curvatures is provided. In Section 4, we study
the centro-affine invariant heat flow. In Section 5, an application of the centro-affine invariants
in the matching of images obtained by cameras is discussed. Finally, Section 6 contains some
concluding remarks on this work.

2 Preliminaries

2.1 Moving frame

Let us first review basic facts on the method of equivariant moving frames introduced by Fels
and the first author [12, 35]. Assume G is an r-dimensional Lie group acting smoothly on an
m-dimensional manifold M :

G×M →M, h · (g · z) = (hg) · z.

A right equivariant moving frame is defined as a smooth map ρ : M → G, that is equivariant
with respect to the action on M and the inverse right action of G on itself; explicitly,

ρ : M → G satisfies ρ(g · z) = ρ(z)g−1. (2.1)

The existence of a (local) moving frame requires that the group act freely and regularly on M .
The regularity is a global condition and does not play a role in any of the applications to date.
In many cases, one gets by with a locally free action, in which case the resulting moving frame
is locally equivariant, meaning that (2.1) holds for group elements g sufficiently close to the
identity.

Given local coordinates z = (z1, . . . , zm) on M , let w(g, z) = g · z be the formulae for the
transformed coordinates under the group transformation. The right moving frame g = ρ(z)
associated to the coordinate cross-section K = {z1 = c1, . . . , zr = cr} is found by solving the
normalization equations

w1(g, z) = c1, . . . , wr(g, z) = cr, (2.2)
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for the group parameters g = (g1, . . . , gr) in terms of the coordinates z = (z1, . . . , zm). The
equivariant moving frames can be obtained by choosing a cross-section K and solving for the
group element g = ρ(z) that takes z to a point ρ(z) · z ∈ K, known as the “canonical form” of z.
The coordinates of the canonical form provide a complete system of non-constant invariants.

Theorem 2.1. If g = ρ(z) is the moving frame obtained by solving equation (2.2), then

I1(z) = wr+1(ρ(z) · z), . . . , Iz−r(z) = wm(ρ(z) · z),

form a complete system of functionally independent invariants.

Definition 2.2. The invariantization of a scalar function F : M → R with respect to a right
moving frame is the invariant function I = ι(F ) defined by I(z) = F (ρ(z) · z). In particular, if I
is any invariant function, then I = ι(I).

Thus, invariantization defines a canonical projection from the algebra of (smooth) functions
to the algebra of invariant functions that respects all algebraic operations.

Definition 2.3. Given a smooth manifold M of dimension m and an integer 1 ≤ p < m, the
k-th order jet bundle Jk = Jk(M,p) is a fiber bundle over M , such that the fiber of a point
z ∈ M consists of the set of equivalence classes of p-dimensional submanifolds of M under the
equivalence relation of k-th order contact at the point z.

The regular subset of the jet bundle is where the action is (locally) free and regular, which
is non-empty when the order k is sufficiently large. A (local) moving frame of order k can then
be constructed on the regular subset. A p-dimensional submanifold is called regular at order k
if its jet belongs to the regular subset, and hence is in the domain of the moving frame map.
See [31] for an algebraic characterization of totally singular submanifolds, meaning those whose
jets are singular at all orders. In centro-affine geometry, the straight lines are totally singular.

Assume the manifold M has local coordinates z =
(
x1, . . . , xp, u1, . . . , uq

)
in some neighbor-

hood where the regular submanifold S can be represented as a graph u = u(x). The fundamental
differential invariants are obtained by invariantization of the individual jet coordinate functions,

H i = ι
(
xi
)
, IαJ = ι

(
uαJ
)
, i = 1, . . . , p, α = 1, . . . , q, #J ≥ 0.

One can further apply the invariantization process to differential forms by the same procedure.
First transform the differential form by acting on it by a general group element g and then
invariantization by replacing the group parameters by their expressions g = ρ(z) in terms of the
moving frame. Details can be found in [12]. In particular the (horizontal components of) the
invariantized basis horizontal one-forms dxi give the fundamental (contact-)invariant one-forms,
which we denote by1

ωi = ι
(
dxi
)
H
, i = 1, . . . , p. (2.3)

In curve geometries, ω = ι(dx)H is the invariant arc length element, usually denoted as ds.
The corresponding dual invariant differential operators are denoted by D1, . . . ,Dp, and can be
directly obtained by substituting the moving frame formulas for the group parameters into the
corresponding implicit differentiation operators used to produce the prolonged group actions.
The invariant differential operators map differential invariants to differential invariants, and
hence can be iteratively applied to generate the higher order differential invariants.

1We ignore all contact forms, [30], which is the meaning of the H subscript.
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Theorem 2.4. If the moving frame has order n, then the set of fundamental differential invari-
ants

I(n+1) =
{
Hi, I

α
J | i = 1, . . . p, α = 1, . . . , q, #J ≤ n+ 1

}
of order ≤ n + 1 forms a generating set, meaning that all other differential invariants can be
obtained by invariant differentiation.

In many cases, I(n+1) does not form a minimal generating set, owing to the existence of
syzygies (algebraic relations) among the differentiated invariants. Nevertheless, these syzygies
and indeed the entire structure of the differential invariant algebra can be completely determined
by the moving frame calculus, using the powerful recurrence formulae. See [12, 35] for details.

2.2 Centro-affine differential invariants for plane curves

Let us now implement the moving frame calculation, based on Section 2.1, for the centro-affine
group A(2,R) acting on plane curves. In this case the group is acting on J5

(
R2, 1

)
. We represent

the planar centro-affine action explicitly in a slightly more convenient form:(
u
v

)
= λ

(
α β
γ δ

)(
x
y

)
, where det

(
α β
γ δ

)
= 1, λ 6= 0.

