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Abstract. In his twistor-particle programme of the 1970’s, Roger Penrose introduced a rep-
resentation of the massive particle phase space in terms of a pair of twistors subject to an
internal symmetry group. Here we use this representation to introduce a chiral string whose
target is a complexification of this space, extended so as to incorporate supersymmetry.
We show that the gauge anomalies associated to the internal symmetry group vanish only
for maximal supersymmetry, and that correlators in these string models describe amplitudes
involving massive particles with manifest supersymmetry. The models and amplitude for-
mulae exhibit a double copy structure from gauge theory on the Coulomb branch to gravity,
although the graviton remains massless. The formulae are closely related to those obtained
earlier by the authors expressed in terms of the polarised scattering equations.
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1 Introduction

The twistor-strings of Witten [66], Berkovits [4] and Skinner [63] led to remarkably compact
amplitude formulae for tree amplitudes for both super Yang–Mills [58] and supergravity theories
[12, 16, 17, 29]. These twistor-strings theories and formulae, including the worldsheet formulae
of Cachazo, He and Yuan [13, 14, 15], can all be understood under the umbrella of ambitwistor-
strings [45]; a family of quantum field theories of holomorphic maps from a Riemann surface to
the complexification of phase spaces of massless particles. These can come in various different
twistorial or non-twistorial representations, with and without spin or supersymmetry and in
different numbers of space-time dimensions. They exhibit a number of beautiful and perhaps
unexpected features, such as a uniform simple structure in terms of residues in the moduli
space M0,n of n-points on CP1 modulo Möbius transformations, and one of the most direct
realizations [10, 14, 46, 47] of the double-copy between gauge and gravity amplitudes [6, 7].

In their original form, all these ambitwistor-string theories and associated worldsheet formulae
appear to be tightly restricted to theories and amplitudes involving only massless particles.
However the underlying approach suggests that, if one wishes to compute amplitudes for theories
with massive particles, one should consider quantum field theories of holomorphic strings whose
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target is the complexified phase space of massive particles. The massless case has also shown
that, in order to incorporate fermions simply, we should use a twistor representations of the
phase space.

Nearly 50 years ago, Roger Penrose, followed by Zoltan Perjes, gave a twistor description of
massive particles in terms of a set of two or more twistors up to an internal symmetry group
[51, 54]. He proposed the twistor-particle programme based on the twistor quantization of this
description. In particular, it was hoped that the representation theory of the internal symmetry
group should classify elementary particles; see for example [36, 37, 52, 55] and references therein.
Although this programme has not been pursued further by the twistor community, the framework
was taken up by other authors in the particle physics community. For these authors, quantization
via a worldline Lagrangian approach was used leading to studies of the spectrum of such twistor
particle models, often incorporating supersymmetry. Two-twistor particle models include [8,
9, 22], see also [23, 24] for more recent studies that have a good number of references to the
evolution of the subject, including [26, 27].1 Such worldline actions are a stepping stone to
ambitwistor-string formulations. These are holomorphic strings whose target is a complexified
phase space; the action being built directly from the holomorphic symplectic potential on such
a complexified phase space [45].

A particular advantage of the two-twistor representation of the phase space of massive par-
ticles is that it reduces to the nonlinear massive phase space via a symplectic quotient from the
vector space of a pair of twistors. Such a symplectic quotient can be done via BRST in the
quantum field theory, and all computations can be performed in a linear free-field quantum field
theory on the Riemann surface. However, a key lesson from the massless cases is that, even
if one is only interested in bosonic Yang–Mills or gravity, fermionic symmetries are needed on
the worldsheet and supersymmetries on space-time to obtain simple uniform formulae incorpo-
rating all relevant helicities. We will see that these supersymmetries can also be introduced in
the massive case, leading to simple compact formulae for amplitudes in otherwise complicated,
non-linear gauge and gravity theories.

In its simplest approach, massive particles were understood in terms of a pair of 4d twistors(
Za, Z̄a

)
∈ T × T, a = 1, 2. Each twistor Z ∈ T has four complex components, that according

to more recent (and less Penrosian) conventions are written as Z =
(
λα, µ

α̇
)
, i.e., as a pair

of 2-component spinors; Z̄ is the SU(2, 2) complex conjugate of Z, defining a dual twistor by
Z̄ =

(
λ̄α̇, µ̄

α
)
. This description of massive particles was defined up to an internal symmetry

group SU(2) × C, where the SU(2) acts conformally invariantly on the a index. It can be
understood in more conventional terms as the stabilizer of the massive momentum in the Lorentz
group, the little group, see for example the massive spinor-helicity framework of [3].2 The
factor of C in the symmetry group breaks conformal invariance and determines the particle
masses.

Here we complexify twistors so that the complex conjugate twistor Z̄ becomes a dual twistor Z̃
independent of Z̄ giving the pair Y =

(
Z, Z̃

)
∈ TC := T × T∗. We can also think of such

a complexified twistor as a Dirac twistor Y =
(
λA, µ

A
)
, given as a pair of 4-component Dirac

spinors λA =
(
λα, λ̃α̇

)
and µA =

(
µ̃α, µ

α̇
)
. We will also incorporate supersymmetry extending

Y → Y =
(
λA, µ

A, ηI
)
with N additional fermionic components ηI . This description gives

a natural inner product Y · Y := Z · Z̃ + ηIη
I from the duality between T and T∗ and skew

form ΩIJ .

1Note also a two-twistor model along the lines of an ambitwistor string [40, 41], but focussed on massless
particles.

2More generally, n-twistor descriptions were considered with symmetry groups containing SU(n); in the twistor
particle programme, particle multiplets were to be understood via the representation theory of such internal
symmetry groups. The quantization of massive worldline models based on these descriptions has been studied by
a number of authors, see [23, 50] and references therein.
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Our 4d massive twistorial models are given by holomorphic maps from the Riemann sur-
face Σ to the complexified two-twistor description of massive particles. They consist of a pair
of complexified twistor fields Ya(σ) =

(
Za(σ), Z̃a(σ)

)
, a = 1, 2 taking values in worldsheet spi-

nors
√

Ω1,0
Σ . To reduce to the twistor representation of the massive particle phase space, we also

gauge the currents
(
Ya · Yb, λ

2, λ̃2
)
that generate the (complexified) internal symmetry group

SL(2) × C × C̃. Here λ2 := det(λ) and its conjugate λ̃2 determine the squared mass of the
massive momentum Pαα̇ = λaαλ̃

b
α̇ϵab. Thus we arrive at the model

S4d =

∫
Σ
Ya · ∂̄Ya +AabYa · Yb +A

(
λ2 − jH

)
+ Ã

(
λ̃2 − jH

)
+ Sm.

Here Sm is some theory dependent additional worldsheet matter that in particular can give rise
to a current jH associated to some symmetry generator H. The Aab = A(ab) are gauge fields for

the SL(2) little group, and
(
A, Ã

)
gauge the C × C̃ part of the internal symmetry group; they

are also Lagrange multipliers relating the values of the particle masses to their charges under H.
Although this two-twistor massive model is a string whose target is the complexified two-

twistor description of massive particles of [54], it can be identified with the dimensional reduction
of the 6d and 5d ambitwistor strings in [34]. The contractions of the massive spinor helicity
variables correspond to two components of the internal momentum when embedding the massive
variables in a six dimensional massless momentum. The two-twistor string produces correlators
that localize on delta functions that fix the values of internal momenta in terms of charges
under H and H̃ for all particles involved. In addition to this, the correlators are further localized
by delta functions imposing a polarised version of the scattering equations as in [1, 30].

