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Abstract. Bowley’s law, also referred to as the law of the constant wage share, was a note-
worthy empirical finding in economics, suggesting that a nation’s wage share tended to
remain stable over time, as observed through most of the 20th century. The wage share
represents the proportion of a country’s economic output that is distributed to employees
as compensation for their labor, usually in the form of wages. The term “Bowley’s law” was
coined in 1964 by Paul Samuelson, the first American laureate of the Nobel memorial prize in
economic sciences. He attributed this principle to Sir Arthur Bowley, an English economist,
mathematician, and statistician. In this paper, we introduce a mathematical model derived
from data for the American economy, originally employed by Cobb and Douglas in 1928 to
validate the renowned Cobb–Douglas production function. We utilize symmetry methods,
particularly those developed by Peter Olver, to elucidate the validity of Bowley’s law within
our model’s framework. By employing these advanced mathematical techniques, our ob-
jective is to elucidate the factors contributing to the stability of the wage share over time.
We demonstrate that the validity of both Bowley’s law and the Cobb–Douglas production
function arises from the robust growth of an economy, characterized by expansion in capital,
labor, and production, which can be approximated by an exponential function. Through our
analysis, we aim to offer valuable insights into the underlying mechanisms that support Bow-
ley’s law and its implications for comprehending income distribution patterns in economies.
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driven dynamical systems
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“Nature imitates mathematics.” — Gian-Carlo Rota

1 Introduction

Throughout his illustrious and productive career, which spans several decades and is still in
full swing, Peter Olver has made numerous contributions to the development of the theories of
Lie groups, symmetries of differential equations, invariants, and their applications. His work
has had a far-reaching impact, spanning fields from image recognition to mathematical physics
and geometry (see, for example, [14, 15, 16, 21, 22, 26, 27, 28, 29, 30, 34, 33, 31, 35, 32, 50]).
Additionally, he has been an inspiring, supportive, and mentoring figure, guiding hundreds of
mathematicians at various stages of their careers.

This paper is a contribution to the Special Issue on Symmetry, Invariants, and their Applications in honor of
Peter J. Olver. The full collection is available at https://www.emis.de/journals/SIGMA/Olver.html
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We have been privileged to learn from Peter through his lectures, numerous books and arti-
cles, which have been particularly instrumental in the first author’s (RGS) contributions to the
theories of bi-Hamiltonian systems and the invariant theory of Killing tensors (refer to [10, 19, 38]
and the relevant references therein). The latter has been significantly influenced by the mono-
graph Olver [29].

Our main goal is to demonstrate that Peter Olver’s approach, which encompasses symmetry
methods, invariant theory, and the theory of Lie groups for studying differential equations, can
be readily applied to the investigation of economic models. By demonstrating this compatibil-
ity, it opens up new avenues for using advanced mathematical tools in the field of economics.
Such interdisciplinary connections have the potential to enhance our understanding of economic
phenomena and improve the accuracy of economic models.

Traditionally, when it comes to applications, symmetry methods have demonstrated their
value in the study of differential equations, typically derived from Newton’s second law or the
Lagrangian (Hamiltonian) of the system in question. In this context, a differential equation or
a system of differential equations to be studied is derived from first principles using physics.

On the other hand, in the field of economics, among many others, this approach cannot always
be applied to derive differential equations that can be employed to model economic phenomena.
Instead, differential equations in this setting are often derived from available data rather than
first principles. However, we firmly believe that this should not be seen as an obstacle to utilizing
symmetry methods and related techniques to study economic models, particularly those where
conserved quantities play a central role. This approach can be a powerful tool, enabling us
to identify and analyze key features that contribute to a better understanding of conserved
quantities in economic systems. In turn, it could provide valuable insights into the dynamics
and stability of such models, leading to a deeper comprehension of economic behaviors and
potentially facilitating better decision-making in economic policy and planning.

It must be noted that significant efforts have already been made to incorporate symmetry
methods and the methods of Lie group theory into the field of mathematical modeling in eco-
nomics. First and foremost, we wish to mention the influential books by Sato [40] and Sato and
Ramachandran [41] that have contributed significantly to this endeavor. Additionally, relevant
contributions can be found, for example, in the works of Perets and Yashiv [37], Fukang [13],
and others [44]. This comes as no surprise because many basic semi-heuristic economic laws can
be derived, for example, from the corresponding scale or shift-invariance under an appropriate
symmetry transformation [24].

In the following discussion, we will revisit the so-called “Bowley’s law” [5, 6, 39]. Paul
Samuelson introduced the term “Bowley’s law” in 1964, within the sixth American edition of his
renowned textbook Economics [39], to describe the constant wage share observed in economic
data. The term was a tribute to Sir Arthur Bowley, an English economist, mathematician,
and statistician credited with pioneering the systematic collection and statistical analysis of
wage data in the UK. Bowley had hypothesized as early as 1920 that the wage share might
remain constant, and later, with Josiah Stamp, provided evidence supporting this hypothesis by
comparing UK wage shares in 1911 and 1924. In his 1937 book Wages and Income in the United
Kingdom since 1860 [6], Bowley definitively stated the constancy of the wage share, a discovery
that challenged the views of classical economists such as Ricardo. They traditionally regarded
the proportions of land, capital, and labor as intrinsically variable.

This observation made by Arthur Bowley has been viewed as a purely heuristic insight that
has been the subject of much controversy since its inception to the present day. The economic
data collected in various countries from the end of the 19th century until about 1980 gave rise to
and strongly supported this law, leading to its wide acceptance within the economics community
at the time. However, recent data patterns appear to deviate from this law, casting doubt on
its continued validity (see Krämer [23] for more details and references). Our objective is to
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build upon the work initiated in [44] to construct a well-founded mathematical model. This
model aims to shed light on the validity (or lack thereof) of Bowley’s law in economics and
explore how it manifests itself, starting from the available economic data and extending all the
way to the corresponding fundamental invariants of the appropriate one-parameter Lie group
transformations. These transformations will be obtained in the form of a data-driven dynamical
system extracted from the said economic data.