By a direct computation, the prolonged centro-affine transformations up to order 4 are given by

u = λαx+ λβy, v = λγx+ λδy,

vu =
γ + δyx
α+ βyx

, vuu =
yxx

λ(α+ βyx)3
,

vuuu =
(α+ βyx)yxxx − 3βy2xx

λ2(α+ βyx)5
,

vuuuu =
(α+ βyx)2yxxxx − 10β(α+ βyx)yxxyxxx + 15β2y3xx

λ3(α+ βyx)7
.

Let ε = sign[(yxx/(xyx − y)]. Further, after possibly reparametrizing or applying a centro-affine
transformation, we can specify sign(y − xyx) = 1. To construct a moving frame, we use the
cross-section normalization

u = 0, v = 1, vu = 0, vuu = −ε.

Solving for the group parameters yields

λ4 =
εyxx

(xyx − y)3
, α = λy, β = −λx,

γ = − yx
λ(y − xyx)

, δ =
1

λ(y − xyx)
, (2.4)

which prescribes the right-equivariant moving frame. Invariantizing the horizontal one-form

duH = (λα+ λβyx)dx

by substituting the moving frame formulae (2.4) produces the centro-affine arc-length element

ds = ι(dx)H = sign(y − xyx)

√
ε

yxx
xyx − y

dx =

√
ε

yxx
xyx − y

dx, (2.5)
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By a direct calculation, we produce the fundamental differential invariant

κ = ι(yxxx) = sign(y − xyx)
3xy2xx + (y − xyx)yxxx

y2xx

√
ε

yxx
xyx − y

=
3xy2xx + (y − xyx)yxxx

y2xx

√
ε

yxx
xyx − y

, (2.6)

which we identify as the centro-affine curvature. Higher order invariants are all obtained by
invariant differentiation of κ with respect to the centro-affine arc length (2.5), and so a complete
list of differential invariants is given by κ, κs, κss, . . .. In particular, one can show, either by
direct calculation or by using the recurrence formulae [12], that

ι(yxxxx) = κs +
3

2
κ2 − 3, ι(yxxxxx) = κss + 5κκs + 3κ3 − 16κ,

and so on.
It is also of interest to obtain the formulas for the centro-affine curvature and arc length for

a general parametrized curve. Consider a smooth curve parameterized by

x(p) = (x(p), y(p))T,

where x(p), y(p) are smooth functions of the parameter p defined over a certain interval I,
and the superscript “T” represents the transpose of a vector or matrix. We use dots to denote
derivatives with respect to the parameter p. In particular ẋ = dx/dp is the tangent vector.

To write out the formulas, we will use the bracket notation

[a,b] = det(a,b), a,b ∈ R2,

to denote the cross product in the plane. Let s be the centro-affine arc-length parameter, where
x′ = dx/ds is used to distinguish

•

x = dx/dp. We first note that a parametrized curve x(p) is
regular if and only if it satisfies[

x,
•

x
]
6= 0,

[ •
x,

••

x
]
6= 0. (2.7)

The required formulas are obtained by replacing the jet derivative coordinates yx, yxx, . . . by
using the chain rule to express x-derivatives in terms of p-derivatives, as given by

ynx 7−→ Dn
xy,

where

Dx =
1
•

x

d

dp

is the differentiation operator dual to the horizontal one-form dx =
•

x dp. Thus,

yx 7−→
•

y
•

x
, yxx 7−→

•

x
••

y −
••

x
•

y
•

x3
,

and so on. Substituting into (2.5) produces the general formula for the centro-affine arc-length
element of a parametrized curve

ds =

√√√√ε

[ •
x,

••

x
][

x,
•

x
]dp, where ε = sign

([ •
x,

••

x
][

x,
•

x
]) . (2.8)
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One easily verifies that ε is invariant under centro-affine transformations and reparametrizations,
including those that are orientation reversing. Similarly, its centro-affine curvature (2.6) is given
by the general formula√√√√ε

[
x,

•

x
][ •

x,
••

x
] ([x, ••x][

x,
•

x
] +

[
x,

••

x
][ •

x,
••

x
]
−
[
x,

•

x
][ •

x,
•••

x
]

2
[ •
x,

••

x
][

x,
•

x
] )

. (2.9)

It is easy to check that (2.9) is equivalent to (2.6), up to a constant factor. For the sake of
convenience, we choose (2.9) as the centro-affine curvature κ. In particular, parametrizing the
curve by centro-affine arc-length s, that is,[

x′,x′′
]

[x,x′
] = ε, which implies

[
x′,x′′′

][
x,x′

]
−
[
x′,x′′

][
x,x′′

][
x,x′

]2 = 0,

one obtains the formula [14, 34, 39, 45]:

κ =

[
x′′,x

][
x′,x

] , (2.10)

and

x′′ = κx′ − εx. (2.11)

Furthermore, from equation (2.11), we have

x′′′ =
(
κs + κ2 − ε

)
x′ − εκx, (2.12)

and

x′′′′ =
(
κ′′ + 3κκs − 2εκ+ κ3

)
x′ − ε

(
2κs + κ2 − ε

)
x.

Remark 2.5. For a regular curve x(p), ε ≡ 1 or ε ≡ −1. The value of ε indicates that whether
the vectors x, xss lie on the same or opposite sides of the tangent vector xs. For example, in
Fig. 1, ε = 1 on the red parts and ε = −1 on the blue parts of the curve. The points in between
the red and blue parts are irregular points.

Remark 2.6. If κ(s) < 0, s ∈ (a, b), let κ̃(s̃) = −κ(s) > 0, s̃ = −s ∈ (−b,−a). Then, by solving
the differential equation

d2x(s̃)

ds̃2
− κ̃(s̃)

dx(s̃)

ds̃
+ εx(s̃) = 0, s̃ ∈ (−b,−a),

modeled on (2.11), we obtain a curve C̃(s̃) with the centro-affine curvature κ̃(s̃) > 0, s̃ ∈
(−b,−a). If we perform the orientation-reversing reparametrization s = −s̃ ∈ (a, b), then the
resulting curve C(s) is equivalent to the curve C̃(s̃), s̃ ∈ (−b,−a), and its centro-affine curvature
satisfies κ(s) < 0.

