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Abstract. Using the matrix-resolvent method and a formula of the second-named author
on the n-point function for a KP tau-function, we show that the tau-function of an arbitrary
solution to the Toda lattice hierarchy is a KP tau-function. We then generalize this result
to tau-functions for the extended Toda hierarchy (ETH) by developing the matrix-resolvent
method for the ETH. As an example the partition function of Gromov–Witten invariants of
the complex projective line is a KP tau-function, and an application on irreducible repre-
sentations of the symmetric group is obtained.
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1 Introduction

The Kadomtsev–Petviashvili (KP) hierarchy and the Toda lattice hierarchy are two important
integrable hierarchies. In this paper, we will show that the tau-function of an arbitrary solution
to the Toda lattice hierarchy gives an infinite family of tau-functions of the KP hierarchy. This
is achieved by combining two different results: a formula [50] of the second-named author on
the n-point function for a KP tau-function in the big cell, and a work [44] of the first-named
author on the n-point function for a Toda tau-function.

The KP hierarchy is an infinite family of equations with infinitely many unknown functions,
which can be written using the Lax pair formalism as follows:

∂LKP

∂Tk
=

[(
Lk
KP

)
+
, LKP

]
, k ≥ 1, (1.1)

where

LKP = ∂ +
∑
j≥1

uj∂
−j , ∂ = ∂/∂X,

is a pseudodifferential operator, called the Lax operator. For details about pseudodifferential
operators and their operations see for example [12]. The independent variables T1, T2, T3, . . .
are called times. Since ∂LKP/∂T1 = ∂LKP/∂X, we identify T1 with X.

Let T = (T1, T2, . . . ) denote the infinite vector of KP times. It is well known (see, e.g., [12])
that an arbitrary solution (u1(T), u2(T), . . . ) to the KP hierarchy (1.1) can be compactly rep-
resented by a single function τ = τ(T) called the tau-function as

u1(T) =
∂2 log τ

∂T 2
1

, u2(T) =
1

2

∂2 log τ

∂T1∂T2
− 1

2

∂3 log τ
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, . . . ,
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and the tau-function τ satisfies the Hirota bilinear identities given by

resλ=∞τ
(
T−

[
λ−1

])
τ
(
T′ +

[
λ−1

])
e
∑

k≥1(Tk−T ′
k)λ

k

dλ = 0. (1.2)

Here
[
λ−1

]
:=

(
1
λ ,

1
2λ2 ,

1
3λ3 , . . .

)
. Equivalence between (1.2) and (1.1) is a standard result in the

theory of integrable systems; see, for example, [12]. Equation (1.2) itself gives the defining equa-
tions for a KP tau-function (namely, we do not need to start with a solution (u1(T), u2(T), . . . )
to the KP hierarchy (1.1)).

Let Λ: f(x) 7→ f(x+ ϵ) be the shift operator and

L := Λ + v(x) + w(x)Λ−1

the Lax operator. Here ϵ is a parameter. The Toda lattice hierarchy (also known as the 1d Toda
chain or 1-Toda hierarchy) can be defined using the Lax pair formalism as

ϵ
∂L

∂mi
=

1

(i+ 1)!

[(
Li+1

)
+
, L

]
, i ≥ 0. (1.3)

Here, for a difference operator P written in the form P =
∑

k∈Z PkΛ
k, P+ is defined as∑

k≥0 PkΛ
k. We also denote m = (m0,m1,m2, . . . ).

It is known [43] that an arbitrary tau-function τ(N,x,y) of the 2-Toda hierarchy [43] is
a KP tau-function with respect to either x or y as KP times (fixing the others as parameters).
The following Theorem 1.1, which could essentially be deduced from [43] (see Remark 1.2 below),
gives a similar statement for the 1-Toda hierarchy. Let (v(x,m; ϵ), w(x,m; ϵ)) be an arbitrary
power-series-in-m solution to the Toda lattice hierarchy with coefficients being in a ring V
of functions of x closed under shifting x by ±ϵ (e.g., V could be C[x, ϵ]), and τ(x,m; ϵ) the
tau-function [18] of this solution.

Theorem 1.1. The tau-function τ(x,m; ϵ) for the Toda lattice hierarchy is a tau-function of
the KP hierarchy for any x and ϵ, where m and the KP times T are related by

mi = (i+ 1)! ϵ Ti+1, i ≥ 0. (1.4)

Remark 1.2. Theorem 1.1 should be known to experts, and could be deduced from a claim [43,
p. 30] (cf. [31]) that the Lax representation of the Toda lattice hierarchy can be obtained from
a reduction of the 2-Toda hierarchy with the reduction condition