This paper is structured as follows. In Section 2, we provide a mathematical definition of wage
share by deriving the corresponding formula from an optimization problem. Section 3 establishes
a connection between the Cobb–Douglas production function and Bowley’s law. In Section 4, we
derive the Cobb–Douglas function from an exponential model using mathematical and statistical
methods. In Section 5, we demonstrate the notion of labor (wage) share as a time-independent
invariant of a prolonged infinitesimal one-parameter Lie group action, utilizing symmetry meth-
ods. In Section 6, we introduce the logistic model as a generalization of the exponential model.
The material for Section 7 demonstrated that Bowley’s law no longer valid within the framework
of the logistic model. Finally, in Section 8, we present our concluding remarks.

2 What is wage share?

Our model will revolve around the notion of a production function. In economics, a produc-
tion function represents the relationship between physical output and input factors, which have
historically been considered by mainstream economists to include capital, labor, land, and en-
trepreneurship. In most modern economic models, a production function is a function of two
input factors: capital and labor. However, other schools of thought propose alternative perspec-
tives. For instance, some consider a production function to be a function of energy generated
within the framework of a given economy (see, for example, [8]), while others link it to the
maximum machine speeds [4].

In light of the above, in the subsequent analysis, we will define our configuration space using
the following three variables: production (Y ), labor (L), and capital (K). Furthermore, we
assume that Y (output) is a function of both L and K (input factors):

Y = f(L,K). (2.1)

Next, we recall first that wage share, also known as labor share, refers to the portion of
national income that is allocated to workers as compensation for their labor. It represents the
percentage or fraction of total income in an economy that goes to wages, salaries, and other
forms of remuneration received by workers for their work.

The wage share is calculated by dividing the total wages and compensation paid to workers
by the total output or gross domestic product (GDP) of the economy. It is an essential indicator
used to understand the distribution of income between labor and capital in an economy. A high
wage share suggests that a larger portion of national income is going to workers, while a low wage
share indicates a larger share is going to other factors of production, such as capital or profits.
Changes in the wage share over time can reflect shifts in the dynamics of income distribution
and have implications for economic inequality and overall economic well-being.

To obtain a formula for the wage share in an economy governed by production function (2.1)
that is assumed to operate ideally, let us consider the following unconstrained optimization
problem:

Π = pY − wL− rK → max, (2.2)

where Π is the profit with nominal wage (w), nominal rent (r), and nominal price (p). We
assume Y = f(K,L) is continuously differentiable and such that there is an interior solution
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for K,L, Y ≥ 0 and so, in particular, we have

∂Y

∂L
=
w

p
. (2.3)

Then, in view of the above definition and (2.3), wage (labor) share is easily found to be

sL =
wL

pY
=
∂Y

∂L

L

Y
. (2.4)

Similarly, we conclude that the corresponding formula for capital share sK is given by

sK =
rK

pY
=
∂Y

∂K

K

Y
. (2.5)

We will establish, with the necessary mathematical rigor and employing symmetry methods,
that under realistic assumptions regarding the evolution of the three variables Y , L, and K,
the quantities sL and sK are constant over time, serving as time-independent invariants. This
constitutes the essence of Bowley’s law, asserting that the wage share remains unchanged over
time. Until approximately 1980, economic data strongly supported this law, and it was widely
embraced by the economics community throughout most of the 20th century, starting from its
introduction by Arthur Bowley. However, in recent times, the support for this law has waned, as
evident in sources like Krämer [23], Orlando [36], Schneider [43], and Stockhammer [48], which
provide further details and references on this topic.

3 Bowley’s law and the Cobb–Douglas production function

It is well known that Bowley’s law holds true when the production function (2.1) used in for-
mula (2.2) corresponds to the celebrated Cobb–Douglas production function [9], which is given by

Y = ALβKα, (3.1)

where Y = f(L,K), L, and K as defined before, A is total factor productivity, while α and β are
the output elasticities of capital and labor respectively. In 1928, Charles Cobb and Paul Douglas
presented a paper [9] (see also [11]) focused on studying the growth of the American economy
between 1899 and 1922. To model the production output, they employed the function (3.1)
previously introduced and studied by Knut Wicksell, Philip Wicksteed, and Léon Walras (see
Humphrey [20]. Of particular importance for mathematical modeling in economics is the case
when the Cobb–Douglas function (3.1) has constant returns to scale, namely when

α+ β = 1. (3.2)

In mathematical terms, this signifies that Y as a function of L and K is a homogeneous function
of degree one. From an economic perspective, this implies that when both capital and labor
in (3.1) increase by the same factor λ, the corresponding increase in Y will also be λ. In
other words, if both inputs are scaled up proportionally, the output will increase by the same
proportion. Through the method of least squares estimation, Cobb and Douglas in [9] assumed
constant returns to scale in (3.1), meaning

Y = ALβK1−β,

and obtained a labor exponent result of β = 0.75, which was later verified by the National
Bureau of Economic Research to be 0.741. In their subsequent work in the 1940s, they allowed
for variable exponents on K and L, leading to estimates that closely matched improved measures
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of productivity developed during that period (see for more details). The constant A (total
productivity) was determined to be A = 1.01. In the final analysis, after observing how the
Cobb–Douglas function was derived from a data set [9], it becomes apparent that the process
was rooted in data mining. As a result, we can succinctly summarize it as follows:

Data → Production function

At this point one might naturally ask a direct question: Are there any other functions in the
form of (3.1) that offer equally accurate fits to the data representing the growth of the American
economy from 1899 to 1922, comparable to the function used by Cobb and Douglas in [9]? The
answer to this question is “Yes”, and we will soon elaborate on the meaning and importance of
this observation.