3 Centro-affine planar curves with constant curvature

In any Klein geometry, submanifolds that have the property that all their differential invariants
are constant play a particularly important role. The regular ones can all be algebraically char-
acterized by the following theorem, originally due to Cartan [5, 12]. See also [31, 36] for further
details.
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Figure 1. The geometrical properties of the centro-affine invariant ε.

Theorem 3.1. Let G be a Lie group acting on an m-dimensional manifold M . Then, for
1 ≤ p < m, a regular p-dimensional submanifold S ⊂M has all constant differential invariants
if and only if it is a subset of an orbit of a (suitable) p-dimensional subgroup H ⊂ G. In this
case, H can be identified with the local symmetry group of S.

The totally singular p-dimensional submanifolds, as defined above, are characterized by their
admitting a (local) symmetry group of dimension > p. They can be characterized differentially
by a Lie determinant condition [31]. The caveat “suitable” in the above result means that the
subgroup H has p-dimensional orbits and that such orbits are not totally singular. See [31] for
an algebraic characterization.

Specializing to plane curves, we assume the transformation group is ordinary, meaning that
it acts transitively and does not pseudo-stabilize [30], which is the case for all fundamental
geometric transformation groups including the centro-affine and centro-equi-affine groups. In
this case, the differential invariant algebra is generated by invariantly differentiating a single
differential invariant, which we identify as the G-invariant curvature. Thus, by the above results,
a regular curve C ⊂ X has constant curvature if and only if it forms part of the orbit of a suitable
one-parameter subgroup H ⊂ G, and admits H as its (local) symmetry group. Two such curves
are equivalent, meaning the C̃ = g · C for some g ∈ G is their corresponding symmetry groups
are related by the adjoint map H̃ = Ad g · H = g · H · g−1. Thus one can use the methods
of classification of optimal subalgebras of the Lie algebra of G to classify constant curvature
curves up to equivalence. On the other hand, totally singular curves are characterized by their
admitting local symmetry groups of dimension ≥ 2. All other curves have at most a discrete
group of local symmetries.
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Now let us apply these considerations to the centro-affine group. The first remark is that
a curve is totally singular if and only if it is a straight line segment. This follows easily from
the prolonged action, or by calculation of the Lie determinant. For the group GL(2,R), there
are three inequivalent families of one-parameter subgroups, respectively generated by one of the
Lie algebra elements(

1 0
0 α

)
,

(
1 1
0 1

)
,

(
cosϕ − sinϕ
sinϕ cosϕ

)
, (3.1)

where α 6= 0 and 0 < ϕ < π. In particular, when α = 1, the corresponding orbit is a straight
line and hence totally singular. Exponentiating the infinitesimal generators (3.1) to determine
the corresponding one-parameter subgroups and orbits, we deduce the following result.

Theorem 3.2. Let C be a constant centro-affine curvature curve with ε = 1.

(i) If κ > 2, then C is centro-affine equivalent to a curve

y = xα, x > 0, 0 < α < 1, where κ =
1√
α

+
√
α.

(ii) If κ = 2, then C is centro-affine equivalent to the curve y = x log x.

(iii) If κ = 0, then C is centro-affine equivalent to the unit circle.

(iv) If 0 < κ < 2, then C is centro-affine equivalent to the logarithmic spiral with polar coordi-
nates

ρ = exp(θ cotϕ), 0 < ϕ < π/2, where κ = 2 cosϕ.

Note that the curves in Theorem 3.2 are generated from the subgroups in (3.1), with ϕ = π/2
corresponding to the circle. The above values of the centro-affine curvature can be found either
by direct computation or by applying the intrinsic algebraic method of [33].

Proposition 3.3. A non-degenerate centro-affine curve has centro-affine curvature κ = 0 if
and only if it is locally centro-affine equivalent to the unit hyperbola y = x−1 or unit circle
x2 + y2 = 1.

4 Centro-affine invariant geometric heat flow

Let us next investigate centro-affine invariant evolutionary processes. Consider a family of
embedded smooth Jordan curves parametrized by C : S1 × I → R2, where t ∈ I ⊂ R can be
viewed as the time parameter and p ∈ S1 is a free parameter of each individual curve in the
family. We assume that the curve family C(p, t) evolves according to the centro-affine invariant
evolution equation

∂C

∂t
= β(κ(s, t))Css (4.1)

with the initial condition

C(s, 0) = C0(s),

where s is the corresponding centro-affine arc-length, κ(s, t) is the centro-affine curvature, β(κ) is
a prescribed function of κ.
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Geometrically, equation (4.1) means that any point of the curve moves with a velocity in the
direction of the “normal” vector Css, with speed proportional to a function of the centro-affine
curvature of the curve at this point. These kinds of equations arise in differential geometry and
a variety of applications due to their inherent invariance. On the other hand, because the arc
length parameter s changes with time, (4.1) is a non-linear evolutionary equation.

In view of (2.8), let

g(p) :=

√
ε
[Cp,Cpp]

[C,Cp]
(4.2)

be the invariant centro-affine metric for the curve C(p, t). The arc length parameter s is obtained
by integration:

s(p) =

∫ p

p0

g(ξ)dξ.

In view of the elementary commutator relation
∂

∂t

∂

∂p
=

∂

∂p

∂

∂t
, we have

∂

∂t

∂

∂s
=

∂

∂t

(
1

g

∂

∂p

)
= −gt

g

∂

∂s
+

∂

∂s

∂

∂t
.