∂/∂xi = ∂/∂yi, i ≥ 1,

up to a quadratic function of x, y. Here, x = (x1, x2, . . . ), y = (y1, y2, . . . ). (Our formula (3.2)
below should shed light on the Toda chain discussions in [31].) We would like to thank A. Alexan-
drov for bringing our attention to the reduction arguments of [43]. We also point out the following
well-known fact: the first nontrivial Hirota bilinear equation of the 2-Toda hierarchy under the
reduction condition coincides with that of the 1-Toda hierarchy. Thus, an alternative way to
show the equivalence between the 1-Toda hierarchy and the reduction of the 2-Toda hierarchy is
to compare the Hirota bilinear equations of the two hierarchies [35, 43], whose detail might de-
serve a further study. In this work we take a different approach. For the KP hierarchy, a formula
for the connected n-point functions was derived by the second-named author using the fermionic
approach in [50], whereas for the Toda lattice hierarchy a formula of the same form was derived
by the second-named author [44], but using a totally different method: the matrix-resolvent
method. So we present a different proof combining these two approaches. An advantage of this
proof is that it can be generalized to the extended Toda hierarchy [9] whose fermionic approach
has not yet appeared. See our Theorem 1.3 below. The main content of Section 4 is to generalize
the matrix-resolvent method to the case of the extended Toda hierarchy.



From Toda Hierarchy to KP Hierarchy 3

Let us now recall some earlier results in the literature that motivate us to obtain this result.
It is well known in matrix model theory [1, 25] that using the theory of orthogonal polynomials,
the GUE partition function {ZN (T; ϵ)}N≥1 is a tau-function for the Toda lattice hierarchy.
Here N is the size of the Hermitian matrix used to define the partition function, and x = Nϵ.
A perhaps less well-known result is that for each N , ZN (T; ϵ) is also a tau-function of the KP
hierarchy [41] (see also [31]). Both of these results have been revisited recently and some new
perspectives naturally arise.

First of all, in [18, Definition 1.2.2], a notion of matrix resolvent for the Toda lattice hierarchy
was introduced. Based on this, a definition of the tau-function of Dubrovin–Zhang type of the
Toda lattice hierarchy was given in [18, Definition 1.2.4]. Usually a normalization constant is
chosen so that the partition function of Gaussian unitary ensemble (GUE) is equal to 1 when all
the coupling constants are set to be equal to zero. In [18, Appendix A], it was shown that after
multiplying by a suitable correction factor, the GUE partition functions give us a tau-function
of Dubrovin–Zhang type. In [18], it was also shown that the correction factor can be obtained
by using the theory of Toda tau-functions, so this method is applicable to other examples.

Note the major goal of [18] is to develop a method for computing n-point function associated
with the tau-function of the Toda lattice hierarchy based on the matrix-resolvent method, by
generalizing the earlier results developed by Bertola, Dubrovin and the first-named author in
the cases of KdV hierarchy [5] and Drinfeld–Sokolov hierarchies associated with simple Lie alge-
bras [6]. Earlier the second-named author proved an explicit formula [49] for the Schur expansion
of the Witten–Kontsevich tau-function of the KdV hierarchy. Balogh and the first-named author
interpreted this formula in terms of the affine coordinates of the Witten–Kontsevich tau-function
in [4]. Inspired by [5], the second-named author proved a formula [50] of n-point function asso-
ciated with an arbitrary tau-function of the KP hierarchy, based on the affine coordinates of the
element in the Sato Grassmannian corresponding to the tau-function. The formula in [18] has
a difference from the formula in [50]: In the former matrices of power series are used whereas
ordinary power series are used in the latter. To remedy the difference, the first-named author
proved a formula for n-point function using only power series in [44] for tau-functions of Toda
lattice hierarchy (see also [20]).

Secondly, it was shown in [51] that the normalized GUE partition function ZN (T;ϵ)
ZN (0;ϵ) gives

rise to a family of KP tau-functions in the big cell parameterized by the t’Hooft coupling con-
stant x = Nϵ (see also [29, 31, 36, 41]). Furthermore, an explicit formula for the affine coordi-
nates for this family of KP tau-function was derived in [51]. As an application, the formulas for
the corresponding n-point functions were obtained by applying the formula in [50].

Now the GUE partition functions can be studied from two different perspectives: either as
a tau-function of Dubrovin–Zhang type of the Toda lattice hierarchy, or as a family of tau-
functions of the KP hierarchy. The belief that this is just a special case of general phenomenon
leads us to Theorem 1.1.

There are earlier results that also lead to Theorem 1.1. It is well known that by introducing
the t’Hooft coupling constant x = Nϵ, log ZN (T;ϵ)

ZN (0;ϵ) has an expansion as weighted sum of ribbon
graphs [18, 28, 51]. In other words, the enumeration of ribbon graphs gives rise to a special
family of tau-functions of the KP hierarchy which become a special tau-function for the Toda
lattice hierarchy by multiplying by a suitable correction factor. Recall that ribbon graphs can
be regarded as clean dessins. As a generalization, the weighted sum of Grothendieck’s dessins
d’enfants has been shown by Zograf [54] (see also Kazarian and Zograf [30]) to be a tau-function
of the KP hierarchy, that is referred to as the dessin partition function. Based on this fact, the
second-named author had found the affine coordinates of the tau-function of the KP hierarchy
associated with the dessin counting [52], and so explicit formula for the n-point functions of
the dessin partition function can be written down using the general formula in [50]. The dessin
partition function is a family of KP tau-functions parameterized by two parameters. It reduces
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to some other well-known tau-function by suitably specifying these parameters [52]. A proposal
to study the dualities among different models based on the theory of KP hierarchy was then
proposed in [52] and was further elaborated in [53].