Under the assumption that the production function Y in (2.2) is in the form (3.1), it is easy
to verify the validity of Bowley’s law. Indeed, substituting (3.1) in (2.4), it follows that in this
case sL = β, that is wage (labor) share is constant and equal to the output elasticity of labor β.
Similarly, we get for capital share sK = α.

Therefore, based on our analysis, we can conclude that the Cobb–Douglas function, describing
the growth of production according to the formula (3.1), implies Bowley’s law.

4 The Cobb–Douglas function derived
from an exponential model

Based on the information presented in Section 3, it can be concluded that Cobb and Douglas
established in [9] the legitimacy of the production function (3.1) through a combination of
economic reasoning, statistical methods, and empirical data. Specifically, they demonstrated
that by assigning the values β = 0.75, α = 0.25, and A = 1.01 to the respective parameters, the
production function enjoying constant returns to scale yielded a precise fit to the data set under
consideration.

Sato [40] pursued a similar objective, combining economic reasoning with analytical methods
to directly derive the Cobb–Douglas function without any reliance on statistical data. Specif-
ically, Sato [40] (also referenced in [44]) employed Lie group theory methods to establish the
Cobb–Douglas function as an invariant of a two-dimensional integrable distribution, determined
by exponential growth in labor, capital, and production. In the subsequent discussion, we shall
integrate both approaches, making necessary simplifications in the process.

Specifically, in [40], Sato introduced the concept of simultaneous holotheticity, which de-
scribes a situation where two sectors of the same economy are governed by the same aggregate
production function, while experiencing different levels of technical change within each sector.
Assuming that the growth in K (capital), L (labor), and Y (production) is exponential in both
sectors and working at the level of infinitesimal action, this assumption leads to the following
distribution of vector fields for which we seek an invariant function φ(K,L, Y ):

X1φ = b1K
∂φ

∂K
+ b2L

∂φ

∂L
+ b3Y

∂φ

∂f
= 0,

X2φ = b4K
∂φ

∂K
+ b5L

∂φ

∂L
+ b6Y

∂φ

∂f
= 0. (4.1)

To ensure that the resulting invariant Cobb–Douglas function (3.1) satisfies equation (3.2), Sato
assumed the following values for the parameters bi where i = 1, . . . , 6: b1 = b2 = b3 = b6 = 1,
b4 = a > 0, and b5 = b > 0. It is evident that the vector fields X1 and X2 form a two-dimensional
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integrable distribution on R2
+. By integrating the corresponding total differential equation,

(Y L− bY L)dK + (aY K − Y K)dL+ (bKL− aKL)dY = 0,

or

(1− b)
dK

K
+ (a− 1)

dL

L
+ (b− a)

dY

Y
= 0,

one arrives at the Cobb–Douglas function given by

Y = ALβKα, (4.2)

where the output elasticities

α =
1− b

a− b
, β =

a− 1

a− b
(4.3)

satisfy the condition of constant returns to scale (3.2), as desired. However, we note that the
condition of simultaneously holotheticity is rather artificial.

Moreover, it is worth noting that the output elasticities α and β given by (4.3) are strictly
positive if and only if either a > b, b < 1, and a > 1, or a < b, b > 1, and a < 1. This
implies that assuming exponential growth in K (capital), L (labor), and Y (production) leads
to the derivation of the Cobb–Douglas function. In other words, the Cobb–Douglas function
arises as a consequence of exponential growth. However, we argue that working directly with
the Lie group action (as seen in Olver [29]) is much more straightforward than dealing with
a distribution of vector fields and subsequently integrating it. Additionally, we believe that
to derive the Cobb–Douglas function (3.1) with constant returns to scale, there is no need to
assume simultaneous holotheticity.

Furthermore, a crucial question remains: “Are the approaches to the derivation of the pro-
duction function (3.1), as proposed by Cobb–Douglas and Sato, compatible?”

Following Sato, let us assume that labor, capital, and production grow exponentially and can
be treated as functions of time. This assumption leads to the following very simple dynamical
system:

ẋi = bixi, i = 1, 2, 3, (4.4)

where x1 = x1(t) = L(t) (labor), x2 = x2(t) = K(t) (capital), x3 = x3(t) = Y (t) (production).
Noticing that the system (4.4) can be viewed as a one-parameter Lie group action in R3

+, we
get from (4.4)

xi = x0i e
bit, i = 1, 2, 3, (4.5)

where the parameters bi are as before and x
0
i are the constants of integration (initial conditions).

Now, let us aim to eliminate the parameter t. Consider the following product:(
x01e

b1t
)a1(x02eb2t)a2(x03eb3t)a3 =

(
x01
)a1(x02)a2(x03)a3e(a1b1+a2b2+a3b3)t. (4.6)

It is easy to see that the expression (4.6) is independent of t and thus defines an invariant of the
group action (4.5), provided that the following “orthogonality” condition holds true:

a1b1 + a2b2 + a3b3 = 0 ⇔ a · b = 0, (4.7)

where a = ⟨a1, a2, a3⟩, b = ⟨b1, b2, b3⟩. Note the condition (4.7) defines a plane in R3 by the
normal vector b. Therefore, it follows from (4.6) that the function

f(x1, x2, x3) =
(
x01
)a1(x02)a2(x03)a3xa11 xa22 xa33 (4.8)
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is constant along the flow generated by (4.5) if and only if the condition (4.7) is satisfied.
Hence, we conclude that the orthogonality condition (4.7) is the true invariant that determines
the family of Cobb–Douglas production functions defined by the formula (4.8). Indeed, we have
utilized the method of moving frames [14, 15, 29], albeit at a rudimentary level.