Next, let us compute the centro-affine metric evolution. Firstly, using equation (4.2),

∂
(
g2
)

∂t
= ε

([Cpt,Cpp] + [Cp,Cppt])[C,Cp]− [Cp,Cpp]([Ct,Cp] + [C,Cpt])

[C,Cp]2
.

Note that since the tangent Cs is not parallel to C, then the right hand side of (4.1) can be
expressed as the linear combination of Cs and C, which means

βCss = WCs + UC, where W = βκ, U = −εβ.

By a direct computation, we obtain

Cp = gCs,

Cpp = ggsCs + g2Css =
(
ggs + g2κ

)
Cs − εg2C,

Cpt = (WCs + UC)p

= g(WsCs +WCss + UsC + UCs) = g(Ws +Wκ+ U)Cs + g(Us − εW )C,

Cppt =
[
ggs(Ws + κW + U) + g2(Wss + 2κWs + (κs + κ2 − ε)W + Us + κU)

]
Cs

+
[
ggs(Us − εW )− εg2(2Ws + κW − εUss + U)

]
C.

Then

[Cpt,Cpp] = εg2(g(Ws + U + εκUs)− gs(W − εUs))[C,Cs],

[Cp,Cppt] = εg2(g(2Ws + κW − εUss + U)− εgs(Us − εW ))[C,Cs],

[Cp,Cpp] = εg3[C,Cs],

[Ct,Cp] = gU [C,Cs] ,

[C,Cpt] = g(Ws +Wκ+ U)[C,Cs].

It follows that

1

g

∂g

∂t
=

1

2
(2Ws + εκUs − εUss) =

1

2
(βss + κβs) + κsβ. (4.3)
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We now come to a crucial computation, namely the centro-affine curvature evolution

∂κ

∂t

∣∣∣∣
p

=
∂

∂t

[C,Css]

[C,Cs]
=

([Ct,Css] + [C,Csst])[C,Cs]− [C,Css]([Ct,Cs] + [C,Cst])

[C,Cs]2
.

A direct computation gives

Cst = Cts −
gt
g

Cs = (WCs + UC)s −
gt
g

Cs =

(
Ws + κW + U − gt

g

)
Cs + (Us − εW )C,

Csst = Csts −
gt
g

Css =

[(
Ws + κW + U − gt

g

)
Cs + (Us − εW )C

]
s

− κgt
g

Cs + ε
gt
g

C

=

[
Wss +

(
κs + κ2 − ε

)
W + 2Us + κ

(
2Ws + U − 2

gt
g

)
−
(
gt
g

)
s

]
Cs

− ε
[
−2Ws + κW − εUss + U − 2

gt
g

]
C.

Thus we arrive at

∂κ

∂t
= κsW + 2Us −

ε

2

(
κsUs + κ2Us − Usss

)
= βκκs − 2εβs +

1

2

((
κs + κ2

)
βs − βsss

)
. (4.4)

We now focus on the case of β ≡ 1, namely the heat flow in centro-affine geometry

∂C

∂t
= Css. (4.5)

Equation (4.3) implies that

gt = gκs. (4.6)

Consequently, in view of equation (4.4), we see that the centro-affine curvature satisfies the first
order inviscid Burgers’ equation

∂κ

∂t
= κκs. (4.7)

To sum up, we arrive at the following results.

Theorem 4.1. The centro-affine curve evolution process

∂C

∂t
= Css, C(s, 0) = C0,

is equivalent to the initial problem of the inviscid Burgers’ equation:

∂κ

∂t
= κ

∂κ

∂s
, κ(s, 0) = κ0(s),

where κ0(s) is the signed centro-affine curvature of the initial curve C.

Comparing equation (4.6) with equation (4.7), one has

∂κ

∂t
− κ

g

∂g

∂t
= 0.

Hence

∂(κ/g)

∂t
=

1

g

(
∂κ

∂t
− κ

g

∂g

∂t

)
= 0.

Thus we conclude:
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Corollary 4.2.
κ

g
(p, t) =

κ

g
(p, 0) remains invariant for any t > 0.

Therefore, equation (4.7) can be written as

∂κ

∂t
=
κ

g
(p, 0)

∂κ

∂p
. (4.8)

In fact, if κ0(s) = κ(s, 0) ≡ 0, by (4.8), the solution for (4.5) is C(·, t) = exp(−εt)C0. We
immediately deduce the following result.

Corollary 4.3. If the initial centro-affine curvature κ0(s) = κ(s, 0) ≡ 0, then at any time t ≥ 0,
the curve C(t) is centro-affine equivalent to the initial curve C0.

In the following, we assume κ(p, 0) 6= 0. Solve the above partial differential equation (4.8) by
the method of characteristics yields

κ(p, t) = Φ(t+ h(p)),

where Φ is any differentiable function of one variable and h(p) =

∫ p g

κ
(p̃, 0) dp̃. Since κ(p, 0) 6= 0,

the ratio g(p, 0)/κ(p, 0) will be of one sign, and hence h(p) defines a one-to-one map. Thus we
conclude:

Corollary 4.4. The curvature κ(p, t) remains invariant on the curve t + h(p) = C, where C
is constant. At the same time, κ(p, t) = κ

(
h−1(C), 0

)
, i.e., at any given time t, we have

κ(p, t) = κ
(
h−1(t+ h(p)), 0

)
.

The flow (4.1) can be written as

∂C

∂t
= Css = κCs − εC. (4.9)

In view of Corollary 4.2, the heat flow (4.9) is equivalent to

ε
κ

g
(p, 0)Cp − εCt = C,

which can be solved easily, to get

C(p, t) = exp(−εt)Ψ
(
t+

∫ p g

κ
dp

)
,

where the vector function Ψ

(∫ p g

κ
dp

)
= C0, C0 = C(p, 0), p ∈ (p1, p2), is the initial value of

C(p, t), which implies

Ψ(p̃) = C0

(
h−1(p̃)

)
, p̃ ∈ (h(p1), h(p2)). (4.10)

At any given time τ , Ψ(p̃+ τ) = C0

(
h−1(p̃+ τ)

)
, where p̃ ∈ (h(p1)− τ, h(p2)− τ).