The study of KP tau-functions and the study of Toda tau-functions were merged in our earlier
work [46] in our study of the dessin tau-function and its role in unifying various theories. Since
counting dessins is similar to counting ribbon graphs and GUE provides a matrix model for
enumerating the ribbon graphs, one naturally expects a matrix model for enumerating dessins.
The problem was addressed by Ambjørn and Chekhov [3], where they proposed a matrix model
in the class of generalized Kontsevich models and an equivalent Hermitian 1-matrix model.
In [46], we found that the Laguerre unitary ensemble (LUE) gives a simpler and rigorous matrix
model for the dessins counting in the sense that the dessin partition function is equal to the
normalized LUE partition function. Furthermore, by multiplying by a suitable correction factor,
the dessin partition function gives rise to a Dubrovin–Zhang type tau-function of the Toda lattice
hierarchy. It was proposed in [46] to study the duality between dessin partition function with
partition functions of other theories from the viewpoint of Toda lattice hierarchy. In this new
approach, one can apply the theory of normal forms of integrable hierarchies and the extended
Toda hierarchy [9] as developed by Dubrovin and Zhang [21, 22]. In fact, the relevant Frobenius
manifold is the Frobenius manifold associated with the Gromov–Witten invariants of P1. It has
already been used in [16] (cf. [18, 45]) to calculate the GUE correlators.

Based on some earlier results of Dijkgraaf and Witten [13], Eguchi and Yang [24] proposed
a matrix model for the Gromov–Witten invariants of P1 (see also [23]). Besides the Toda lattice
hierarchy, the P1-partition function satisfies an extra family of flows introduced in [24, 26, 48]
(see also [8, 9, 14, 24, 35]). These flows are called extended flows by Getzler [26] and Zhang [48].
They can be defined using the Lax pair formalism [9] as follows:

ϵ
∂L

∂bi
=

2

i!

[(
Li(logL− ci)

)
+
, L

]
, i ≥ 0, (1.5)

where ci :=
∑i

j=1
1
j are harmonic numbers and for the definition of logL see [9, 35]. The

flows (1.5) commute with the traditional flows (1.3) of the Toda lattice hierarchy, and they also
pairwise commute. All-together, (1.3), (1.5) form the extended Toda hierarchy (ETH) [9, 26, 48].

Let (v(b+x1,m; ϵ), w(b+x1,m; ϵ)) be an arbitrary solution to the ETH, and τ(b+x1,m; ϵ)
the tau-function [9] of this solution (although it is uniquely determined up to multiplying by the
exponential of an affine-linear function of b,m). Here b = (b0, b1, b2, . . . ) and 1 = (1, 0, 0, . . . ).
The following theorem generalizes Theorem 1.1.

Theorem 1.3. The tau-function τ(b + x1,m; ϵ) for the ETH is a KP tau-function for any x
and b, where m and T are related by (1.4).

The proof is in Section 4.

Remark 1.4. For our intended applications to Gromov–Witten theory, we are content with
tau-functions as formal power series. The results of Theorems 1.1 and 1.3 raise the problem to
characterize the KP tau-functions obtained from the tau-functions of Toda lattice hierarchy or
the extended Toda hierarchy. This problem is beyond the scope of this work and will be pursued
in the future investigation. In viewpoint of Sato Grassmannian we think that our formula (3.2)
below sheds light on this discussion, which we also mentioned briefly in Remark 1.2. We thank
an anonymous referee for posing this problem to us.

It was conjectured in [14, 15, 24, 26], and was proved by Dubrovin and Zhang [22] that
assuming the validity of the so-called Virasoro constraints (which is proved, e.g., in [39]) the
partition function ZP1

(b+ x1,m; ϵ) of Gromov–Witten (GW) invariants of P1 (see Section 5 for
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the definition) is the tau-function of a particular solution to the ETH. Independently, Okounkov
and Pandharipande [37, 38] proved that ZP1

(x1,m; ϵ) satisfies the bilinear equations for the 1-
Toda hierarchy. Based on the above-mentioned results and on Theorem 1.3 we immediately
obtain the following corollary.

Corollary 1.5. The partition function ZP1
(b+ x1,m; ϵ) of GW invariants of P1 is a KP tau-

function for any x, ϵ and b, where m is related to T by (1.4). In particular, ZP1
(x1,m; ϵ) is

a KP tau-function for any x and ϵ.

The stationary sector of the P1-partition function is ZP1
(01,m; ϵ). We compute in Section 5

its affine coordinates by two different methods: One by the results of [20], the other by the
results of [38]. The former gives us an explicit closed formula, and the latter gives an expression
in terms of characters of the symmetric groups. We then get a closed formula for some Plancherel
averages in Corollary 5.8.