Consider now a particular level set(
x01
)a1(x02)a2(x03)a3xa11 xa22 xa33 = C, (4.9)

for a fixed constant C ̸= 0. Solving (4.9) for x3 (production), we arrive at

x3 = f(x1, x2) =

(
C(

x01
)a1(x02)a2(x03)a3

) 1
a3

x
−a1

a3
1 x

−a2
a3

2 . (4.10)

Setting

A =

(
C(

x01
)a1(x02)a2(x03)a3

) 1
a3

, α = −a1
a3
, β = −a2

a3
,

identifying x3 = Y (production), x1 = L (labor), x2 = K (capital), we arrive at the Cobb–
Douglas production function (3.1), provided (and that is the key!)

αb1 + βb2 − b3 = 0, (4.11)

where bi, i = 1, 2, 3 are determined by the exponential growth in the input factors and production
given by (4.5). The equation (4.11) defines a straight line in the αβ-plane that intersects the
line (3.2) in the first quadrant, provided α, β, b1, b2, b3 > 0 and either of the two inequalities

b2 > b3 > b1, (4.12)

b1 > b3 > b2, (4.13)

hold true. In fact, it follows from (3.1) and (4.11) that we have a family of production functions
of the Cobb–Douglas type determined by (see also [46])

Y = f(L,K) = ALαK
b3
b2

−α b1
b2 , α > 0. (4.14)

We conclude, therefore, that the one-parameter Lie group action (4.5) admits a family of
the Cobb–Douglas functions given by (4.14) if and only if the output elasticities α and β
are constrained by the orthogonality condition (4.11). Moreover, if additionally the param-
eters bi, i = 1, 2, 3 satisfy either the inequality (4.12) or (4.13), we can always use the for-
mula (4.11) to pick among the functions given by (3.1), the Cobb–Douglas function enjoying
constant returns to scale (3.2).

In summary, we have the following three cases determined by the linear equations (3.2)
and (4.11) and illustrated by Figures 1, 2, and 3, respectively.

We observe that Sato [40] chose the values of the parameters bi, i = 1, . . . , 6 in (4.1) to assure
that the two lines defined by (4.11) that corresponded to the vector fields X1 and X2 given
by (4.1) necessarily intersected in the first quadrant of the αβ-plane (see Figure 1). Indeed, it
is easy to see that the lines α+ β − 1 = 0 (the vector field X1) and aα+ bβ − 1 = 0 (the vector
field X2) intersect in the first quadrant of the αβ-plane, provided the output elasticities (4.3)
are strictly positive.

In view of the above observations and results, we propose the following generalization of the
Cobb–Douglas function.
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Figure 1. Constant returns to scale is possible.

Definition 4.1 (Cobb–Douglas function). Given the one-parameter group action

xi = x0i e
bit, x0i , bi > 0, i = 1, . . . , n (4.15)

in Rn+. Then the Cobb–Douglas function is defined as an element of the following family of
invariants of the one-parameter Lie group action (4.15):

n∏
i=1

(
x0ixi

)ai = C, ai > 0, i = 1, . . . , n, (4.16)

where C ∈ R is an arbitrary constant and x0i , i = 1, . . . , n are the corresponding initial conditions,
if the orthogonality condition (6.11) holds true.

Note that the data examined by Cobb and Douglas in [9] corresponds to the case presented
in Figure 1. Now, let us review this data in light of the derived formulas and observations made.
First, we linearize the equations (4.5) by taking the logarithm of both sides of each equation,
leading to the following linear expressions:

lnxi = Ci + bit, i = 1, 2, 3, (4.17)

where Ci = lnx0i for i = 1, 2, 3. The authors used the R programming language to fit the
formulas (4.5) to the index numbers of the industrial output Y , fixed capitalK, and total number
of manual workers L on a logarithmic scale, using the data studied by Cobb and Douglas in [9]
(refer to [45, Table 1]). More specifically, the corresponding coefficients Ci and bi for i = 1, 2, 3
in (4.17) were accurately determined from the data using R and the least squares method,
resulting in the following values:

b1 = 0.02549605, C1 = 4.66953290 (labor),

b2 = 0.06472564, C2 = 4.61213588 (capital),

b3 = 0.03592651, C3 = 4.66415363 (production). (4.18)
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Figure 2. Decreasing return to scale (α+ β < 1).

Therefore, it follows that the production, labor and capital represented by the data in [9] enjoyed
(nearly perfect) exponential growth. Moreover, the coefficients b1, b2, and b3 given by (4.18)
satisfy the inequality (4.12). Thus, we compute the corresponding values of the output elastici-
ties α and β in (3.1), satisfying the condition (3.2), using the formula (4.11) for the estimated
values bi, i = 1, 2, 3 given by (4.18). Solving the linear system given by (3.2) and (4.11), we find

α =
b3 − b2
b1 − b2

, β =
b3 − b1
b2 − b1

. (4.19)

Note, the formula (4.19) was originally derived in [45] with the aid of the bi-Hamiltonian ap-
proach [16, 27, 38]. Next, substituting the values (4.18) into (4.19), we get

α = 0.7341175376, β = 0.2658824627. (4.20)