On the other hand, by (4.3), the evolution of centro-affine arc-length L for C(p, 0) at (p1, p2)
is

∂L

∂t
=

∂

∂t

∫ p2

p1

g dp = κ(p2)− κ(p1).

Hence, we have
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Corollary 4.5. The solution to the initial problem of the heat flow (4.9) with initial curve C0,

p ∈ (p1, p2) and κ 6= 0 is given by C(p, t) = exp(−εt)Ψ
(
t+

∫ p g

κ
dp

)
with Ψ satisfying (4.10).

A basic fact on the theory of curve evolution [6, 11] states that the geometric shape of the
curve, sometimes referred to as the trace or the image of the planar curve, is affected only by the
normal component of the flow field. The tangential component affects only the parametrization,
and not the the curves’ overall geometric shape. Thus, equation (4.9) is equivalent to

∂C

∂t
= −εC. (4.11)

Solving the above equation, we have

C(p, t) = exp(−ε t)C(p, 0).

In this manner, we arrive at the long time behavior of the curves governed by the flow (4.9):

Proposition 4.6. The curve family C(p, t) with ε = 1 will converge smoothly to the origin as
t→∞.

5 Edge matching of curve profiles in digital images

For many vision tasks, including 3D reconstruction, image alignment, and tracking, a key issue
is finding correspondences between common objects in images. The SIFT and SURF algorithms
are among the most widely applied to the identification of corresponding feature points. In fact,
when the images have less texture complexity and color diversity, it is not so easy to accurately
extract and describe the feature points through application of the SIFT and SURF algorithms.
Another drawback to these detectors is that they are only Euclidean-invariant.

In general, the camera is often modeled as a projective transformation from scene coordinates
to image coordinates. Especially, if a physical object has a smooth or piecewise smooth boundary,
its images obtained by cameras in varying positions undergo apparent deformations, which are
locally well approximated by affine transforms of the image plane. In consequence, the solid
object recognition problem will lead back to the computation of affine invariant local image
features. That is, during image matching, the Euclidean group (rotation, translation, reflection)
should be extended to the equi-affine or full affine transformation group by including stretching
and skewing transformations.

In comparison with the above-mentioned methods, differential centro-affine-invariant detec-
tion has the following advantageous features:

(1) It depends on the differential invariants of smooth curves for reducing errors.

(2) Centro-affine differential invariants involve lower order derivatives of the curve paramet-
rization, and hence are more accurate and less error prone than fully affine differential
invariants.

(3) In some situations, centro-affine invariance is equivalent to fully affine invariance if we can
find a pair of exact corresponding points (a point-correspondence) with respect to an affine
transformation.

(4) More precisely, for every closed curve, its barycenter can be temporarily served as that
point-correspondence (or the local origin) only for its local centro-affine invariants.

(5) The method relies solely on edge detection, which may well be adequate for untextured
images.
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Figure 2. The original images.

In this section, we apply the centro-affine differential invariants defined in the previous sec-
tions to identify objects in different images. In Fig. 2, photos of a sign with the word “Standards”
were taken by the camera at different angles and directions. We seek correspondences between
the letters according to the centro-affine invariants given in equations (2.8) and (2.9).

Figure 3. The smooth edges generated by the B-spline curve fitting method and their ordinals, which

will be used in Table 1.

In order to describe more clearly and accurately this process, we now focus on the initial
letter “S” as a main example; the others can be dealt with similarly. First of all, it is necessary
to obtain the boundaries of the objects in the images. Accurate boundaries of the individual
letters are segmented using level set method [23] or Canny edge detection [27]. We shall apply the
centro-affine arc-length, the integral invariant of centro-affine curvature, the area, the barycenter
and corner points of every boundary as its descriptor, which can be employed to recognize the
corresponding boundaries in different digital images. Corner point in a boundary represents
critical information in describing object features, which is the local extreme point related to
the Euclidean curvature. Then after the boundary extraction (segmentation), the letter “S” is
located inside of its discrete boundary points.

Notice that, for a given closed curve, its local centro-affine invariants may be obtained by
placing the temporary origin at the barycenter of its closed boundary. To be precise, the
smoothing algorithm – curve shortening flow [10, 13] or Gaussian convolution for a curve [27] –
can play an auxiliary role in the pretreatment process for decreasing the jaggedness in the curve.
For simplicity, we use Gaussian convolution for smoothing. The curve Γ is first parameterized
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by the parameter u, so Γ(u) = (x(u), y(u)). An evolved version Γσ of Γ can then be computed,
and is defined by Γσ = (x(u, σ), y(u, σ)), where x(u, σ) = x(u) ∗ g(u, σ), y(u, σ) = y(u) ∗ g(u, σ),
with ∗ denoting the convolution operator, while g(u, σ) denotes a Gaussian of width σ. For
all boundaries, we apply k-means clustering [18] to ensure that they are represented by the
same number of points, which are used for further fitting purposes. By experimentation, we
find that it is adequate to select 85 points for every boundary. To obtain the centro-affine
invariants by (2.8), (2.9), the discrete boundary points should generate a curve smooth enough
for computing derivatives. B-spline curves are suitable for this role because of their affine
invariance and smoothness [7, 20]. Thus, by a direct operation, we obtain the smooth boundaries
as shown in Fig. 3.

If the boundary curve of the letter “S” is sufficiently smooth, it is easy to calculate its centro-
affine invariants ε and centro-affine curvature κ appearing in (2.8) and (2.9), respectively. The
final results are shown in Fig. 4. To reduce the disturbance caused by irregular points, we set
threshold value of centro-affine curvatures |κ| to 100, deleting the points whose centro-affine
curvatures |κ| > 100. In view of the pictures in Fig. 4, we observe that they look similar modulo
an overall translation in s. Now, it is crucial to find the corresponding points between them.