The rest of the paper is organized as follows. In Section 2, we recall the formula of n-point
function for a KP tau-function. In Section 3, we show that an arbitrary tau-function for the
Toda lattice hierarchy is a KP tau-function with the ground ring being the ring of functions of
the space variable of Toda. The generalization to ETH is given in Section 4. In Section 5, we
give an application of Corollary 1.5.

2 The formula for the n-point function for a KP tau-function

In this section, we first review the explicit formula (see Theorem 2.1 below) obtained by the
second-named author for the n-point function for an arbitrary KP tau-function in the big cell,
and then consider the converse statement that gives a criterion for a KP tau-function.

Before entering into the details let us introduce some notations. Denote by R a suitable
ground ring. For a formal power series F (p) ∈ R[[p]], with p = (p1, p2, . . . ), define the n-point
function associated with F (p) by

Gn(ξ1, . . . , ξn) =
∑

k1,...,kn≥1

n∏
i=1

ki

ξki+1
i

· ∂nF (p)

∂pk1 · · · ∂pkn

∣∣∣∣
p=0

, n ≥ 0.

By a partition µ = (µ1, µ2, . . . ), we mean a sequence of weakly decreasing non-negative integers
with µk = 0 for sufficiently large k. The length ℓ(µ) is the number of the non-zero parts of µ,
the weight |µ| := µ1 + µ2 + · · · , and the multiplicity of i in µ is denoted by mi(µ). The set of
all partitions will be denoted by P, and the set of partitions of weight d is denoted by Pd. The
Schur polynomial sµ(p) associated to µ ∈ P is a polynomial in the variables p = (p1, p2, . . . ),
defined by

sµ(p) := det
1≤i,j≤ℓ(µ)

(hµi−i+j(p)), (2.1)

where hj(p) are polynomials defined by the generating function

∞∑
j=0

hj(p)z
j := e

∑∞
k=1

pk
k
zk .

One constructive way to describe tau-functions of the KP hierarchy is to use Sato’s Grassman-
nian. Let z1/2R

[[
z, z−1

]]
be the space of formal series in z of half integral powers. An element V

in the big cell Gr0 of Sato’s Grassmannian is specified by a sequence of series

Ψj(z) = zj+1/2 +
∞∑
i=0

Ai,jz
−i−1/2, j ≥ 0,
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where the coefficients Ai,j are called the affine coordinates of V . To any element V ∈ Gr0, there
corresponds a particular KP tau-function ZV defined by

ZV :=
∑
λ∈P

cλsλ(p), (2.2)

where Tk = pk/k, and for a partition λ written in terms of the Frobenius notation [32, Section I.1,
p. 3] λ = (m1, . . . ,mk|n1, . . . , nk),

cλ := (−1)n1+···+nk det
1≤i,j≤k

(
Ami,nj

)
.

In particular, for λ =
(
i + 1, 1j

)
we have cλ = (−1)jAi,j . So one can easily read off the affine

coordinates from the expansion (2.2).
The following theorem was obtained in [50].

Theorem 2.1 ([50]). The n-point function associated with logZV is given by the following
formula: For n = 1,

G1(ξ) =
∑
i,j≥0

Ai,jξ
−i−j−2, (2.3)

and for n ≥ 2,

Gn(ξ1, . . . , ξn) = (−1)n−1
∑

n-cycles

n∏
i=1

B
(
ξσ(i), ξσ(i+1)

)
− δn,2

(ξ1 − ξ2)2
, (2.4)

where σ(n+ 1) is understood as σ(1), and

B(ξi, ξj) =


1

ξi − ξj
+A(ξi, ξj), i ̸= j,

A(ξi, ξi), i = j,

and

A(ξ, η) =
∑
i,j≥0

Ai,jξ
−j−1η−i−1.

Theorem 2.1 enables one to easily compute the n-point function once we have found the affine
coordinates Ai,j . For example, there is only one 2-cycle, so the two-point function is given by

G2(ξ1, ξ2) =
A(ξ1, ξ2)−A(ξ2, ξ1)

ξ1 − ξ2
−A(ξ1, ξ2) ·A(ξ2, ξ1).

Let us consider the converse of the above Theorem 2.1. Recall the simple fact, which can be
verified directly using (1.2), that multiplying a KP tau-function τ(T(p)) by the exponential of
an arbitrary affine linear function of p

τ(T(p)) · eC0+
∑

k≥1 Ckpk , Ck ∈ R, k ≥ 0, (2.5)

produces again a KP tau-function. We recall here that Tk = pk/k. The renormalized variables pk
are also sometimes called KP times.