We see that the values for the output elasticities α and β (4.20) compare well to the corre-
sponding values found by Cobb and Douglas in [9]. However, there are other values of α and β,
satisfying the linear relation (4.11) for the values of b1, b2, and b3 given by (4.18). For example,
setting α = 1, we find, via (4.11) and using the values given by (4.18), the corresponding value
for β: β = b3−b1

b2
= 0.16114881212. Note that the values α = 1 and β = 0.16114881212 in this

case no longer add up to one, while the function

Y = ALK0.16114881212 (4.21)

is a legitimate Cobb–Douglas function compatible with the data studied in [9], which we have
confirmed with the aid of the R programming language. More specifically, we have determined
that the value of A ≈ 0.4710156 affords a good fit of the function (4.21) to the data studied
by Cobb and Douglas in [9]. We compare the time series representing the actual values of the
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Figure 3. Increasing return to scale (α+ β > 1).

production in the US manufacturing sector for 1899–1922 (see [45, Table 1]) with the values
computed according to the formula (4.21) in Figure 4 (see also [9, Chart II, p. 153]). We see
that the production function given by (4.21) also provides us with a near perfect fit to the data
studied by Cobb and Douglas in [9]. We wish to add that the time series given by Figure 4
accurately describes the fluctuations of the US economy of that period. More specifically, we
clearly see on it the Panics of 1907 and 1910–11, the Recession of 1913–14, the Post-World War I
Recession of August 1918 – March 1920, and, finally, the Depression of 1920–21.

Recall that in [44] we studied the data from the period 1947–2016 provided by the Federal
Reserve Bank of St. Louis (https://fred.stlouisfed.org), employing the FRED tool. We
used R to fit the Cobb–Douglas function with constant returns to scale of the form (3.1) to the
aforementioned data. The best estimation of the Cobb–Douglas function that we managed to
have obtained, is as follows:

Y = f(K,L) = 0.2464455K1.6612365L−0.6612365. (4.22)

Note that although the elasticities of substitution α and β add up to one in this case, the
parameter β is negative and so the form (4.22) is incompatible with the definition of the Cobb–
Douglas function with constant returns to scale. Next, we use the formulas (4.17) and R to find
the corresponding parameters bi, Ci, i = 1, 2, 3:

b1 = 0.06983731, C1 = 0.45741448 (labor),

b2 = 0.065705809, C2 = 0.75835155 (capital),

b3 = 0.03421333, C3 = 2.58402362 (production). (4.23)

We immediately observe that the parameters b1, b2, and b3 in (4.23) do not satisfy either
of the inequalities (4.12) and (4.13), which is the reason we cannot employ in this case the
formulas (4.19) to compute the output elasticities α and β satisfying the condition (3.2) that
defines the Cobb–Douglas function with constant returns to scale (3.2). Relaxing the constant

https://fred.stlouisfed.org
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Figure 4. The function (4.21) vs the index values for the production studied by Cobb and Douglas [9].

returns to scale condition (3.2), we arrive at the following Cobb–Douglas function that fits quite
well to the data:

Y = f(K,L) = 9.89921606L0.05018686K0.45529695.

Indeed, the residual sum of squares (RSS) in this case is 584.4616. Note that the values of α
and β computed with the aid of the formulas (4.19) and the parameters b1, b2, and b3 in (4.23)
approximately satisfy the orthogonality condition (4.11).

In summary, for a given dataset, we first utilized statistical tools to derive the corresponding
dynamical system that is compatible with the data. Subsequently, employing the appropriate
mathematical machinery, we obtained a (family of) production function(s) as time-independent
invariants of the said dynamical system. Ultimately, the new scheme can be depicted as follows:

Data → Data-driven dynamical system → Production function

Thus, we have established the necessary groundwork to reexamine Bowley’s law from a math-
ematical perspective.

5 Wage share as a differential invariant
of a prolonged group action

Now that we have established that the Cobb–Douglas function is determined by the exponential
growth in the variables K, L, and Y as functions of t (see (4.5)), let us explore the impact of this
assumption on wage share without considering the Cobb–Douglas function, as done in Section 3.
We aim to demonstrate that, in this scenario, the quantities sL and sK remain invariants of the
group action (4.5), thus confirming Bowley’s law.

Rewriting (4.5) in terms of the original variables K, L, and Y , we express them as follows:
K̄ = Keat, L̄ = Lebt, Ȳ = Y ect, where a, b, and c are non-negative constants. Next, we derive
the corresponding infinitesimal generator and express it using the notations adopted in [14]:

u2 = aK
∂

∂K
+ bL

∂

∂L
+ cY

∂

∂Y
. (5.1)

As the formulas for the quantities sL and sK given by (2.4) and (2.5), respectively, are defined
in terms of the partial derivatives ∂L and ∂K , it becomes evident that we should produce the
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first prolongation of the infinitesimal group action (5.1). Then, we can employ it to prove that
wage and capital shares are indeed invariants.

To achieve this goal, we will utilize the mathematical tools presented in [14] and [42].

Indeed, let
(
R3, π,R2

)
be a trivial bundle, such that π = pr1 and (K,L, Y ) be adapted

coordinates. Then the corresponding jet bundles are
(
J1π, π1,R2

)
and

(
J1π, π1,0,R3

)
, where

(see the commuting diagram below)

J1π =
{
j1pϕ : p ∈ R2, ϕ ∈ Γp(π)

}
(5.2)

with adapted coordinates (K,L, Y, YK , YL).

J1π R3

R2 R2,

π1,0

π1 π

id

where π1 = π ◦ π1,0.
The first prolongation of u2 on R3 is the vector field Pr1(u2) which is a symmetry of the

Cartan distribution on J1π, that is

Pr1(u2) = aK
∂

∂K
+ bL

∂

∂L
+ cY

∂

∂Y
+ ξ1(K,L, Y, YK , YL)

∂

∂YK
+ ξ2(K,L, Y, YK , YL)

∂

∂YL
.