The models above not only allow us to derive formulae involving any number of massive
particles, but also give an alternative formulation of the massless models in [29]. This is of
particular importance as it presents a framework in which a massless field can be deformed to go
off-shell, which is a necessary prerequisite for defining a gluing operator in the four dimensional
twistorial model and producing loop amplitudes.

Paper summary. In the next section we introduce the two-twistor geometry of the massive
particle phase space. We then briefly present the Penrose transform and its complexification.
This can be used in a two-twistor string that computes amplitudes for theories with massive
particles in four dimensions. Such formulae incorporate fermions and supersymmetry, general-
izing the massless case of [29]. They are based on the polarised scattering equations that have
already been introduced and studied in six and five dimensions [1, 31, 34]; these can also be
related [62] to the formulae of [11]. We focus on a model adapted to the Coulomb branch of
N = 4 SYM; this contains a gauge field, fermions and scalars that have a vacuum expectation
value to give masses to some of the particles, analogous to the standard model. Nevertheless,
as in the models of [33, 34], we can write down a full range of models for particles of spin-0,
spin-1 and spin-2 following the double copy, although the scope for introducing masses into the
gravity models are limited.

2 Massive particles

We first review the twistor description of massive particles in terms of a pair of twistors with re-
dundancy described by the two-twistor internal symmetry group SU(2)×C. This framework ties
in directly with the (more recent) spinor-helicity formalism for expressing polarization data for
massive particles. Anticipating the string model we then complexify the two-twistor description,
and introduce the Penrose transform for massive momentum eigenstates.

Conventions and notation. We will work with spinors in the complex, so that the Lorentz
group in 4 dimensions is double-covered by SL(2,C)×SL(2,C) with each factor acting separately
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on the positive and negative chirality spinors. The positive and negative chirality spinors carry
indices α = 1, 2, α̇ = 1̇, 2̇, raised and lowered with εαβ = ε[αβ], ε12 = 1 and its inverse, as well as
the corresponding dotted version. We denote spinor inner products by the conventional bracket
notation,

⟨λ1λ2⟩ = λ1αλ
α
2 , [λ1λ2] = λ̃1α̇λ̃

α̇
2 , λ̃α̇ = λ̃β̇εβ̇α̇, λ̃α̇ = εα̇β̇λ̃β̇.

2.1 Review of twistor internal symmetry groups for massive particles

Massless particles. As described in [51, 53, 54, 55], a general twistor ZA = (λα, µ
α̇) ∈ T

determines a massless particle whose momentum Pαα̇ and angular momentumMµν =Mαβεα̇β̇+
c.c. about the origin, can be assembled into the angular momentum twistor given by

LAB :=

(
0 P β̇

α

P α̇
β M α̇β̇

)
=

(
0 λαλ̄

β̇

λβλ̄
α̇ λ̄(α̇µβ̇)

)
= Z(AIB)CZ̄C .

In this formula, the infinity twistor breaks conformal invariance and is defined by

IABZ̄B =
(
0, λ̄α̇

)
, IABZ

B = (0, λα),

extending the spinor contractions to degenerate inner products ⟨Z1Z2⟩ := IABZ
A
1 Z

B
2 = ⟨λ1λ2⟩

on twistor space. The angular momentum twistor is invariant under the internal symmetry
transformation Z → eiθZ, which we can identify as the little group rotating the phase of the
constituent spinors of the massless momentum Pαα̇ = λαλ̄α̇.

Massive particles. In order to describe massive particles, we introduce a sum over two
twistors ZA

a , a = 1, 2 with complex conjugates Z̄a
A. These yield the angular momentum twistor

LAB = Z(A
a IB)CZ̄a

C .

In particular, the momentum is given by

Pαα̇ = λaαλ̄
a
α̇,

and so we can identify the indices a, b as the SU(2) little-group indices that stabilizes the massive
momentum Pαα̇ inside the Lorentz group.

Penrose [51] and Perjes [54] define the two-twistor internal symmetry group to be the Poincaré
invariant transformations that preserve the angular momentum twistor. This group is SU(2)×C,
where the SU(2) acts as the massive little group, and the factor of C is given by the complex
transformations

δZA
a ∝ IABZ̄b

Bϵba.

These symmetries all preserve the symplectic form and potential [64]

Ωm := dΘm, 2Θm := iZA
a dZ̄a

A − iZ̄a
AdZ

A
a .

The internal symmetry group action with respect to the potential Θm is generated by the
Hamiltonians

ZA
(a · Z̄b)A, λ2 :=

1

2
λaαλ

α
a =

1

2
⟨Za, Z

a⟩ = 1

2
IABZ

A
a Z

Ba,

for the factors of SU(2) and C respectively. We can therefore define the phase space Pm for
particles of mass m as the symplectic quotient

Pm =
{
Za ∈ T× T | Z(a · Z̄b) = 0, ⟨ZaZ

a⟩ = m
}
/{SU(2)× C}. (2.1)

It is easy to see that this is a 6 real-dimensional symplectic manifold with symplectic poten-
tial Θm.
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2.2 Dirac spinors and spinor-helicity for massive particles

As remarked above, the SU(2) of the internal symmetry group is the massive particle “little
group”, the subgroup of the spin double cover of the Lorentz group that preserves a time-
like momentum Pαα̇; the representations of this little group are naturally identified with the
polarization states of massive particles as follows. For a massive particle of momentum kαα̇ we
write as above

kαα̇ = κaακ̃
a
α̇,

where a = 1, 2 is an SU(2) little group index raised and lowered by εab = ε[ab], ε12 = 1. In the
real case κ̃aα̇ can be taken to be the complex conjugate of καa reducing the little group to SU(2).
We denote little group contractions by

(v1v2) := v1av2bε
ab.

The mass m is given by k2 = m2 = det(kαα̇) = detκdet κ̃; so defining

detκ =M, det κ̃ = M̃,

we have MM̃ = m2 and although we can fix the phases of κ and κ̃ so that M = M̃ = ±m, later
we will want to keep them independent before they are fixed by the model.

Massive particles are not chiral, and two-component spinors necessarily double up with their
conjugates. For a more compact notation, we introduce Dirac 4-component spinors with indices
denoted by capital Roman letters from the beginning of the alphabet as

ψA =
(
ψα, ψ̃

α̇
)
, ψA = εABψA :=

(
ψα, ψ̃α̇

)
, ψ1Aψ

A
2 = ψ1αψ

α
2 + ψ̃α̇

1 ψ̃2α̇,

and we will raise and lower indices with εAB, εAB, ε
ABεAC = δBC . Also note the γ5 matrix

defined by

γB5AψB = i
(
ψα,−ψ̃α̇

)
.

The mass-m Dirac operator Dm
AB = Dm

[AB] in this notation is

Dm
AB := −i∇AB +mεAB = −i

(
0 ∇ β̇

α

−∇α̇
β 0

)
+mεAB.

The spin s massive field equations for ΨA1···A2s = Ψ(A1···A2s) becomes

Dm
BA1

ΨA1···A2s = 0.

At spin s = 1, we obtain FAB = F(AB) whose 2 × 2 block-decomposition contains the 2-form
curvature spinors along the diagonal and mAαβ̇ on the off-diagonal, where Aαα̇ is the one-form
potential.