Corollary 2.2. Let F be a formal power series in p and Gn(ξ1, . . . , ξn) its n-point function.
If there are (Ai,j)i,j≥0 such that for all n ≥ 2 Gn are given by (2.4), then Z = eF is a tau-function
of the KP hierarchy.
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Proof. By Theorem 2.1, the tau-function corresponds to the point in the big cell with Ai,j

being the affine coordinates can only differ from Z by multiplying by the exponential of some
affine-linear function. ■

Remark 2.3. From the above proof, we see that Corollary 2.2 directly follows from Theorem 2.1.
In [2], Theorem 2.1 together with Corollary 2.2 is regarded as Zhou’s theorem.

The next proposition describes how the affine coordinates change under (2.5).

Proposition 2.4. Let V , V ′ be two elements in the big cell having affine coordinates Ai,j, A
′
i,j,

respectively, and let ZV , ZV ′ be the KP tau-functions associated to V , V ′. If there exist
C1, C2, . . . such that ZV ′ = e

∑
k≥1 CkpkZV , then we have the following identity:∑

i,j≥0

A′
i,jξ

−j−1η−i−1 +
1

ξ − η
=

(∑
i,j≥0

Ai,jξ
−j−1η−i−1 +

1

ξ − η

)
e−

∑
ℓ≥1 Cℓξ

−ℓ

e−
∑

ℓ≥1 Cℓη−ℓ .

Proof. By direct verifications using (2.3). ■

3 From the Toda lattice hierarchy to the KP hierarchy

In this section, we show that an arbitrary tau-function for the Toda lattice hierarchy is a KP
tau-function.

Let (v(x,m; ϵ), w(x,m; ϵ)) be an arbitrary solution in W [[m]]2 to the Toda lattice hierar-
chy (1.3), and τ(x,m; ϵ) the tau-function [9, 18, 22] of this solution. Here, W is a certain ring
of functions of x closed under shifting x by ±ϵ, and τ(x,m; ϵ) lives in W̃ [[m]] with W̃ being
some extension of W . The solution (v(x,m; ϵ), w(x,m; ϵ)) is in one-to-one correspondence with
its initial value

v(x,0; ϵ) =: f(x, ϵ), w(x,0; ϵ) =: g(x, ϵ).

Denote by Lini the initial Lax operator

Lini = Λ+ f(x, ϵ) + g(x, ϵ)Λ−1,

and let

s(x, ϵ) = −
(
1− Λ−1

)−1
(log g(x, ϵ)),

which lives in the extended ring W̃ . Recall from [44] that two elements

ψ1(λ, x; ϵ) =
(
1 + O

(
λ−1

))
λx/ϵ, ψ2(λ, x; ϵ) =

(
1 + O

(
λ−1

))
e−s(x,ϵ)λ−x/ϵ

are called forming a pair of wave functions of Lini if

Lini(ψ1) = λψ1, Lini(ψ2) = λψ2,

d(λ, x; ϵ) := ψ1 Λ
−1(ψ2)− ψ2 Λ

−1(ψ1) = λe−s(x−ϵ,ϵ).

The following formula is proved in [44]:

ϵn
∑

i1,...,in≥0

(i1 + 1)! · · · (in + 1)!

λi1+2
1 · · ·λin+2

n

∂n log τ(x,m; ϵ)

∂mi1 · · · ∂min

∣∣∣∣
m=0

= (−1)n−1 e
ns(x−ϵ,ϵ)∏n
j=1 λj

∑
n-cycles

n∏
j=1

D
(
λσ(j), λσ(j+1);x; ϵ

)
− δn,2

(λ− µ)2
, (3.1)

where n ≥ 2, and

D(λ, µ;x; ϵ) :=
ψ1(λ, x; ϵ)ψ2(µ, x− ϵ; ϵ)− ψ1(λ, x− ϵ; ϵ)ψ2(µ, x; ϵ)

λ− µ
. (3.2)
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Remark 3.1. The function D(λ, µ;x; ϵ) looks similar to the Christoffel–Darboux kernel in ma-
trix models [11, 34]. We hope to study their relations in a future work.

It was observed in [44, (99)] that es(x−ϵ,ϵ)

µ D(λ, µ;x; ϵ)µ
x/ϵ

λx/ϵ − 1
λ−µ is a power series of λ−1, µ−1.

By a more careful analysis we can show that

es(x−ϵ,ϵ)

µ
D(λ, µ;x; ϵ)

µ
x
ϵ

λ
x
ϵ

=
1

λ− µ
+

∑
i,j≥0

Ai,j(x, ϵ)

λj+1µi+1
=: B(λ, µ;x; ϵ) (3.3)

for some coefficients Ai,j(x, ϵ). In the next section, we will give a complete proof of a generalized
version of (3.3).

Using (3.3) and (3.1) we find

ϵn
∑

i1,...,in≥0

(i1 + 1)! · · · (in + 1)!

λi1+2
1 · · ·λin+2

n

∂n log τ(x,m; ϵ)

∂mi1 · · · ∂min

∣∣∣∣
m=0

= (−1)n−1
∑

n-cycles

n∏
j=1

B
(
λσ(j), λσ(j+1); ϵ

)
− δn,2

(λ− µ)2
, n ≥ 2. (3.4)

(See also [44, Corollary 1].)
We are ready to prove Theorem 1.1.

