|
SIGMA 21 (2025), 068, 25 pages arXiv:2311.06506
https://doi.org/10.3842/SIGMA.2025.068
From Toda Hierarchy to KP Hierarchy
Di Yang a and Jian Zhou b
a) School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, P.R. China
b) Department of Mathematical Sciences, Tsinghua University, Beijing 100084, P.R. China
Received October 08, 2024, in final form July 27, 2025; Published online August 09, 2025
Abstract
Using the matrix-resolvent method and a formula of the second-named author on the $n$-point function for a KP tau-function, we show that the tau-function of an arbitrary solution to the Toda lattice hierarchy is a KP tau-function. We then generalize this result to tau-functions for the extended Toda hierarchy (ETH) by developing the matrix-resolvent method for the ETH. As an example the partition function of Gromov-Witten invariants of the complex projective line is a KP tau-function, and an application on irreducible representations of the symmetric group is obtained.
Key words: Toda hierarchy; KP hierarchy; matrix-resolvent method; complex projective line; Gromov-Witten invariant.
pdf (573 kb)
tex (33 kb)
References
- Adler M., van Moerbeke P., Matrix integrals, Toda symmetries, Virasoro constraints, and orthogonal polynomials, Duke Math. J. 80 (1995), 863-911, arXiv:solv-int/9706010.
- Alexandrov A., Bychkov B., Dunin-Barkowski P., Kazarian M., Shadrin S., KP integrability through the $x-y$ swap relation, Selecta Math. (N.S.) 31 (2025), 42, 37 pages, arXiv:2309.12176.
- Ambjørn J., Chekhov L., The matrix model for dessins d'enfants, Ann. Inst. Henri Poincaré D 1 (2014), 337-361, arXiv:1404.4240.
- Balogh F., Yang D., Geometric interpretation of Zhou's explicit formula for the Witten-Kontsevich tau function, Lett. Math. Phys. 107 (2017), 1837-1857, arXiv:1412.4419.
- Bertola M., Dubrovin B., Yang D., Correlation functions of the KdV hierarchy and applications to intersection numbers over $\overline{\mathcal{M}}_{g,n}$, Phys. D 327 (2016), 30-57, arXiv:1504.06452.
- Bertola M., Dubrovin B., Yang D., Simple Lie algebras, Drinfeld-Sokolov hierarchies, and multi-point correlation functions, Mosc. Math. J. 21 (2021), 233-270, arXiv:1610.07534.
- Bloch S., Okounkov A., The character of the infinite wedge representation, Adv. Math. 149 (2000), 1-60, arXiv:alg-geom/9712009.
- Carlet G., Extended Toda hierarchy and its Hamiltonian structure, Ph.D. Thesis, International School for Advanced Studies, 2003, available at https://hdl.handle.net/20.500.11767/4024.
- Carlet G., Dubrovin B., Zhang Y., The extended Toda hierarchy, Mosc. Math. J. 4 (2004), 313-332, arXiv:nlin.SI/0306060.
- Carlet G., van de Leur J., Hirota equations for the extended bigraded Toda hierarchy and the total descendent potential of $\mathbb{CP}^1$ orbifolds, J. Phys. A 46 (2013), 405205, 16 pages, arXiv:1304.1632.
- Deift P.A., Orthogonal polynomials and random matrices: a Riemann-Hilbert approach, Courant Lect. Notes Math., Vol. 3, American Mathematical Society, Providence, RI, 1999.
- Dickey L.A., Soliton equations and Hamiltonian systems, 2nd ed., Adv. Ser. Math. Phys., Vol. 26, World Scientific, River Edge, NJ, 2003.
- Dijkgraaf R., Witten E., Mean field theory, topological field theory, and multi-matrix models, Nuclear Phys. B 342 (1990), 486-522.
- Dubrovin B., Integrable systems and classification of $2$-dimensional topological field theories, in Integrable Systems (Luminy, 1991), Progr. Math., Vol. 115, Birkhäuser, Boston, MA, 1993, 313-359, arXiv:hep-th/9209040.
- Dubrovin B., Geometry of $2$D topological field theories, in Integrable Systems and Quantum Groups (Montecatini Terme, 1993), Lecture Notes in Math., Vol. 1620, Springer, Berlin, 1996, 120-348, arXiv:hep-th/9407018.
- Dubrovin B., Hamiltonian perturbations of hyperbolic PDEs: from classification results to the properties of solutions, in New Trends in Mathematical Physics, Springer, Dordrecht, 2009, 231-276.
- Dubrovin B., Symplectic field theory of a disk, quantum integrable systems, and Schur polynomials, Ann. Henri Poincaré 17 (2016), 1595-1613, arXiv:1407.5824.
- Dubrovin B., Yang D., Generating series for GUE correlators, Lett. Math. Phys. 107 (2017), 1971-2012, arXiv:1604.07628.
- Dubrovin B., Yang D., On Gromov-Witten invariants of $\mathbb{P}^1$, Math. Res. Lett. 26 (2019), 729-748, arXiv:1702.01669.
- Dubrovin B., Yang D., Zagier D., Gromov-Witten invariants of the Riemann sphere, Pure Appl. Math. Q. 16 (2020), 153-190, arXiv:1802.00711.
- Dubrovin B., Zhang Y., Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov-Witten invariants, arXiv:math.DG/0108160.