Introducing a little group spinor ϵa, the general plane wave on Minkowski space of spin-s can
be decomposed into Dirac spinor wave functions as

ΨA1···A2s = ϵA1 · · · ϵA2se
ik·x, ϵA = ϵaκ

a
A =: (ϵκA), κAa =

(
καa, κ̃

α̇
a

)
. (2.2)

For spin 1/2, this is an ordinary massive Dirac field momentum eigenstate with polarization ϵa;
for spin s = 1 this describes a massive field with potential Aαα̇ = 1

mϵab κ
a
ακ̃

b
α̇ e

ik·x, with polariza-
tion ϵ(ab) = ϵaϵb. In general, spin-s massive particles transform as the symmetric part of rank 2s
tensors of the massive little group SU(2), with polarization data ϵa1···a2s = ϵ(a1···a2s). Note that
the polarization in (2.2) is taken to be simple to tie in with later supersymmetric expressions,
corresponding to a null polarization vector. We refer to [3, 19, 20] for more extended recent
discussions of spinor-helicity for massive particles.

To reduce to the massless case, we can take half the spinor components to vanish κ1α =
0 = κ̃α̇0 , whereupon the little group spinor components ϵ0 and ϵ1 parametrize the positive and
negative helicity states respectively.
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2.3 The complexified particle phase space and Penrose transform

In all (massless) ambitwistor strings [45], the target space is the complexification of the massless
particle phase space, often referred to as ambitwistor space and denoted by A. To define this
we first introduce complexified twistor space TC by

Y =
(
Z, Z̃

)
∈ TC := T× T∗.

Then the complexified phase space of massless particles in four dimensions has become known
as ambitwistor space A, defined non-projectively as the holomorphic symplectic quotient

A = {Y ∈ TC | Y · Y := Z · Z̃ = 0}/
{
Z · ∂Z − Z̃ · ∂Z̃

}
, (2.3)

with respect to the symplectic structure

ΩA = dΘA, ΘA := iZ · dZ̃ − iZ̃ · dZ.

This is the target of the original twistor strings [4, 63, 66] and the closely related ambitwistor
strings [29].

In analogy with the massless case, here we take the target space to be PC
m, the complexification

of the massive particle phase space Pm. We represent PC
m as the holomorphic symplectic quotient

analogue of (2.1) as

PC
m :=

{
Ya ∈ TC × TC | Z(a · Z̃b) = 0, ⟨ZaZ

a⟩ =
[
Z̃aZ̃

a
]
= m

}
/SL(2,C)× C× C̃.

One of the oldest applications of twistor theory has been to provide solutions to the free field
equations. In the massless case this is achieved via the Penrose transform, which represents
zero-rest mass helicity-h fields as twistor cohomology classes H1(PT,O(2h − 2)). Using the
identifications A = T ∗PT = T ∗PT∗, representatives of these cohomology classes can also be
pulled back to ambitwistor space. While two-twistor descriptions in the literature [37] lead
to H2 representatives by building on the real massive particle phase space, we use the complexi-
fication PC

m to obtain representatives in (Dolbeault) cohomology classes H1
(
PC
m,O(2s−2)

)
that

couple naturally to the worldsheet. Here we will focus on the scalar case s = 0, the extension to
spinning particles can be achieved most straightforwardly via supersymmetry and is discussed
in Section 2.4.

To represent the plane wave (2.2) with momentum kαα̇ = καaκ̃
a
α̇ on TC × TC it will be

convenient to reorganise the spinor constituents of Ya as a “Dirac twistor”

Ya =
(
λaA, µ

A
a

)
, λaA :=

(
λaα, λ̃

α̇
a

)
, µAa :=

(
µα̇a , µ̃αa

)
.

Writing κAa =
(
καa, κ̃

α̇
a

)
, we define the corresponding cohomology representative in

H1
(
PC
m,O(−2)

)
by introducing four auxiliary complex variables ua, va;

Φκ(Ya) =

∫
d2ud2vδ̄4((uλA)− (v κA))δ̄((v, ϵ)− 1) exp

((
uµA

)
ϵA
)
. (2.4)

Here the line bundle O(n) is the bundle of homogeneity degree n in the Ya, and for a complex
variable z we define δ̄(z) to be the distributional (0, 1)-form

δ̄(z) = ∂̄
1

2πiz
= δ(Re z)δ(Im z) dz̄.

After the ua, va integrals have been performed, Φκ(Ya) ∈ H1
(
PC
m,O(−2)

)
is indeed a (0, 1)-

form as desired, and the integration over u ensures invariance under the SL(2,C) little group.
For the Penrose transform, we take det(κ) and det(κ̃) to be unconstrained; in the two-twistor
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string these quantities will be constrained to agree with the particle masses determined by the
underlying theory.

To see that this indeed corresponds to a plane-wave on space-time, we impose the incidence
relations µα̇a = ixαα̇λaα and µ̃αa = −ixαα̇λ̃aα̇. Then on the support of the delta functions we have
(uλA) = (vκA) and (vϵ) = 1, giving3(

uµA
)
ϵA = ixαα̇(vκα)(ϵκ̃α̇)− ixαα̇(vκ̃α̇)(ϵκα) = ix · k. (2.5)

The parameters (ua, va) can be integrated against the delta functions to yield the single delta
function δ̄

(
k · P − mλ2 − mλ̃2

)
, where Pαα̇ = λaαλ̃

a
α̇; this gives the Dolbeault representation

for a simple pole. This delta function imposes a massive analogue of the scattering equations
that play a key role in the CHY formulae for massless amplitudes [12, 16, 17, 29]. A version
of these massive scattering equations has been studied for massive amplitudes in the CHY
representation [48], see the discussion in Section 5 for more details. The delta-functions in Φκ

have become known as the polarized scattering equations due to their dependence on a choice
of polarization spinor.4 These serve to define additional and unique parameters ua, va on the
support of the massive scattering equations that will play a key role later.

2.4 Supersymmetric extension

We will aim to generate supersymmetric formulae for two reasons. Amplitudes for theories
with a variety of spins become drastically simpler in the supersymmetric case because many
or all the particles can be expressed as one multiplet. This leads to uniform formulae from
which different sectors with particles of different spins can be read off. Moreover, amplitudes
for non-supersymmetric theories can be extracted from these superamplitudes at tree-level and
at one-loop [33, 38]. A more structural reason is that all (ambi-) twistor string models that
describe gauge theory and gravity require space-time supersymmetry to be anomaly free – the
supersymmetric extension of twistor space includes additional fermionic variables that cancel
anomalies from the bosonic variables. Thus we introduce a supersymmetric extension of PC

m, as
well as the plane wave Φκ.

On the Coulomb branch of N = 4 super Yang–Mills, some scalars acquire a vacuum expec-
tation value, effectively breaking the gauge group from SU(N +M) down to SU(N)× SU(M).
The states can then be organised into two types of multiplets; a massless vector multiplet
transforming in the adjoint of the residual gauge group, and a massive vector multiplet in the
bifundamental of SU(N)× SU(M). Massive multiplets are in the so-called 1/2-BPS, ultrashort
massive representations of N = 4 with central extension ZIJ = 2MΩIJ , with Sp(N/2) R-
symmetry, with skew form ΩIJ and indices I, J = 1, . . . ,N = 4. For massless multiplets on the
other hand, R-symmetry is enhanced to a full SU(4) by the vanishing of the central extension as
m → 0. Employing the notation of the previous section, we can combine the supercharges into
a Dirac spinor QA

I =
(
QαI , Q

†α̇
I

)
, such that the supersymmetry algebra takes the compact form

{QAI , QBJ} = 2ΩIJD
m
AB.

In the massless case, the structure of the supersymmetry algebra greatly simplifies as the only
non vanishing component of the Dirac operator is D0

αα̇ = ∇αα̇.

3This Penrose transform is closely related to the (indirect) 6d Penrose transform [44, 60]. The twistor space
for 6d is TC|Y ·Y =0 and the plane wave (2.2) is represented by

Ψκ(Y ) =

∫
(ϵv)n

ds

sn−1
(vdv)δ̄4(sλA − (vκA)) exp

(
sµAϵA/(ϵv)

)
∈ H2(PA,O(n− 2)).