Proof of Theorem 1.1. By using (3.3), (3.4) and (1.4), we know that the n-point function
for n ≥ 2 associated to log τ(x,m; ϵ) has the form (2.4). The theorem is then proved by applying
Corollary 2.2. ■

If we write

τ(x,m; ϵ) = τcorr(x, ϵ)τ1(x,m; ϵ), τ1(x,m = 0; ϵ) ≡ 1,

then by Theorem 1.1 we know that τ1(x,m; ϵ) is a KP tau-function in the big cell. The fac-
tor τcorr(x, ϵ) can [9, 44] be determined by

τcorr(x+ ϵ, ϵ)τcorr(x− ϵ, ϵ)

τcorr(x, ϵ)2
= g(x, ϵ) = es(x−ϵ,ϵ)−s(x,ϵ). (3.5)

This factor can be identified with the correction factor in [18, 44, 46].
Let τ̃1(x,m; ϵ) be the KP tau-function associated to the point in Sato’s Grassmannian having

the affine coordinates Ai,j(x, ϵ), with Ai,j(x, ϵ) given in (3.3). Then there exist ai(x, ϵ), i ≥ 0,
such that

τ1(x,m; ϵ) = e
∑

i≥0 ai(x,ϵ)mi τ̃1(x,m; ϵ).

By further applying Proposition 2.4, we get the affine coordinates for τ1(x,m; ϵ).

4 Extended Toda flows in the KP hierarchy

The goal of this section is to prove Theorem 1.3.
Before entering into the main construction for this section, we briefly recall here the definition

of logL. It is shown in [9] that there exist dressing operators

P =
∑
k≥0

PkΛ
−k, P0 = 1, Q =

∑
k≥0

QkΛ
k,
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such that

L = P ◦ Λ ◦ P−1 = Q ◦ Λ−1 ◦Q−1.

Here, Pk, Qk belong to a certain extension of the differential polynomial ring. The logarithm of
the Lax operator is then defined by [9]

logL =
1

2
P ◦ ϵ∂x ◦ P−1 − 1

2
Q ◦ ϵ∂x ◦Q−1.

As in the introduction, for an arbitrary solution (v(b+x1,m; ϵ), w(b+x1,m; ϵ)) to the ETH,
let τ(b+ x1,m; ϵ) be the tau-function (again in the sense of [9, 22]) of the solution. Let us also
denote

σ(x,b,m; ϵ) = log
τ(b+ x1,m; ϵ)

τ(b+ (x+ ϵ)1,m; ϵ)
. (4.1)

4.1 The matrix-resolvent method

The matrix-resolvent method for studying tau-functions for the Toda lattice hierarchy was de-
veloped in [18] (see also [44]). By the locality nature of this method, the same formulation as for
the Toda lattice hierarchy applies to the ETH.

Denote by

A = Z[v0, w0, v±1, w±1, v±2, w±2, . . . ]

the polynomial ring. Recall that the basic matrix resolvent R(λ) is defined [18] as the unique
element in Mat

(
2,A

[[
λ−1

]])
satisfying

Λ(R(λ))U(λ)− U(λ)R(λ) = 0,

trR(λ) = 1, detR(λ) = 0, R(λ)−
(
1 0
0 0

)
∈ Mat

(
2,A

[[
λ−1

]]
λ−1

)
,

where

U(λ) :=

(
v0 − λ w0

−1 0

)
.

Define Si =
1

(i+1)!Coef
(
Λ(R(λ)21), λ

−i−2
)
∈ A, i ≥ 0, and a sequence of elements Ωi,j ∈ A by

ϵ2
∑
i,j≥0

(i+ 1)!(j + 1)!

λi+2µj+2
Ωi,j =

trR(λ)R(µ)

(λ− µ)2
− 1

(λ− µ)2
.

According to [18], the above-defined (Ωi,j , Si) gives rise to part of the canonical tau-structure
for the ETH in [9, 22]. Indeed, it is shown in [18] that (Ωi,j , Si) is associated to the tau-
symmetric hamiltonian densities hα,p, α = 1, 2, p ≥ −1, [9, 22] for the Toda lattice hierarchy.
More precisely, Si = h2,i−1 and the following identities hold for an arbitrary solution (v(b +
x1,m; ϵ), w(b+ x1,m; ϵ)) to the ETH:

ϵ2
∂2 log τ(b+ x1,m; ϵ)

∂mi∂mj
= Ωi,j(b+ x1,m; ϵ),

ϵ
∂

∂mi

(
log

τ(b+ (x+ ϵ)1,m; ϵ)

τ(b+ x1,m; ϵ)

)
= Si(b+ x1,m; ϵ), (4.2)

τ(b+ (x+ ϵ)1,m; ϵ)τ(b+ (x− ϵ)1,m; ϵ)

τ(b+ x1,m; ϵ)2
= w(b+ x1,m; ϵ). (4.3)
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Here, Ωi,j(b+x1,m; ϵ) and Si(b+x1,m; ϵ) are obtained by replacing vk, wk by v(b+x1+kϵ,m; ϵ)
and w(b+ x1+ kϵ,m; ϵ), respectively. According to [18], for any n ≥ 2,

ϵn
∑

i1,...,in≥0

n∏
j=1

(ij + 1)!