Figure 4. The differential centro-affine invariants ε and |κ| for the first letter “S”. The horizontal axis

represents the centro-affine arc-length up to a factor.

We employ the L2 inner product

〈 f(x) , g(x) 〉 =

∫ b

a
f(x)g(x) dx

between functions f(x) and g(x) over the interval [a, b]. The associated norm

dist(f(x), g(x)) = ‖ f(x)− g(x) ‖ =

√∫ b

a
(f(x)− g(x))2 dx,

will be used as a measure of their distance.
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Now we can apply this concept to compare two discrete curves. Let us assume that, the
curve A consists of N points, denoted by

(xa1 , ya1)T, (xa2 , ya2)T, . . . , (xaN , yaN )T.

In this way, we denote the curve B consists of M points by

(xb1 , yb1)T, (xb2 , yb2)T, . . . , (xbM , ybM )T.

Locally, we can always assume that xa1 < xa2 < · · · < xaN and xb1 < xb2 < · · · < xbM . For the
sake of convenience, we use the following notations to indicate the maps of curve A and curve B,
that is,

yai = f(xai), ybj = g(xbj ), i = 1, 2, . . . , N, j = 1, 2, . . . ,M.

Two new sets of x-coordinates are generated by trimming the original {xai} and {xbi} to only
those values such that every x′ai in the new set has two neighbours from {xbi} and every x′bi in the
new set has two neighbours from {xai}. At the same time, we have x′ai > x′bi−1

and x′bi > x′ai−1
.

Then, we need to generate a common set of points for both curves with x-coordinates from the
following set.

{x1, x2, . . . , xK} = {x′a1 , x
′
a2 , . . . , x

′
aN′
} ∪ {x′b1 , x

′
b2 , . . . , x

′
bM′
},

where x1 < x2 < · · · < xK and max{M ′, N ′} ≤ K ≤ M ′ + N ′. The next step is to define the
maps for the set {x1, x2, . . . , xK}, and here we take

f(xi) =


(xi − x′al−1

)f(x′al) + (x′al − xi)f(x′al−1
)

x′al − x′al−1

, x′al−1
≤ xi ≤ x′al , 1 < l ≤ N ′,

g(xi), xi < x′a1 ,

g(xi), xi > x′aN′ ,

and

g(xi) =


(xi − x′bl−1

)g(x′bl) + (x′bl − xi)g(x′bl−1
)

x′bl − x
′
bl−1

, x′bl−1
≤ xi ≤ x′bl , 1 < l ≤M ′,

f(xi), xi < x′b1 ,

f(xi), xi > x′bM′
.

The missing y-coordinates (if any) for each curve are obtained via interpolating neighboring
points. Thus, we can calculate the difference between curve A and curve B by the normalized L1

or L2 distance:

error1 =
dist1

1

2N

N∑
i=1

|yai |+
1

2M

M∑
i=1

|ybi |

or error2 =
dist2

1

2N

√√√√ N∑
i=1

y2ai +
1

2M

√√√√ M∑
i=1

y2bi

,

where

dist1 = max{|f(xi)− g(xi)|, i = 1, 2, . . . ,K} and dist2 =
1

K

√√√√ K∑
i=1

|f(xi)− g(xi)|2.
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Figure 5. Finding the corresponding relations by using the data in Fig. 4.

Table 1. The centro-affine arc-lengths for the smooth boundaries in Fig. 2, where the row labels and

column labels correspond to the ordinals in Figs. 2 and 3.

1 2 3 4 5 6 7

Image A 21.5764 17.3975 16.0039 6.0827 13.1816 10.2993 6.1379

Image B 21.4343 18.1060 16.2536 6.0291 13.4718 9.9786 6.1225

Image C 21.3836 16.3080 15.0370 5.6557 12.2398 9.9733 6.1182

Image D 21.4965 17.0939 15.8373 5.9567 13.2712 11.4628 6.1752

(continued) 8 9 10 11 12 13

Image A 16.1042 6.0655 17.9754 10.5182 6.1844 20.9430

Image B 16.3201 5.8780 12.8081 9.4719 6.0826 20.6943

Image C 15.7962 5.8537 15.7287 11.1307 6.1087 20.9512

Image D 16.7117 6.0081 18.1944 10.3007 6.1984 20.7571

Table 2. The correlation coefficents for Table 1.
Image A Image B Image C Image D

Image A 1 0.9672 0.9930 0.9976

Image B 0.9672 1 0.9767 0.9624

Image C 0.9930 0.9767 1 0.9897

Image D 0.9976 0.9624 0.9897 1

By using the above method, under translations or orientation reversals of data sets, we can
find the minimum errors about ε and centro-affine curvatures between the first graph in the Fig. 4
and the remaining three. In the first row of Fig. 5, the comparison results are shown together. We
apply the dynamic time warping (DTW) algorithm [41] to find the optimal alignment between
the two sets of data points, which we view as time series, as shown in the second row of Fig. 5.
In general, DTW is often used to determine similarity, classification, and corresponding regions
between two time series.

Finally, applying the same algorithm to the other letters in the label, the corresponding points
can be found. The results are shown in Fig. 6, where, between two images of every column, the
correspondences are indicated by the different colors. For comparative purposes, we also apply
the SIFT, SURF and ASIFT methods to obtain their corresponding points, which are shown in
Fig. 7, respectively.

Further, by using equation (2.8), we can also obtain the centro-affine arc-lengths for the
boundaries of the letters in the label “Standards”, which are shown as in Table 1. The centro-



18 P.J. Olver, C. Qu and Y. Yang

Figure 6. The corresponding points between the two images of every column obtained by using the

centro-affine invariants method.

affine arc-lengths for the letters in the ith image of Fig. 3 are listed in the ith row of Table 1. It
is easy to see that there is a strong correspondence between the centro-affine arc-lengths of the
corresponding objects. Furthermore, we calculate the correlation coefficients between them, as
shown in Table 2, which indicate that they are almost same.