Following [34, 43, 56, 61], the massive Φκ(Ya) in (2.4) can then be constructed via Φκ(Ya) =
∫
Ψκ((u, Y ))(udu).

4The polarization spinor will play a more prominent role in amplitude formulae based on the polarized scat-
tering equations, because the path integrals introduce ϵ-dependence in λA(σ).



8 G. Albonico, Y. Geyer and L. Mason

The action of the supercharges arranges the states in multiplets as follows. The massive
multiplet is composed of a massive spin one field FAB, five massive scalars ϕIJ and four massive
Weyl–Majorana spinors ΨI

A:

Fm =
(
ϕIJ = ϕ[IJ ],Ψ

A
I , F

AB = F (AB)
)
, ϕIJΩ

IJ = 0. (2.6)

The massless multiplet is

F 0 =
(
ϕIJ = ϕ[IJ ],Ψ

I
α, Ψ̃Iα̇, Fαβ, Fα̇β̇

)
, (2.7)

where the R-symmetry indices now label the fundamental of SU(4) and can therefore no longer
be raised and lowered. It contains the two familiar ±1 helicity states of the massless spin-1, six
real massless scalars ϕIJ and eight massless gluino states via the chiral parts of ΨI

α, Ψ̃Iα̇. We note
that the massless scalars ϕIJ are no longer trace-free; the extra 6th component arises from the
loss of one of the polarization degrees of freedom going from the massive spin-1 field FAB to the
massless case.

For momentum eigenstates with space-time dependence ϕ = exp(ik · x), the supersymmetry
generators reduce to the massive little group as

QAI = κaAQaI , {QaI , QbJ} = 2ΩIJεab,

where κAa is defined by (2.2), because the Dirac operator reduces as Dm
ABϕ = (κAκB)ϕ. In the

massless limit we have the natural embedding of the little group via κ1α = 0 = κ̃0α̇, κ0α = κα,
κ̃1α̇ = κ̃α̇.

Both the massive and massless multiplets are annihilated by half of the supercharges so
that their 8 bosonic and 8 fermionic states can all be encoded into the exterior powers of
N = 4 fermionic supermomenta qI , I = 1, . . . , 4. These are defined to be the eigenvalues of
an anticommuting subset of the QIa. To define this subset, we introduce a basis (ϵa, ξa) of the
fundamental representation of SL(2) so that the supermomenta are defined by the action of the
supercharges on functions on on-shell superspace via

QaIF̃ (κ, q) =

(
ξaqI + ϵaΩIJ

∂

∂qJ

)
F̃ (κ, q). (2.8)

The massive and massless multiplets are expanded on on-shell superspace as follows

F̃
(m)
(κ,q) = F ϵϵ(κ) + qIΨ

ϵI(κ) + q2F ϵξ(κ) +
1

2
qIqJΦ

IJ(κ) + q2qIΨ
ξI(κ) + q4F ξξ(κ),

F̃
(0)
(κ,q) = gh(κ) + qIΨ

ϵI(κ) +
1

2
qIqJφ

IJ(κ) + q2qIΨ
ξI(κ) + q4g−h(κ), (2.9)

with q4 = (qIqJ)
(
qIqJ

)
and

(
q3
)I
a
= ∂q4/∂qaI .

It is then standard procedure to encode such multiplets in superfields on a supersymmetric
extension of Minkowski space satisfying (2.8) and to derive a supersymmetric Penrose transform
by establishing a supergeometric correspondence with super-twistor space. We can bypass some
of this by studying the action of supersymmetry on super-twistors.

Supertwistors and the Penrose transform. We extend the bosonic complexified twistor
Y ∈ TC with N fermionic coordinates ηI , I = 1, . . . ,N to give Y =

(
λA, µ

A, ηI
)
∈ T C, using

Dirac-spinor notation. These fermionic coordinates allow the supersymmetry to act geometri-
cally as

QAI = λA
∂

∂ηI
+ ηJΩJI

∂

∂µA
, {QAI , QBJ} = 2ΩIJλ[A

∂

∂µB]
,
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where the anticommutator now generates the action of translations on T C. This extends in
the obvious way to the two-twistor description of supersymmetric massive particles in terms
of Ya with sums over the a-index in each term. Again, the supersymmetric extension for the Ya

becomes:

Ya =
(
λaA, µ

A
a , η

I
a

)
,

with again I = 1, . . . ,N . The plane wave representative for particles with spinor helicity data
κAa =

(
καa, κ̃

α̇
a

)
, supermomentum q and polarization data ϵa will take the form:

Φ(κ,q)(µ, λ) =

∫
d2ud2vwδ̄4((uλA)− (vκA))δ̄((ϵv)− 1)eiua(µAaϵA+qIη

Ia)− 1
2
(ξv)q2 . (2.10)

Here w is a function of weight 2 in Ya(or −2 in u); as far as the Penrose transform is concerned,
this can be taken to be w =

(
λαλ̃α̇

)
eαα̇, where eαα̇ is a polarization vector for the spin-1 1-form.

In the string model however, w plays an important role in the vertex operators, and will be
constructed differently. This representative indeed satisfies

QAIΦκ,q(Ya) =

(
(κAξ)qI + ϵAΩIJ

∂

∂qI

)
Φκ,q(Ya),

and we can then read off the Penrose transform for the component fields from the action of the
supersymmetry generators.

3 Massive two-twistor string

The significance of the twistor representations of spaces of massless and massive particles is
that they are represented as symplectic quotients of vector spaces. This means that in order to
construct a theory of maps from a Riemann surface Σ → PC

m, we can start with a quantum field
theory of maps Σ → TC in the massless case and Σ → TC × TC in the massive case; in both
cases, by virtue of the twistor representations, these are free field theories on the worldsheet Σ.
We then realize the symplectic quotient in the Lagrangian framework by gauging the Hamiltonian
symmetries as we shall describe below. These gauge symmetries are then dealt with via BRST in
the quantum field theory. In both cases, the free field theory action is based on the restriction of
the symplectic potential Θ to T 0,1

Σ . This has the consequence that the worldsheet commutators
and OPEs encode the symplectic structure Ωm on PC

m.

We first briefly review the massless case; although the construction for the massive two-
twistor string will be analogous, but with target PC

m and the different massive supersymmetry
representation. In the next section we explain how the models allow us to construct amplitudes
as correlation functions of vertex operators in these models.

The massless case. The twistor strings of Witten [66] and Berkovits [4] and the 4d am-
bitwistor string of [29] are theories of holomorphic maps Y =

(
Z, Z̃

)
: Σ → TC gauged by C∗,

where we now use supertwistors Z =
(
λα, µ

α̇, ηI
)
∈ T = C4|N , I = 1, . . . ,N and their com-

plexification TC = T × T∗; this is the complexification of the four-dimensional massless Ferber
superparticle [28].

The four-dimensional ambitwistor string of [29] is closest to the massive case, being with

worldsheet fields twisted to take values in Ω
1/2,0
Σ and so we briefly review it here. It is a theory

of holomorphic maps from a Riemann surface Y : Σ → TC⊗Ω
1/2,0
Σ , so that the coordinates Y are

worldsheet spinors. The reduction to ambitwistor space is enforced by gauging the little-group
Hamiltonian Y · Y := Z · Z̃ with the worldsheet gauge field A ∈ Ω0,1

Σ . The basic bosonic 4d
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ambitwistor action in conformal gauge5 is based on the symplectic potental

S0
4d =

∫
Σ
Z̃ · ∂̄Z − Z · ∂̄Z̃ +AY · Y. (3.1)

Classically, A is a Lagrange multiplier that enforces the constraint Y · Y = 0 and the quotient
by its Hamiltonian vector field arises because

(
Z, Z̃

)
→
(
αZ,α−1Z̃

)
are gauge symmetries

of the action when accompanied by the gauge transformations A → A + ∂̄ logα. Thus the
holomorphic symplectic quotient to A in (2.3) is realized in this Lagrangian framework by the
gauge field A. In the QFT this is implemented via BRST quantization. The models of [29] also
include additional worldsheet matter fields but these are much as described for the massive case
below.