λ
ij+2
j

∂n log τ(b+ x1,m; ϵ)

∂mi1 · · · ∂min

= −
∑

n-cycles

tr
∏n

j=1R(λσ(j))∏n
j=1

(
λσ(j) − λσ(j+1)

) − δn,2
(λ− µ)2

. (4.4)

Note that by (4.1) and (4.2), (4.3), we have

− ϵ
∂σ(x,b,m; ϵ)

∂mi
= Si(b+ x1,m; ϵ), (4.5)

eσ(x−ϵ,b,m;ϵ)−σ(x,b,m;ϵ) = w(b+ x1,m; ϵ). (4.6)

It is also clear from (3.5) that we can choose σ(x, b0 = 0, b1 = 0, . . . ,m = 0; ϵ) = s(x, ϵ).

4.2 Wave functions for ETH and the KP hierarchy

It is shown in [8] (see also [10, 35]) that there exist dressing operators P , Q of the forms

P =
∑
k≥0

Pk(x,b,m; ϵ)Λ−k, P0(x,b,m; ϵ) ≡ 1, (4.7)

Q =
∑
k≥0

Qk(x,b,m; ϵ)Λk, (4.8)

such that

L = P ◦ Λ ◦ P−1 = Q ◦ Λ−1 ◦Q−1,

ϵ
∂P

∂mi
= − 1

(i+ 1)!

(
Li+1

)
− ◦ P,

ϵ
∂P

∂bi
= − 2

i!

(
Li(logL− ci)

)
− ◦ P,

ϵ
∂Q

∂mi
=

1

(i+ 1)!

(
Li+1

)
+
◦Q,

ϵ
∂Q

∂bi
=

2

i!

(
Li(logL− ci)

)
+
◦Q.

Define

ψ1(λ;x,b,m; ϵ) := P
(
λ

x
ϵ e

∑
i≥0

2
i!

bi
ϵ
λi(log λ−ci)+

∑
i≥0

mi
(i+1)!ϵ

λi+1
)
,

ψ2(λ;x,b,m; ϵ) := Q
(
λ−

x
ϵ e

−
∑

i≥0
2
i!

bi
ϵ
λi(log λ−ci)−

∑
i≥0

mi
(i+1)!ϵ

λi+1
)
.

Then ψa = ψa(λ;x,b,m; ϵ), a = 1, 2, satisfy the following equations:

Lψa = λψa, a = 1, 2, (4.9)

ϵ
∂ψ1

∂mi
=

1

(i+ 1)!

(
Li+1

)
+
ψ1,

ϵ
∂ψ1

∂bi
=

2

i!
Li(logL− ci)+ψ1, (4.10)

ϵ
∂ψ2

∂mi
= − 1

(i+ 1)!

(
Li+1

)
−ψ2,

ϵ
∂ψ2

∂bi
= − 2

i!
Li(logL− ci)−ψ2. (4.11)
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Moreover, ψ1, ψ2 have the form

ψ1 = ϕ1(λ;x,b,m; ϵ)λ
x
ϵ e

∑
i≥0

2
i!

bi
ϵ
λi(log λ−ci)+

∑
i≥0

mi
(i+1)!ϵ

λi+1

, (4.12)

ψ2 = ϕ2(λ;x,b,m; ϵ)e−σ(x,b,m;ϵ)λ−
x
ϵ e

−
∑

i≥0
2
i!

bi
ϵ
λi(log λ−ci)−

∑
i≥0

mi
(i+1)!ϵ

λi+1

, (4.13)

where

ϕ1(λ;x,b,m; ϵ) =
∑
k≥0

Pk(x,b,m; ϵ)λ−k, (4.14)

ϕ2(λ;x,b,m; ϵ) =
∑
k≥0

Bk(x,b,m; ϵ)λ−k. (4.15)

We recall that Pk(x,b,m; ϵ) are given in (4.7), and we also note using (4.8) that Bk(x,b,m; ϵ) =
Qk(x,b,m; ϵ)eσ(x,b,m;ϵ), k ≥ 0, and B0(x,b,m; ϵ) ≡ 1. We call ψ1 the wave function of type A
and ψ2 the wave function of type B, associated to the solution (v(x,b,m; ϵ), w(x,b,m; ϵ)).

Denote

d(λ;x,b,m; ϵ)

:= ψ1(λ;x,b,m; ϵ)ψ2(λ;x− ϵ,b,m; ϵ)− ψ1(λ;x− ϵ,b,m; ϵ)ψ2(λ;x,b,m; ϵ).

The following lemma is important.