In projective geometry, a homography is an isomorphism of projective spaces, induced by an
isomorphism of the vector spaces from which the projective spaces derive. Estimating the 2D
homography (or projective transformation) from a pair of images is a fundamental task in
computer vision. Now let us find the homography transformations between these images and
compare the results with the corresponding points obtained by the SURF, SIFT, ASIFT, and
our centro-affine method. Those corresponding points data sets in Figs. 6 and 7 are used to
transform the other three images to the second one in Fig. 2, the final results are shown in
Fig. 8. The transformation results derived by the corresponding points of the centro-affine
invariant method are shown at in the first column; the second column shows the results by
the SURF method; the third column shows the results by the SIFT method; the last column
shows the results by the ASIFT method. (The second figure in the SIFT column is blank due
to incorrect matching points; see the second image of the SIFT row in Fig. 7.)

Remark 5.1. When the images have less texture complexity and color diversity, it is more
challenging to extract and describe the feature points through the SIFT, SURF, and ASIFT
methods. The centro-affine invariant method can match the corresponding points by the closed
boundary, and hence is less affected by texture and color. In view of Figs. 6, 7 and 8, we find
that between the images under the large scale transformation of the camera, the centro-affine
invariant method for finding the corresponding points, using the corresponding boundaries,
offers certain advantages over SURF, SIFT and ASIFT. However, if the object itself admits
affine symmetries, for example, the “o” inside the letter “d”, it is not so easy to find the proper
corresponding points; this defect can be observed in Fig. 6.
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Figure 7. The corresponding points obtained by the SURF method (the first row), the SIFT method

(the second row) and the ASIFT method (the third row).

6 Concluding remarks

In this paper, we have investigated the heat flow in centro-affine geometry and applications of
differential centro-affine invariants in edge matching. Differential invariants and their algebraic
relations for curves in centro-affine geometry are easily obtained by applying the equivariant
moving frame method [12]. A classification of curves with constant centro-affine curvature has
been provided. More interestingly, we have shown that the heat flow in centro-affine geometry
is equivalent to the first-order inviscid Burgers’ equation, in contrast to the equations governed
by the heat flows in Euclidean, affine, and centro-equi-affine geometries, which are nonlinear
second-order parabolic equations. Thus, the evolution process for the centro-affine heat flow is
described by solving the inviscid Burgers equation through the method of characteristics. An
interesting question, to be explored later, is what the presence of shock waves in the solution
might mean for the corresponding curve evolution. In addition, an application of centro-affine
invariants to edge matching is presented. It turns out that the resulting method offers certain
advantages over other well-used methods.

In conclusion, we would like to mention further possible issues relating to this work.

� The Gaussian kernel, while being one of the most used in image analysis, has several unde-
sirable properties, principally when applied to planar curves. One of these is that the filter
is not intrinsic to the curve. This can be remedied by replacing the linear heat equation
by a geometric heat equation. In particular, if the Euclidean geometric heat flow is used,
a scale space invariant to rotations and translations is obtained, while the (equi-)affine
version leads to an(equi-)affine invariant multi-scale representation; see [37, 44] for general
results and recent developments. It would thus be of interest to apply the centro-affine
heat flow analyzed here to construct a corresponding scale space.

� As shown here, the differential invariants for curves in centro-affine geometry can be used to
study edge matching in images. A natural question arises: whether we can use differential
invariants for surfaces in centro-affine geometry to study the edge matching of three-
dimensional images. In fact, the differential invariants for the equi-affine group acting on
image volumes have been constructed in [44].
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Centro-Affine SURF SIFT ASIFT

Figure 8. The homography transformation results by using the corresponding points obtained in Figs. 6

and 7.
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Hermann, Paris, 1935.

[6] Chou K.-S., Zhu X.-P., The curve shortening problem, Chapman & Hall/CRC, Boca Raton, FL, 2001.

[7] Cohen F.S., Huang Z., Yang Z., Invariant matching and identification of curves using B-splines curve rep-
resentation, IEEE Trans. Image Process. 4 (1995), 1–10.

[8] Damelin S.B., Ragozin D.L., Werman M., On best uniform approximation of convex/concave real va-
lued functions from Rk, Chebyshev equioscillation and graphics, in Excursions in Harmonic Analysis,

https://doi.org/10.1515/crll.1999.008
https://doi.org/10.1090/S0894-0347-98-00262-8
https://doi.org/10.1090/S0894-0347-98-00262-8
https://doi.org/10.1007/11744023_32
https://doi.org/10.1201/9781420035704
https://doi.org/10.1109/83.350818


Feature Matching and Heat Flow in Centro-Affine Geometry 21

Vol. 6, In Honor of John Benedetto’s 80th Birthday, Applied and Numerical Harmonic Analysis, to ap-
pear, arXiv:1812.02302.

[9] Daskalopoulos P., Sesum N., Ancient solutions to geometric flows, Notices Amer. Math. Soc. 67 (2020),
467–474.

[10] Deckelnick K., Dziuk G., Elliott C.M., Computation of geometric partial differential equations and mean
curvature flow, Acta Numer. 14 (2005), 139–232.

[11] Epstein C.L., Gage M., The curve shortening flow, in Wave Motion: Theory, Modelling, and Computation,
Proceedings of a Conference in Honor of the 60th Birthday of Peter D. Lax (Berkeley, Calif., 1986), Math.
Sci. Res. Inst. Publ., Vol. 7, Editors A.J. Chorin, A.J. Majda, Springer, New York, 1987, 15–59.

[12] Fels M., Olver P.J., Moving coframes. II. Regularization and theoretical foundations, Acta Appl. Math. 55
(1999), 127–208.