- Dubrovin B., Zhang Y., Virasoro symmetries of the extended Toda hierarchy, Comm. Math. Phys. 250 (2004), 161-193, arXiv:math.DG/0308152.
- Eguchi T., Hori K., Yang S.-K., Topological $\sigma$ models and large-$N$ matrix integral, Internat. J. Modern Phys. A 10 (1995), 4203-4224, arXiv:hep-th/9503017.
- Eguchi T., Yang S.-K., The topological ${\bf C}{\rm P}^1$ model and the large-$N$ matrix integral, Modern Phys. Lett. A 9 (1994), 2893-2902, arXiv:hep-th/9407134.
- Gerasimov A., Marshakov A., Mironov A., Morozov A., Orlov A., Matrix models of two-dimensional gravity and Toda theory, Nuclear Phys. B 357 (1991), 565-618.
- Getzler E., The Toda conjecture, in Symplectic Geometry and Mirror Symmetry (Seoul, 2000), World Scientific, River Edge, NJ, 2001, 51-79, arXiv:math.AG/0108108.
- Han G.-N., Some conjectures and open problems on partition hook lengths, Experiment. Math. 18 (2009), 97-106.
- Harer J., Zagier D., The Euler characteristic of the moduli space of curves, Invent. Math. 85 (1986), 457-485.
- Kazakov V.A., Kostov I.K., Nekrasov N., D-particles, matrix integrals and KP hierarchy, Nuclear Phys. B 557 (1999), 413-442, arXiv:hep-th/9810035.
- Kazarian M., Zograf P., Virasoro constraints and topological recursion for Grothendieck's dessin counting, Lett. Math. Phys. 105 (2015), 1057-1084, arXiv:1406.5976.
- Kharchev S., Marshakov A., Mironov A., Morozov A., Generalized Kontsevich model versus Toda hierarchy and discrete matrix models, Nuclear Phys. B 397 (1993), 339-378, arXiv:hep-th/9203043.
- Macdonald I.G., Symmetric functions and Hall polynomials, 2nd ed., Oxford Math. Monogr., The Clarendon Press, New York, 1995.
- Marchal O., WKB solutions of difference equations and reconstruction by the topological recursion, Nonlinearity 31 (2018), 226-262, arXiv:1703.06152.
- Mehta M.L., Random matrices, 2nd ed., Academic Press, Inc., Boston, MA, 1991.
- Milanov T.E., Hirota quadratic equations for the extended Toda hierarchy, Duke Math. J. 138 (2007), 161-178, arXiv:math.AG/0501336.
- Morozov A., Integrability and matrix models, Phys. Usp. 37 (1994), 1-55, arXiv:hep-th/9303139.
- Okounkov A., Pandharipande R., The equivariant Gromov-Witten theory of ${\bf P}^1$, Ann. of Math. 163 (2006), 561-605, arXiv:math.AG/0207233.
- Okounkov A., Pandharipande R., Gromov-Witten theory, Hurwitz theory, and completed cycles, Ann. of Math. 163 (2006), 517-560, arXiv:math.AG/0204305.
- Okounkov A., Pandharipande R., Virasoro constraints for target curves, Invent. Math. 163 (2006), 47-108, arXiv:math.AG/0308097.
- Panova G., Polynomiality of some hook-length statistics, Ramanujan J. 27 (2012), 349-356, arXiv:0811.3463.
- Shaw J.C., Tu M.H., Yen H.C., Matrix models at finite $N$ and the KP hierarchy, Chinese J. Phys. 30 (1992), 497-507.
- Stanley R.P., Some combinatorial properties of hook lengths, contents, and parts of partitions, Ramanujan J. 23 (2010), 91-105, arXiv:0807.0383.
- Ueno K., Takasaki K., Toda lattice hierarchy, in Group Representations and Systems of Differential Equations (Tokyo, 1982), Adv. Stud. Pure Math., Vol. 4, North-Holland, Amsterdam, 1984, 1-95.
- Yang D., On tau-functions for the Toda lattice hierarchy, Lett. Math. Phys. 110 (2020), 555-583, arXiv:1905.08140.
- Yang D., GUE via Frobenius manifolds. I. From matrix gravity to topological gravity and back, Acta Math. Sin. (Engl. Ser.) 40 (2024), 383-405, arXiv:2205.01618.
- Yang D., Zhou J., Grothendieck's dessins d'enfants in a web of dualities. III, J. Phys. A 56 (2023), 055201, 34 pages, arXiv:2204.11074.
- Zagier D., Partitions, quasimodular forms, and the Bloch-Okounkov theorem, Ramanujan J. 41 (2016), 345-368.
- Zhang Y., On the ${\bf C}{\rm P}^1$ topological sigma model and the Toda lattice hierarchy, J. Geom. Phys. 40 (2002), 215-232.
- Zhou J., Explicit formula for Witte-Kontsevich tau-function, arXiv:1306.5429.
- Zhou J., Emergent geometry and mirror symmetry of a point, arXiv:1507.01679.
- Zhou J., Hermitian one-matrix model and KP hierarchy, arXiv:1809.07951.
- Zhou J., Grothendieck's dessins d'enfants in a web of dualities, arXiv:1905.10773.
- Zhou J., Grothendieck's dessins d'enfants in a web of dualities. II, arXiv:1907.00357.
- Zograf P., Enumeration of Grothendieck's dessins and KP hierarchy, Int. Math. Res. Not. 2015 (2015), 13533-13544, arXiv:1312.2538.
|
|