In what follows, the components ξ1(K,L, Y, YK , YL) and ξ2(K,L, Y, YK , YL) are abbreviated
as ξ1 and ξ2 respectively. They are to be determined.

Let us consider a basic contact form ω = dY − YKdK − YLdL. We require that the one-
form L

u
(1)
2

(ω) be a contact form [27, 42]. Here L denotes the Lie derivatives operator. Hence,
we compute

L
u
(1)
2

(ω) = L
u
(1)
2

(dY − YKdK − YLdL)

= L
u
(1)
2

(dY )−
(
L
u
(1)
2

YK
)
dK − YK

(
L
u
(1)
2

(dK)
)
−
(
L
u
(1)
2

YL
)
dL− YL

(
L
u
(1)
2

(dL)
)

= d
(
u
(1)
2 (Y )

)
−
(
u
(1)
2 (YK)

)
dK − YKd

(
u
(1)
2 (K)

)
−
(
u
(1)
2 (YL)

)
dL− YLd

(
u
(1)
2 (L)

)
= cdY − ξ1dK − aYKdK − ξ2dL− bYLdL

= c(ω + YKdK + YLdL)− ξ1dK − aYKdK − ξ2dL− bYLdL

= cω + (cYK − ξ1 − aYK)dK + (cYL − ξ2 − bYL)dL, (5.3)

the last line of the equation (5.3) implies that the expressions in the parentheses above vanish,
which entails

ξ1 = ξ1(K,L, Y, YK , YL) = (c− a)YK , ξ2 = ξ2(K,L, Y, YK , YL) = (c− b)YL.

Hence the first prolongation of u2 is given by

Pr1(u2) = aK
∂

∂K
+ bL

∂

∂L
+ cY

∂

∂Y
+ (c− a)YK

∂

∂YK
+ (c− b)YL

∂

∂YL
. (5.4)

The differential operator (5.4) represents the infinitesimal action of a one-parameter Lie group
in a 5-dimensional space. According to the fundamental theorem on invariants of regular Lie
group actions (see [29, Chapter 8]), we should expect to determine 5 − 1 = 4 fundamental
invariants. Indeed, solving the partial differential equation Pr1(u2)(F ) = 0 using the method of
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characteristics, we find F = F (I1, I2, I2, I4), where the fundamental invariants Ii, i = 1, . . . , 4,
are found to be

I1 = LK− b
a , I2 = Y K− c

a , I3 = YKK
a−c
a , I4 = YLK

b−c
a . (5.5)

Next, we combine the invariants (5.5) as appropriate, eliminating the parameters a, b, and c, to
find

sL =
I1 · I4
I2

=
YLL

Y
, (5.6)

sK =
I3
I2

=
YKK

Y
. (5.7)

Note that the equation (5.6) provides the classical wage share sL (2.4), and the equation (5.7)
represents the classical capital share sK .

Next, we observe that Sato (see [40, Chapter 4]) assumed the existence of a homogeneous
production function of the form Y = f(K,L, t) and then demonstrated that the wage share
defined in terms of the projective variables x := L/K and y := Y/K, namely sL = xy′/y, was
an invariant preserved by an extended action of a vector field generating exponential growth
for x and y. The homogeneity of Y allowed for the existence of such variables. For instance, if we
have Y = ALβK1−β, it is easy to see that in terms of x := L/K and y := Y/K, the production
function assumes the form y = Axβ. Under this representation, it becomes an invariant of the
infinitesimal action U = 1

1−βx
∂
∂x +

β
β−1y

∂
∂y . Furthermore, it is possible to show that sL = xy′/y

is also an invariant of the first prolongation of the infinitesimal action defined by U . In our
previous work [44], we extended this approach to define the notion of modified wage share by
assuming logistic growth instead of exponential for x and y.

In this paper, we have completely abandoned the need for making any assumptions about
a production function, instead utilizing symmetry methods to compute the first prolonga-
tion (5.4) in the original variables K, L, and Y . Indeed, our model does not explicitly require
a production function to be defined. Specifically, we have demonstrated that exponential growth
in K, L, and Y as functions of time (4.15) implies Bowley’s law.

6 The logistic growth model as a generalization
of the exponential model

In Section 4, we have established that the Cobb–Douglas production function is a consequence
of exponential growth in output and input factors, i.e.,

exponential growth ⇒ the Cobb–Douglas function.

This fact has important ramification for understanding the limitations of the Cobb–Douglas
function when it comes to building mathematical and statistical models in economic growth
theory. Viewing the Cobb–Douglas function as a consequence of a vigorous growth in production,
capital, and labor enables us, for example, to understand better why so many data sets describing
the current state of many economies cannot be accurately described by this particular production
function (see, for example, Antràs [3], Xiang [49], and Gechert et al. [17]). It is also evident that
labor no longer grows exponentially (see, for example, Aghion and Howitt [1]).

We have extended in [44] the exponential model by replacing the assumption about expo-
nential growth in labor, capital, and production with the corresponding assumption that labor,
capital, and production grow logistically, arriving, as a result, at the following dynamical system:

ẋi = bixi

(
1− xi

Ni

)
, i = 1, 2, 3, (6.1)
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where x1 = L (labor), x2 = K (capital), x3 = Y (production) and the constants Ni, i = 1, 2, 3,
denote the corresponding carrying capacities. Furthermore, we employed Sato’s approach [40]
to integrate this dynamical system and thus derive a new production function (see [44, for-
mula (4.5)]).

Since the dynamical system (6.1) reduces to (4.4) as Ni → ∞, i = 1, 2, 3, we can naturally
consider the exponential model as a limiting case of the logistic one, which also means that the
Cobb–Douglas function (4.2) can be viewed as a limiting case of the new production function
derived in [44] from the logistical model.