[13] Gage M., Hamilton R.S., The heat equation shrinking convex plane curves, J. Differential Geom. 23 (1986),
69–96.

[14] Gardner R.B., Wilkens G.R., The fundamental theorems of curves and hypersurfaces in centro-affine geo-
metry, Bull. Belg. Math. Soc. Simon Stevin 4 (1997), 379–401.

[15] Grayson M.A., The heat equation shrinks embedded plane curves to round points, J. Differential Geom. 26
(1987), 285–314.

[16] Grayson M.A., Shortening embedded curves, Ann. of Math. 129 (1989), 71–111.

[17] Hann C.E., Hickman M.S., Projective curvature and integral invariants, Acta Appl. Math. 74 (2002), 177–
193.

[18] Hartigan J.A., Wong M.A., Algorithm AS 136: A k-means clustering algorithm, J. Roy. Stat. Soc. Ser. C.
Appl. Stat. 28 (1979), 100–108.

[19] Hasimoto H., A soliton on a vortex filament, J. Fluid Mech. 51 (1972), 477–485.

[20] Huang Z., Cohen F.S., Affine-invariant B-spline moments for curve matching, IEEE Trans. Image Process.
5 (1996), 1473–1480.

[21] Kuwert E., Schätzle R., Gradient flow for the Willmore functional, Comm. Anal. Geom. 10 (2002), 307–339.

[22] Langer J., Perline R., Poisson geometry of the filament equation, J. Nonlinear Sci. 1 (1991), 71–93.

[23] Li C., Huang R., Ding Z., Gatenby J.C., Metaxas D.N., Gore J.C., A level set method for image segmentation
in the presence of intensity inhomogeneities with application to MRI, IEEE Trans. Image Process. 20 (2011),
2007–2016.

[24] Lowe D.G., Object recognition from local scale-invariant features, in Proceedings of the Seventh IEEE
International Conference on Computer Vision, Vol. 2 (Kerkyra, Greece), IEEE, 1999, 1150–1157.

[25] Mikolajczyk K., Schmid C., A performance evaluation of local descriptors, IEEE Trans. Pattern Anal. Mach.
Intell. 27 (2005), 1615–1630.

[26] Mikolajczyk K., Tuytelaars T., Schmid C., Matas A.Z.J., Schaffalitzky F., Kadir T., Van Gool L., A com-
parison of affine region detectors, Int. J. Comput. Vis. 65 (2005), 43–72.

[27] Mokhtarian F., Suomela R., Robust image corner detection through curvature scale space, IEEE Trans.
Pattern Anal. Mach. Intell. 20 (1998), 1376–1381.

[28] Mullins W.W., Two-dimensional motion of idealized grain boundaries, J. Appl. Phys. 27 (1956), 900–904.

[29] Nomizu K., Sasaki T., Affine differential geometry: geometry of affine immersions, Cambridge Tracts in
Mathematics, Vol. 111, Cambridge University Press, Cambridge, 1994.

[30] Olver P.J., Equivalence, invariants, and symmetry, Cambridge University Press, Cambridge, 1995.

[31] Olver P.J., Moving frames and singularities of prolonged group actions, Selecta Math. (N.S.) 6 (2000), 41–77.

[32] Olver P.J., Invariant submanifold flows, J. Phys. A: Math. Theor. 41 (2008), 344017, 22 pages.

[33] Olver P.J., Differential invariants of maximally symmetric submanifolds, J. Lie Theory 19 (2009), 79–99.

[34] Olver P.J., Moving frames and differential invariants in centro-affine geometry, Lobachevskii J. Math. 31
(2010), 77–89.

[35] Olver P.J., Modern developments in the theory and applications of moving frames, in Impact150: Stories of
the Impact of Mathematics, London Mathematical Society, London, 2015, 14–50.

[36] Olver P.J., The symmetry groupoid and weighted signature of a geometric object, J. Lie Theory 26 (2016),
235–267.

https://arxiv.org/abs/1812.02302
https://doi.org/10.1017/S0962492904000224
https://doi.org/10.1007/978-1-4613-9583-6_2
https://doi.org/10.1023/A:1006195823000
https://doi.org/10.4310/jdg/1214439902
https://doi.org/10.36045/bbms/1105733254
https://doi.org/10.4310/jdg/1214441371
https://doi.org/10.2307/1971486
https://doi.org/10.1023/A:1020617228313
https://doi.org/10.2307/2346830
https://doi.org/10.2307/2346830
https://doi.org/10.1017/S0022112072002307
https://doi.org/10.1109/83.536895
https://doi.org/10.4310/CAG.2002.v10.n2.a4
https://doi.org/10.1007/BF01209148
https://doi.org/10.1109/TIP.2011.2146190
https://doi.org/10.1109/ICCV.1999.790410
https://doi.org/10.1109/TPAMI.2005.188
https://doi.org/10.1109/TPAMI.2005.188
https://doi.org/10.1007/s11263-005-3848-x
https://doi.org/10.1109/34.735812
https://doi.org/10.1109/34.735812
https://doi.org/10.1063/1.1722511
https://doi.org/10.1017/CBO9780511609565
https://doi.org/10.1007/s000290050002
https://doi.org/10.1088/1751-8113/41/34/344017
https://doi.org/10.1134/S1995080210020010


22 P.J. Olver, C. Qu and Y. Yang

[37] Olver P.J., Sapiro G., Tannenbaum A., Differential invariant signatures and flows in computer vision: a sym-
metry group approach, in Geometry-Driven Diffusion in Computer Vision, Springer, Dordrecht, 1994, 255–
306.

[38] Olver P.J., Sapiro G., Tannenbaum A., Affine invariant detection: edge maps, anisotropic diffusion, and
active contours, Acta Appl. Math. 59 (1999), 45–77.
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