Massive models. In order to have target space PC
m, we start with maps Ya : Σ → TC ×TC,

with the reduction to PC
m obtained by gauging the complexified two-twistor massive internal

symmetry group. Thus, our theory is one of maps Ya : Σ → TC ⊗C2 ⊗Ω
1/2,0
Σ with action (again

in conformal gauge)

S4d =

∫
Σ
Ya∂̄Ya +AabYa · Yb +A

(
λ2 − jH

)
+ Ã

(
λ̃2 − jH

)
+ Sm.

Here a = 1, 2 is the little group index, and
(
Aab = A(ab), A, Ã

)
are worldsheet (0, 1)-forms that

act as Lagrange multipliers for the constraints, and as gauge fields for the internal two-twistor
symmetry group. With this symmetry, we no longer have the freedom to allow worldsheet fields
of different degrees as we did for the twistor-string. In order to describe specific space-time
theories, the basic action must be supplemented by further worldsheet fields such as a current
algebra for gauge theory and some analogue of worldsheet supergravity for gravity with details
given below. Here we assume that it contains a current-algebra that gives rise to a (1, 0)-form jH
on the worldsheet that generates some symmetry.

To be more explicit, in quantizing the fields Ya(σ) =
(
Za(σ), Z̃a(σ)

)
, for σ a coordinate on Σ,

the only non-trivial OPEs are

ZA
a (σ)Z̃bB(0) =

δAB
σ
εab + · · ·

reflecting the Poisson brackets. These OPEs can lead to anomalies for the little group SL(2,C)
generated by Jab = Ya · Yb. For a consistent model these anomalies have to vanish, which
requires judicious choices for the worldsheet matter Sm.

The fields a, ã gauge the constraints λ2 − jH = 0 = λ̃2 − jH . These equations constrain the
mass operators

λ2 :=
1

2
λaαλ

α
a = det(λaα), λ̃2 :=

1

2
λ̃aα̇λ̃

α̇
a = det

(
λ̃α̇a
)
,

to be given by a (1, 0)-form jH on the worldsheet Σ. We write jH to indicate that this will
be taken to be the current associated to the element h ∈ g, living in the Cartan subalgebra of
some symmetry of the system. This jH will be constructed from the matter fields and, through
the constraints above, will determine the masses of the particles. For a given matter content,
different choices of jH correspond to different distributions of masses within the models. The

5The full action would start with a term eT , where e ∈ T 1,0
Σ ⊗ Ω0,1

Σ is a Beltrami differential thought of as

a gauge field parametrizing complex structures on Σ up to coordinate transformations and T ∈
(
Ω1,0

Σ

)2
is the

holomorphic stress energy tensor; this is then gauge fixed, giving rise to ghosts (b, c) ∈
((
Ω1,0

Σ

)2
, T 1,0

Σ

)
and BRST

operator Q =
∮
cT + bc∂c/2.
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massless models (3.1) are recovered from these massive ones when jH = 0 by reducing the path
integral.

Worldsheet matter. A variety of physically interesting models can be constructed from
different choices of Sm. These will be made up of current algebras, whose action will be denoted
by SC , and worldsheet fermions providing a supersymmetric extension of the worldsheet gauge
algebra, denoted by Sρ. The latter will play a similar role to worldsheet supergravity in the
superstring, and is requried for models describing gauge theory and supergravity.

A worldsheet current algebra is a theory on the worldsheet from which one can construct
worldsheet currents ja ∈ Ω1,0

Σ ⊗ g for some Lie algebra g, satisfying the OPE

ja(σ)jb(0) ∼ l δab

σ2
+
fabc j

c

σ
,

where a, b are Lie-algebra indices, l ∈ Z is the level and fabc the structure constants of g. Such
current algebras can be constructed in a number of ways, most easily for SO(n) and SU(n) by
“real” or “complex” free fermions on the worldsheet. See also [33] for a construction referred to
as a comb-system, with level zero and novel properties that allow the construction of Einstein-
Yang–Mills amplitudes. We will not specify the action SC explicitly, but merely assume that we
have the currents ja in the theory.

For gauge and gravity theories, we need a supersymmetric extension of the worldsheet gauge
algebra. This plays a similar role to the worldsheet supergravity of the conventional RNS
models, see also [45] for the ambitwistor-string version. The supersymmetric extension of the
bosonic gauge algebra sl2×C2 is constructed by introducing the worldsheet fermions

(
ρA, ρ̃

A
)
∈

Ω0
(
Σ,K

1/2
Σ

)
with action

Sρ =

∫
Σ
ρ̃A∂̄ρA + ba

(
γAB5 λaAρB

)
+ b̃aλ

a
Aρ̃

A. (3.2)

Here the
(
ba, b̃a

)
are fermionic gauge fields and so are (0, 1)-forms on the worldsheet. They

are Lagrange multipliers that impose the constraints γAB5 λaAρB = λaAρ̃
A = 0 and their gauge

transformations translate µAa in the direction of
(
ρA, ρ̃A

)
. The only non-trivial OPE’s of the

constraints are given by(
γAB5 λaAρB

)
(z)
(
λbBρ̃

B
)
(w) ∼ εab

z − w

(
λ2 − λ̃2

)
. (3.3)

These symmetries thus give a supersymmetric extension of the two-twistor internal symmetry
group C× sl2 ⋉H(0, 4), where H denotes the Heisenberg Lie superalgebra.6

Models. With these ingredients, models without SL(2,C)-anomalies can be constructed by
combining a pair of worldsheet matter systems, much along the lines of the double copy for the
RNS ambitwistor strings as in [33] as follows:

massive bi-adjoint scalar SBAS = S4d + SC + SC̃ ,

super Yang–Mills on the Coulomb branch SCB = S4d + Sρ + SC ,

super-gravity Ssugra = S4d + Sρ1 + Sρ2 .

6The Heisenberg superalgebra H(mb,mf ) has a central element z, as well as 2mb even and mf odd generators,
H = ⟨x1, . . . , x2mb , z⟩ ⊕ ⟨ψ1, . . . , ψmf ⟩. The generators satisfy the “usual” commutation relations

[xi, x2i] = z, {ψr, ψs} = 2δrsz.
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In this construction two points are worth highlighting:

(i) The closure of the constraint algebra requires that both constraints λ2− jH = 0 = λ̃2− jH
involve the same current jH for super Yang–Mills, whereas a more general construction is
possible for the bi-adjoint scalar.

(ii) Unlike the twistor- and ambitwistor models for 4d massless theories, these models fit neatly
into the double copy format [7] expressed directly in the CHY formulae [12] and in the
corresponding RNS ambitwistor strings [45]. However, it is harder to find a jH to endow
our particles with mass in the gravitational case because there is no additional current
algebra, and with jH = 0 our models are massless. We also note that as in [5, 34, 45],
both SCB and SBAS also contain a gravity sector, but it is of higher order and remains
massless.