Indeed, integrating (6.1), we arrive at the corresponding one-parameter Lie group action
given by

xi =
Nix

0
i

x0i +
(
Ni − x0i

)
e−bit

, i = 1, 2, 3, (6.2)

where x0i , i = 1, 2, 3 are the initial conditions. It follows from (6.2)

xi
(
Ni − x0i

)
x0i (Ni − xi)

= ebit, i = 1, 2, 3.

Next, we obtain

3∏
i=1

[
xi
(
Ni − x0i

)
x0i (Ni − xi)

]ai
= e(

∑3
i=1 αibi)t, (6.3)

where ai, i = 1, 2, 3 are some parameters. We see that the left-hand side of the equation (6.3) is
an invariant of the one-parameter group action generated by (6.1) if and only if the parameters ai,
i = 1, 2, 3 satisfy the same orthogonality condition (4.7) for the fixed values of the parameters bi,
i = 1, 2, 3 determined by (6.1). In terms of the language of induced mappings the natural
connection between the two models appears even simpler. Indeed, introduce the following map
ψ : R3

+ → D, D =]0, N1[× ]0, N2[× ]0, N3[ ⊂ R3 via the coordinate transformation

x̃i =
Nixi
Ni + xi

, i = 1, 2, 3. (6.4)

We note that ψ is a diffeomorphism, x̃i → xi, as Ni → ∞, 0 < x̃i < Ni, i = 1, 2, 3, and the
corresponding Jacobian is given by

Jψ(x, x̃) =
∂x̃i
∂xj

= diag

(
N2

1

(N1 + x1)2
,

N2
2

(N2 + x2)2
,

N2
3

(N3 + x3)2

)
, i, j = 1, 2, 3. (6.5)

In this view, the logistic model defined above reduces to previous exponential model as
Ni → ∞, i = 1, 2, 3. Indeed, in terms of the new coordinates x̃i, i = 1, 2, 3 given by (6.4) the
formula (6.3) reduces to (4.16). Alternatively, the logistic model is simply the image of the
exponential model under the push-forward map ψ∗ : TxR3

+ → Tψ(x)R3
+ induced by ψ. Clearly,

the vector field

X =
3∑
i=1

bixi
∂

∂xi

that defines the system (4.4) is mapped by ψ∗ to the vector field X̃ = X̃i ∂
∂x̃i

, where

X̃i = Xj ∂x̃i
∂xj

= bi
Nix̃i
Ni − x̃i

N2
i(

Ni +
Nix̃i
Ni−x̃i

)2 = bix̃i

(
1− x̃i

Ni

)
, (6.6)
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b x0 N RSS

labor 0.07842367 2.092004 175.97 508.0948

capital 0.07793777 1.575667 230.26 299.7033

production 0.04619786 11.312991 211.30 419.7767

Table 1. The estimated values of the parameters that determine logistic growth (6.2).

where we have used the formulas (6.4) and (6.5). Clearly, the vector field X̃ defined by the
components (6.6) is precisely the vector field that gives rise to the system (6.1), as expected.
Similarly, a smooth function f : R3

+ → R is pulled back to a smooth function ψ∗f defined
by (ψ∗f)(x) = f(ψ(x)). Therefore, substituting xi =

Nix̃i
Ni−x̃i in (4.10), dropping tildes, and then

solving for x3, we arrive at the following function f : ]0, N1[× ]0, N2[ → ]0, N3[ given by

x3 = f(x1, x2) =
N3x

α
1x

β
2

N3

Nα
1 N

β
2 B

(N1 − x1)α(N2 − x2)β + xα1x
β
2

, (6.7)

where

B = A

(
N1 − x01
N1x01

)a1
a3
(
N2 − x02
N2x02

)a2
a3
(
N3 − x03
N3x03

)
,

α = −a1
a3
, and β = −a2

a3
. It is easy to show that the Cobb–Douglas function (4.10) is the limiting

case of the function (6.7), as Ni → ∞, i = 1, 2, 3.
Now, identifying x3 = Y (production), x1 = L (labor), x2 = K (capital), N1 = NL, N2 = NK ,

N3 = NY , C = N3N
−α
1 N−β

2 B−1, and extending the domain and range of the function (6.7) to R2
+

and R+ respectively, we arrive at the production function

Y = f(L,K) =
NY L

αKβ

C|NL − L|α|NK −K|β + LαKβ
(6.8)

derived for the first time in [44] by employing integration.
We note that the one-input version of the production function (6.8), namely the function

Y = f(x) =
Nfx

α

C|Nx − x|α + xα
,

derived in [44], apparently gives a mathematical formula defining the environmental Kuznets
curve (see, for example, [47, Figure 1]).

By analogy with the generalization of the Cobb–Douglas function presented in Section 4, we
propose Table 1.

Definition 6.1 (logistic production function). Given the one-parameter group action

xi =
Nix

0
i

x0i +
(
Ni − x0i

)
e−bit

, x0i , bi, Ni > 0, i = 1, . . . , n (6.9)

in Rn+. Then the logistic production function is defined as an element of the following family of
invariants of the one-parameter Lie group action (6.9):

n∏
i=1

[
xi
(
Ni − x0i

)
x0i (Ni − xi)

]ai
= C, ai, Ni > 0 i = 1, . . . , n, (6.10)
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Figure 5. Observed vs estimated production.

where C ∈ R is an arbitrary constant and x0i , i = 1, . . . , n are the corresponding initial conditions,
provided the orthogonality condition

n∑
i=1

aibi = 0 (6.11)

holds true.

Therefore, we have shown that the two models, namely, the exponential model, discussed in
the preceding section, and the logistic model are, in fact, equivalent, modulo the transforma-
tion ψ given by (6.4).

Now let us revisit again the data studied in [44], i.e., the data from the period 1947–2016
provided by the Federal Reserve Bank of St. Louis (https://fred.stlouisfed.org), employing
the FRED tool. Recall that in [44] we fitted the function (6.8) to the data, assuming the values
of the carrying capacities to be NY = 120, NL = NK = 150, and the condition (3.2). In what
follows, we employ a more delicate and accurate approach. First, we note that the condition (3.2)
is redundant in this case, since even when α + β = 1 the production function (6.8) is not
homogeneous. Second, dropping the condition (3.2), now we start by fitting the formulas of
logistic growth (6.2) to the data representing production, labor and capital, rather than the
formula (6.8) itself. More specifically, we treat the parameters bi, x

0
i , Ni, i = 1, 2, 3 in (6.2) as

the predictors of logistic growth and, with the aid of R and the least squares method, arrive at
the following values, presented along with the corresponding RSS’s in Table 1.

We first note that the RSS values tabulated in Table 1 are much better than the ones obtained
for the fixed values of the carrying capacities assumed in [44]. We illustrate the accuracy of our
estimations by Figures 5, 6 and 7.

Next, using the carrying capacities presented in Table 1 and dropping the condition (3.2), we
arrive at the following estimated values for the parameters of the production function (6.8):

α = 0.46780229, β = 0.05955408, C = 1.59899336 (6.12)

that make it fit to the data with RSS=428.27. We note that the parameters b1 (labor), b2 (cap-
ital), b3 (production) presented in Table 1 and the parameters α, β in (6.12) satisfy the or-
thogonality condition (4.7) with good accuracy, as expected. It must be noted at this point
that the function (6.8) with NY = 120 and NL = NK = 150 under the condition (3.2) yielded
a much less accurate fit to this data in [44] with RSS = 4336.976. Finally, we compute the

https://fred.stlouisfed.org
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Figure 6. Observed vs estimated capital.

Figure 7. Observed vs estimated labor.

corresponding RSS for the Cobb–Douglas function (3.1) determined by the exponential growth
parameters (4.23) fitted to the same data from the period 1947-2016 provided by the Federal
Reserve Bank of St. Louis (https://fred.stlouisfed.org), employing the FRED tool, to find
that in this case RSS = 584.4616 which is less than the RSS for the function (6.8) determined
by the parameters presented in Table 1.

Recall that a similar, “S-shaped” production function

Y = g(L,K) =
aLpK1−p

1 + bLpK1−p (6.13)

was recently introduced, employing a heuristic approach, see, for example, Anita et al. [2],
Capasso et al. [7], Engbers et al. [12], La Torre et al. [25] and the relevant references therein
for more details and applications. Note that the production function (6.13) is reducible to the
Cobb–Douglas function (4.2) (i.e., when b = 0). Compare the function (6.13) to the Holling
disc equation in eco-dynamics [18]. Also, we observe that the new production function (6.8)
is reducible to the production function (6.13) when K and L ≪ NK and NL respectively,
NL, NK ≈ 1, C = 1 in (6.8) and a = NY , b = 1 in (6.13).

https://fred.stlouisfed.org
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7 The labor share for the logistic model

Now let us investigate what transpires when the underlying model is logistic, rather than expo-
nential. Indeed, substituting the formula for the logistic production function (6.8) into (2.4), we
arrive at the following expression for the labor (wage) share:

sL = α
NL

NL − L
· C|NL − L|α|NK −K|β

C|NL − L|α|NK −K|β + LαKβ
. (7.1)

Note that as NL, NK → ∞, the labor share sL → α, where sL is given by (7.1), as expected. In
view of the formulas (6.2), sL assumes the following form in terms of the parameter t:

sL =
b3
b1

· (NY − Y0)e
(b1−b3)t

NL − L0
· L0 + (NL − L0)e

−b1t

Y0 + (NY − Y0)e−b3t
. (7.2)

The above formulas (7.1) and (7.2) put in evidence that the labor share sL is no longer constant
for the logistic model, which illustrates the limitations of Bowley’s law.

8 Concluding remarks

For many years, Bowley’s law has stood as a cornerstone in economics, often observed through
the analysis of data from specific countries or regions. Indeed, modern growth and distribution
theories have been founded on the assumption of Bowley’s law holding true. However, recent
times have seen a surge in critics challenging Bowley’s law. Many researchers, scrutinizing data
from the past few decades, have noted a decline in the wage share over time, sparking significant
controversy among economists. Some argue that Bowley’s law might never have been valid in
the first place (see Krämer [23], for example).

In our paper, we developed a model that combines statistical data and extends the analytical
model proposed by Sato [40]. Our model demonstrates that Bowley’s law primarily arises as
a consequence of exponential growth in capital (K), labor (L), and production (Y ) as functions
of time t.

Importantly, our model does not rely on assumptions about the specific parameters governing
the exponential growth of K, L, and Y , or the form of the associated Cobb–Douglas-type
production functions. Thus, it becomes evident that Bowley’s law is indeed a consequence
of exponential growth and nothing else. In other words, for Bowley’s law to hold true, the
underlying economy must exhibit rigorous growth.

On the other hand, if Bowley’s law does not hold true, it indicates that K, L, and Y are not
all growing exponentially. We demonstrated this fact by employing the logistic model and the
corresponding production function. For the logistic model, for example, the labor share sL is
no longer an invariant, as expected (see (7.2)). We have also shown that the exponential model
can be viewed as a limiting case of the exponential model.

In addressing this issue, we employed mathematical techniques, particularly symmetry meth-
ods, which shed some light on this problem and contributed to resolving, at least to some extent,
the controversy surrounding this economic law.
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