BRST and anomalies. Gauge fixing the action via BRST generates ghost systems, the
well-known (b, c) ∈

(
Ω1
Σ

)2 × TΣ for worldsheet diffeomorphisms, as well as additional fermionic
ghosts associated to internal two-twistor symmetry group, and bosonic ghosts for the fermionic
currents in Sρ. The BRST operator takes the usual form:

Q =

∮
ci
(
Tm
i +

1

2
T g
i

)
, (3.4)

where the sum runs over all sets of ghosts, and Tm and T g are the matter and ghost parts of the
currents respectively. By construction Q2 = 0 classically, but in the QFT double contractions
(or worldsheet bubble diagrams with two external gauge fields) can lead to anomalies so that
Q2 ̸= 0 with a potential obstruction arising from any of the gauged symmetries. Here we briefly
summarize the results of such calculations.

The models above only have a vanishing SL(2,C) anomaly (corresponding to the two-twistor
internal symmetry group) for maximal space-time supersymmetry, as evident from the anomaly
coefficient

aSL(2) =
∑
i

(−1)FitrRi

(
tktk

)
=


4 trF

(
tktk

)
− tradj

(
tktk

)
= 0 bi-adjoint scalar,

3
4(4−N ) Coulomb branch,
3
4(8−N ) supergravity.

The anomaly coefficient vanishes trivially for the bi-adjoint scalar, and for maximal supersym-
metry in the case of gauge theory and gravity. The sum here runs over all fields that transform
non-trivially under the internal two-twistor symmetry group SL(2,C). Similarly, the Virasoro
central charge can be calculated for all models, giving

cBAS = −40 + cj , cCB = −32 +N + cj , csugra = −20 +N ,

where cj denotes the central charge of the internal current algebra. The conformal anomaly
thus vanishes for suitable choice of Sj , with N = 4 and cj = 28 for Yang–Mills theory on
the Coulomb branch, and cj = 40 for the bi-adjoint scalar. The Virsaoro anomaly for the
supergravity model also vanishes if we include a central charge term c6d = 12 arising from six
compactified dimensions. After BRST gauge-fixing, all such models are free worldsheet theories
with vanishing anomalies.7 We now explain how to obtain n-point amplitudes from these models.

7Strictly speaking, the Lie algebra element H should also be null or the current algebra should have level l = 0
as in the comb systems of [18].
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4 Amplitudes and vertex operators

In string theory, amplitudes are constructed as correlation functions of vertex operators, one for
each external particle. Vertex operators come in various forms that depend on how residual
gauge freedom is fixed after initial gauge fixing, see for example [65]. The easiest to understand
are the integrated vertex operators that require integration over Σ; these are the generic case
and arise as the perturbations of the action corresponding to infinitesimal background plane-
wave fields. However, one also needs a small number of fixed vertex operators that fix residual
worldsheet diffeomorphisms and other symmetries such as those associated to the a, ã and b, b̃
fields. We here just give brief details of the basic recipe required for the amplitude formulae and
refer to further work [2] for full details of the derivation.

4.1 Vertex operators

Just as for the original twistor string, vertex operators for the two-twistor string are constructed
from the Penrose-transform of plane waves Φκ(Ya) ∈ H1

(
PC
m,O(−2)

)
(2.4), or its supersym-

metric extension Φκ,q(Ya) (2.10) with an appropriate choice of w. The identification of the Ya
or Ya as spinors on the worldsheet implies that Φκ(Ya) restricts to Σ to define an element of
H0,1(Σ, TΣ). Similar considerations apply to Φκ,q(Ya) but the line bundle on Σ depends on the

choice of w. We will therefore choose w so as to take values in
(
Ω1,0

)2
so that w ◦ Φ defines

a (1, 1)-form on Σ and can be integrated; here the notation ◦ indicates schematically that w may
depend on u, and should be included under the integral in Φκ. Thus fixed and integrated vertex
operator can be constructed by including a state- and theory dependent factor w ∈ Ω0

(
Σ,K2

Σ

)
respectively as

V = c w ◦ Φκ(σ), V =

∫
dσ w ◦ Φκ(σ). (4.1)

Here c is the fermionic ghost with values in T 1,0Σ associated to worldsheet diffeomorphisms.
Vertex operators are required to be BRST Q-closed which implies invariance under the sym-

metries. For example, the presence of the c-ghost in V gives Q-closure trivially for that part
of Q containing c which is associated to worldsheet diffeomorphisms, whereas, on the other hand,
the integration of the (1, 1)-form on Σ that defines V is manifestly diffeomorphism invariant.
We also expect to see similar invariance of both fixed and integrated vertex operators under the
gauged two-twistor internal symmetry and the gauged fermionic symmetries in Sρ if present.
BRST-closed vertex operators can thus be constructed by including ghost factors for the re-
maining generators, including fermionic ghosts t, t̃ associated to the mass constraints gauged
by A, Ã, and bosonic ghosts γa, γ̃a corresponding to ba, b̃a respectively.

It is this Q-invariance that will fix the masses of our external particles. In the sum over
ghosts in (3.4), Q contains the term for the ghosts t and t̃ that arose from gauge fixing the A, Ã:

Qm :=

∮
t
(
λ2 − jH

)
+ t̃
(
λ̃2 − jH

)
.

When acting on a vertex operator built as in (4.1), the operator λ2 becomes the mass opera-
tor, yielding the Q-invariance condition that requires support on κ2 = MH , where MH is the
eigenvalue of the H-action on the vertex operator under jH . Thus Q-invariance requires that
the signed mass is given by the action of jH . This action is theory-dependent as follows.

Biadjoint scalars. This theory involves two Lie algebras g, g̃ with fields ϕaã, where a, ã
are the respective Lie-algebra indices. The action is

∫
d4x
(
(∂ϕ)2 + fabcf̃ãb̃c̃ϕ

aãϕbb̃ϕcc̃
)
, where

the fabc, f̃ãb̃c̃ are the structure constants of the respective Lie algebras. We will also incorporate
a mass term tr([ϕ,H])2, whereH ∈ g⊕g̃. Each particle then has a pair of “colours”

(
ta, t̃ã

)
∈ g⊕g̃
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and momentum k with mass determined by the eigenvalues of the action of H in the form of
the plane wave ϕaã = tat̃ãeik·x. These theories don’t admit supersymmetry so we will simply
use (2.4) and the two colours tat̃ã to build the corresponding vertex operators, so that the mass
is assigned via

jH(z) taj
a(w) ∼ MH

t

z − w
taj

a. (4.2)

Coulomb branch of maximal super-Yang–Mills. Here one takes the standard N = 4
super-Yang–Mills with Lie algebra g, and assumes that the scalars of the massless sector ϕIJ are
expanded around the constant HΩIJ , where H ∈ g is taken to be semi-simple. Decomposing g
into eigenspaces under the adjoint action of H, those with eigenvalue zero give rise to massless
multiplets (2.7), but those with non-zero eigenvalue MH acquire a mass |MH | and become
massive multiplets as in (2.6), where the scalar that is a multiple of ΩIJ becomes a polarization
state of the massive spin-1 field via the Higgs mechanism.

To be more explicit, consider the symmetry breaking U(N +M) → U(N)×U(M), obtained
by choosing H ∼ diag(1N , 0M ). This leaves two types of states in the reduced theories, the first
corresponding to t ∈ uN × uM , the diagonal blocks that commute with H, and the second the
off-diagonal blocks consisting of m ∈ CN ⊗

(
CM

)∗⊕CM ⊗
(
CN
)∗

for which [H,m] =MH
m m. The

first type then corresponds to massless states, and the second will have mass
∣∣MH

m

∣∣, following
from the Q-invariance of the vertex operators as above. As a consequence, the OPEs (4.2) of
the respective currents take the following form:

jH(z) t · j(w) ∼ 0, jH(z) m · j(w) ∼ MH
m

z − w
m · j. (4.3)

We can thus identify vertex operators built from currents t · j with the massless vector multiplet
transforming in the adjoint of the residual U(N)×U(M) gauge group, whereas vertex operators
built from m · j describe the massive vector multiplet.8

Supergravity. We are not able to introduce massive spin-2 fields with this mechanism. How-
ever, we can introduce masses elsewhere into the supermultiplet by choosing for jH a generator
of the R-symmetry. While we will not develop this theme in any detail, a short discussion is in-
cluded in Section 5. The graviton states remain in a massless supermutliplet with N = 4, formed
as spin-2 part of the tensor product of two copies of the gauge mutiplet (2.7), supplemented by
an ultrashort matter multiplet, again with N = 4.

Because both the A, Ã fields and ba, b̃a fields have moduli that need to be fixed when com-
puting correlators, we need to adjust some vertex operators to fix this residual gauge freedom.
Here we will suppress these details and give only the equivalent of integrated vertex operators
for these symmetries, and refer to the analogous calculations in the 5d ambitwistor string [34]
or [2] for details.

The main new ingredient here required for BRST-invariance of the vertex operators are delta
functions fixing the value of λ2 and λ̃2 to the relevant masses MH

i arising from the eigenvalues
of jH . These arise from integrating out the moduli of the associated gauge fields in the presence
of vertex operators. Thus the generic integrated vertex operators for these theories can be
summarized as

wBAS(σi) = δ
(
Resσi

(
λ2 − jH

))
δ
(
Resσi

(
λ̃2 − jH

))
taj

at̃aj̃
a,

wCB(σi) = δ
(
Resσi

(
λ2 − jH

))
δ
(
Resσi

(
λ̃2 − jH

))(
eABi (λBλA) + ϵAi ϵiBρAρ̃

B
)
taj

a,

wgrav(σi) = δ
(
Resσi

(
λ2 − jH

))
δ
(
Resσi

(
λ̃2 − jH

))(
eABi (λAλB)− ϵAi ϵiBρAρ̃

B
)

×
(
ẽABi (λAλB)− ϵ̃Ai ϵiBρAρ̃

B
)
,

(4.4)

8The massive states are 1/2-BPS, ultrashort massive representations of N = 4 with central extension
|ZIJ | = 2m.
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where ei and ẽi are polarisation vectors. When evaluating correlators including these vertex
operators, we will see that the delta-functions enforce the mass-shell condition. One can see
from (4.2)–(4.3) that taking the residue of jH acting on a H-eigenstate extracts the mass MH

i .
Note that in the gravitational case the MH

i will be zero for any multiplet containing the gravi-
tational spin two field.

4.2 Massive amplitudes as two-twistor string correlators

Amplitudes are calculated as correlators in the ambitwistor string models. Due to ghost zero
modes and residual symmetry after gauge fixing, a non-trivial correlator with n vertex operators
must contain three fixed vertex operators V1, V2, V3, not necessarily of the same type, whose
details we suppress:

An =

〈
V1V2V3

n∏
i=4

Vi

〉
.

After gauge fixing, all the fields are free and these correlation functions can be straightforwardly
evaluated explicitly for any n to give formulae for scattering amplitudes.

Each vertex operator contains an exponential from the Φκ factor as in the classes (2.10)
embedded in the definition of the vertex operators (4.1). Directly computing their correlation
functions would be awkward, but in the expression of the correlation function as a path integral,
the exponentials from the vertex operators can be absorbed as source terms into the action for
the Ya-path integral. Since the correlator is independent of µAa, and the action is linear in µAa,
the path integrals over these fields can be performed directly, localizing the correlator onto the
classical equations of motion, but now with sources arising from the vertex operators

∂̄λaA =
n∑

i=1

uai ϵiA δ̄(σ − σi), ∂̄ηaI =
1

2

n∑
i=1

uai qiI δ̄(σ − σi).

On the Riemann sphere, these are solved uniquely by

λaA(σ) =

n∑
i=1

uai ϵiA
σ − σi

, ηaI (σ) =
1

2

n∑
i=1

uai qiI
σ − σi

. (4.5)

Using this, the remainder of the correlator can be evaluated as follows:

� Polarized scattering equations and measure. Evaluating the ghost path integrals and col-
lecting the various measure factors as well as the delta-functions from Φκ gives the following
measure:

dµpoln :=

∏
j dσj d

2uj d
2vj

vol SL(2,C)σ × SL(2,C)u

n∏
i=1

δ̄4
(
(uiλA(σi))− (viκiA)

)
. (4.6)

A short counting reveals that the integrals are fully localized on the constraints enforced
by the delta-functions, known as the polarised scattering equations EiA = 0, where

EiA := (uiλA(σi))− (viκiA) =
∑
j ̸=i

(uiuj)ϵjA
σi − σj

− (viκiA). (4.7)

These equations and corresponding measure are by now well studied in [1, 30]; the polarized
scattering equations imply a massive analogue of the original scattering equations for the σi
described in Section 5, and the measure reduces to the CHY measure [14]. After performing
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the integrals, the amplitudes still contain six residual delta-functions, whose form can be
extracted from

ϵi[AEiB] =
∑
i

KiAB = 0, where KiAB := (κiAκiB) =

(
κ2i εαβ kiα

β̇

−kα̇iβ κ̃2i ε
α̇β̇

)
. (4.8)

The residual delta-functions thus encode conservation of momentum kαα̇, as well as re-
strictions on κ2 = det(κaα) and κ̃2:

∑
i κ

2
i = 0 =

∑
i κ̃

2
i . Notice that the closure of the

algebra of constraints (3.3) imposes that κ2i = κ̃2i so that these two conditions are actually
equivalent. One can show that, because each MH

i is the charge under a symmetry on
a compact worldsheet, the amplitude vanishes unless

∑
iM

H
i = 0. Then this condition,

together with conservation of κ2 and the n− 1 mass assigning delta functions, entails that
also for the remaining particle κ21 =MH

1 .

� Mass fixing. The action of the operators λ2 and λ̃2 reduces to the residues of their zero-
modes (4.5) at σi. From the above formula, on the support of the delta functions in (4.6),
this can be seen to yield κ2i and κ̃2i . Thus the mass parameters for each particle κ2i and κ̃2i
are fixed to the appropriate value MH

i via the delta function in that vertex operator
in (4.4):

n∏
i=2

δ
(
Resσiλ

2 −MH
i

)
δ
(
Resσi λ̃

2 −MH
i

)
=

n∏
i=2

δ
(
κ2i −MH

i

)
δ
(
κ̃2i −MH

i

)
,

now clearly enforcing the mass-shell condition for n−1 particles. That for the 1st particle is
omitted in one of the fixed vertex operators (to fix a residual degree of gauge freedom) but
arises instead as a consequence of the residual delta functions that gives

∑
i κ

2
i = 0 =

∑
i κ̃

2
i

as discussed above.

� Supersymmetry. In the supersymmetric cases, the vertex operators contain exponential
factors in the ηaI s; these localize onto the solution to (4.5), to yield:

eFN := exp

(∑
j<k

(ujuk)qj · qk
σj − σk

− 1

2

n∑
j=1

(ξjvj)q
2
j

)
.

This factor carries all the dependence on the supermomenta and can be expanded to
yield the various component-amplitudes according to the supermomentum expansion of
the supermultiplet (2.9). The form of this factor moreover guarantees that the amplitudes
are supersymmetrically invariant [1, 30].

Combining these factors leads to the following expression for massive amplitudes for super Yang–
Mills on the Coulomb branch and massive bi-adjoint scalar theory;

An =

∫
dµpoln IneFN . (4.9)

Here, In – the “integrand” of the amplitude expression – contains all the remaining correlator
factors. Since the current algebra and Heisenberg superalgebra do not interact, In can be split
further into two “half-integrand” factors that can be calculated individually. The current algebra
correlator at leading trace gives the omnipresent Parke–Taylor factor,

⟨ta1ja1(σ1) · · · tanjan(σn)⟩ =
∑

α∈Sn/Dn

tr
(
tα(1) · · · tα(n)

)
σα(1)α(2) · · ·σα(n)α(1)

=:
∑

α∈Sn/Dn

PT(α),
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with the sum running over dihedrally inequivalent orderings. The evaluation of the ρρ̃ half-
integrand is also standard (cf. [34]), giving the reduced determinant,

det ′H :=
1

(u1u2)
detH

[12]
[12] ,

where, the n× n matrix H is defined by

Hij =
ϵiAϵ

A
j

σij
, Hii = −eABi (λAλB)(σi),

and the sub- and superscripts indicate that both the rows and the columns 1 and 2 have been
removed. It can be shown that the reduced determinant det ′H is invariant under permutation
of all particle labels; this can be seen directly [1, 30], but also follows from its correlator origin.
We thus arrive at the following integrands;

IBAS
n = PT(α) PT(β), ICB

n = PT(α) det ′H, IGrav
n = det ′H det ′H̃. (4.10)

This completes the specification of the massive amplitude formulae (4.9). For worked out ex-
amples at three and four points, we refer the reader to the computations in six dimensions
presented in [1]. They reproduce the formulae present in the literature for two or four particles
in the massive supermultiplet and the remaining particles massless.

5 Summary and discussion

We have therefore seen that a chiral string whose target is the complexification of Penrose’s two-
twistor representation of the massive particle phase space yields theories of massive particles in
four dimensions. The spectrum of these models includes massive particles, and correlators give
amplitude formulae for super Yang–Mills on the Coulomb branch among other theories. These
string models represent the confluence of two separate developments: the twistor-particle pro-
gram of the 70’s describing massive particles, and the more recent ambitwistor string models
describing scattering amplitudes for massless particles. In the latter approach a chiral or holo-
morphic string whose target is the complexification of the space of massless particles yields
amplitudes for theories of massless fields. Here we have seen that the logic extends naturally to
massive particles. The significance of Penrose’s twistor description is that it provides a canonical
representation of the space as the symplectic quotient of a vector space modulo a Hamiltonian
group action allowing the BRST quantization of a free quantum string. The twistorial descrip-
tion furthermore facilitates the incorporation of fermions and supersymmetry.

From the path integral of these models, we have arrived at the compact formulae (4.9),
supplemented by (4.6) and (4.10) supported on a massive version (4.7) of the polarised scattering
equations with manifest supersymmetry for appropriate gauge and gravity theories including
massive particles. Like all twistor-string [17, 59], CHY [13] and ambitwistor-string amplitude
formulae, all the integrations are saturated against delta functions so that these are really
residue formulae summing contributions from the (n − 3)! solutions to a massive extension of
the scattering equations discussed further below. As shown in [1], the extra data in the polarised
extension is uniquely obtained by linear equations on the support of these scattering equations
and the formulae are linear in the polarization data.

The models described in this paper, and related ones, can also be derived via a symmetry re-
duction of the higher-dimensional ambitwistor string models [2]. This alternative interpretation
of the two-twistor string highlights that these worldsheet models describe a subset of massive
models, where the particle masses are related to their (higher-dimensional) charges under a sym-
metry. While this may appear restrictive, it includes many theories of immediate interest; in
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particular, all massive particles that we encounter in the standard model arise from the Higgs
mechanism that can be obtained by symmetry reduction. The upcoming paper [2] will also con-
tain full details of the fixed vertex operators and picture changing operators that we omitted for
brevity. Mirroring the close relation of the models, the resulting amplitude formulae for massive
particles are also closely related to those obtained previously by dimensional reduction from six
and five dimensions [1, 30, 34]. These can further be related to the formulae of [11] by a change
of gauge choice of an embedding inside a Lagrangian grassmannian [62]. At low point orders,
these expressions match the results obtained in [3, 21, 35, 39, 42, 49] by BCFW recursion.

Contrary to the massless four-dimensional formulae of [29], in which the double copy prop-
erties are hidden in the measure, the expressions derived here present the standard structure
with two half integrands that can be combined to form amplitudes for scalars, spin-1 and spin-2
particles as in the CHY formulae and corresponding RNS models of [18, 45]. The embedding
of the massless models in these novel massive ones give a new outlook on the corresponding
massless formulae.

We conclude by discussing further features and connections to related formulae for massive
amplitudes and future directions that we plan to address in [2].

Massive scattering equations. The massive polarised scattering equations (4.7) are closely
related to the massive scattering equations in the CHY framework proposed by Dolan & Goddard
and by Naculich [25, 48]. We first note that as remarked after (2.5) that the delta functions
imply:

KAB
i PAB(σi) := kαα̇i Pαα̇ −miλ

2(σi)−miλ̃
2(σi) = 0.

After the path-integral we have that λAa is given in (4.5) and we can compute [1, 30]

PAB(σ) := (λAλB) =
∑
i

KiAB

σ − σi
dσ, (5.1)

where Ki is defined as in (4.8). When the momenta Ki are null, PAB plays a crucial role in the
vector representation of the ambitwistor string [45], where a similar path integral calculation to
the one in Section 4 localizes P onto (5.1). Naculich then showed that certain massive amplitudes
localize on a massive extension of the CHY scattering equations,

0 = KiABP
AB(σi) =

∑
j ̸=i

ki · kj −MiMj

σi − σj
.

The polarised scattering equations EiA then clearly imply Naculich’s massive scattering equa-
tions via KiABP

AB(σi) = det
(
κaiA, λ

bA(σi)
)
= 0, where the last equality holds on the support

of EiA. Vector ambitwistor models that directly yield these equations will be presented in [2].

Masses from R-symmetry. Novel gauge and gravitational models with massive degrees
of freedom – albeit massless gluons and gravitons – can be formulated by choosing jH from the
Cartan of the R-symmetry. In particular, we may take jH = m1η̃

1
aη

a
1+m2η̃

2
aη

a
2 in the two-twistor

models SCB and Ssugra. For generic parameters m1 and m2, this results in non-supersymmetric
models with massive scalars and fermions (and spin-1 in the supergravity model); no mass can be
assigned to the spin-2 field since it transforms trivially under the R-symmetry. It is also possible
to preserve a residual N = 2 supersymmetry for gauge theory (and N = 4 for supergravity) by
constructing the current jH from only one Cartan generator with m2 = 0.

Loops from a gluing operator. This two-twistor string provides an alternative formulation
of the massless ambitwistor string [29], but in a framework in which a massless field can be
deformed to go off-shell. This allows us to adapt the elegant method of deriving loop amplitudes
in [57] via a gluing operator but now to theories with fermions and supersymmetry such as super



From Twistor-Particle Models to Massive Amplitudes 19

Yang–Mills theory. This construction arises from the vector model of the ambitwistor string,
where it has been shown that loop integrands can be localized on a nodal sphere rather than the
torus that more usually arises in string theory [32, 33]. At the level of the worldsheet model, this
nodal structure of loop correlators is realized in the worldsheet CFT as the gluing operator ∆,
which encodes the propagator of the target-space field theory. One-loop amplitudes then have
two equivalent descriptions; a string-inspired one as correlators on a torus, and an alternative
representation as g = 0 correlators in the presence of a gluing operator.
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