Lemma 4.1. For any i ≥ 0, we have the identities

∂
(
eΛ

−1(σ(x,b,m;ϵ))d(λ;x,b,m; ϵ)
)

∂bi
= 0, (4.16)

∂
(
eΛ

−1(σ(x,b,m;ϵ))d(λ;x,b,m; ϵ)
)

∂mi
= 0. (4.17)

Proof. We first introduce some notations,

Rj := resLj , Nj = Coef
(
Lj ,Λ−1

)
,

rj := res logL ◦ Lj , nj = Coef
(
logL ◦ Lj ,Λ−1

)
.

(Warning: avoid from confusing the notation Rj with the notation for the matrix resolvent.) For
example (see [8]),

R0 = 1, R1 = v, N0 = 0, N1 = w,

r0 =
1

2
Λ ◦ ϵ∂

Λ− 1
(v), n0 =

1

2

ϵ∂

Λ− 1
(logw).

Here we omitted the arguments in Rj , rj , Nj , nj , v, w. Below, when no ambiguity will occur,
we often do this type of omission.

As it was given in [9], the tau-symmetric hamiltonian densities hα,p for the ETH are related
to Rj , rj by

h2,p =
1

(p+ 2)!
Rp+2, (4.18)

h1,p =
2

(p+ 1)!
rp+1 −

2cp+1

(p+ 1)!
Rp+1, p ≥ −1.
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We also recall from [9] the following formula:

hα,i−1 = ϵ(Λ− 1)
∂ log τ

∂tα,i
= −ϵ ∂σ

∂tα,i
, i ≥ 0.

Let us now prove (4.17). (Although (4.17) was already proved in [44], our proof here will be
slightly different from [44] and can be generalized to proving (4.16).) We have

e−Λ−1(σ)∂
(
eΛ

−1(σ)d
)

∂mi
=
∂Λ−1(σ)

∂mi
d+

∂d

∂mi
, i ≥ 0. (4.19)

Denote

Bi := −
(
Li+1

)
−, i ≥ −1.

Then for all i ≥ 0, we have

Bi = −
(
Li ◦ L

)
− = −

((
Li
)
+
+
(
Li
)
−
)
◦ L− = −(RiL)− −

((
Li
)
− ◦ L

)
−

= Bi−1 ◦ L+Ni −RiwΛ
−1 = · · · =

i∑
j=0

(
Nj −RjwΛ

−1
)
◦ Li−j .

(The resulting equality is also valid for i = −1 as B−1 = 0.) Thus,

(i+ 1)!ϵ
∂ψ2

∂mi
= Bi(ψ2) =

i∑
j=0

λi−j
(
Nj −RjwΛ

−1
)
(ψ2), (4.20)

and

(i+ 1)!ϵ
∂ψ1

∂mi
= λi+1ψ1 +

i∑
j=0

λi−j
(
Nj −RjwΛ

−1
)
(ψ1). (4.21)

By substituting (4.21) and (4.20) in (4.19) and by a lengthy but straightforward calculation
using also (4.9) and (4.5), we obtain

e−Λ−1(σ)ϵ
∂
(
eΛ

−1(σ)d
)

∂mi
= −Λ−1(Si)d+

Λ−1(Ri+1)

(i+ 1)!
d

+
d

(i+ 1)!

i∑
j=0

λi−j
(
Nj + Λ−1(Nj) + Λ−1(vRj −Rj+1)

)
= 0.

Note that in the last equality we used (4.2), (4.18) and the relation Lk+1 = L ◦ Lk = Lk ◦ L
(which implies the vanishing of each summand in the above

∑
j).

We proceed to prove (4.16). Like in [44], we note that

Λ
(
eΛ

−1(σ(x,b,m;ϵ))d(λ;x,b,m; ϵ)
)
= eσ(Λ(ψ1)ψ2 − ψ1Λ(ψ2))

= eσ
{(

(λ− v)ψ1 − wΛ−1(ψ1)
)
ψ2 − ψ1

(
(λ− v)ψ2 − wΛ−1(ψ2)

)}
= eΛ

−1(σ(x,b,m;ϵ))d(λ;x,b,m; ϵ)

(the last equality used (4.6)). It follows that

ϵ∂x
(
eΛ

−1(σ(x,b,m;ϵ))d(λ;x,b,m; ϵ)
)
=

ϵ∂x
Λ− 1

◦ (Λ− 1)
(
eΛ

−1(σ(x,b,m;ϵ))d(λ;x,b,m; ϵ)
)
= 0.
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Thus,

0 = e−Λ−1(σ(x,b,m;ϵ))∂x
(
eΛ

−1(σ(x,b,m;ϵ))d(λ;x,b,m; ϵ)
)

= −Λ−1(h1,−1) + ∂x(d(λ;x,b,m; ϵ)) = −2Λ−1(r0)d+ ∂x(d(λ;x,b,m; ϵ)).

Denote

Qi = −2
(
Li(logL− ci)

)
− = −2

(
Li logL

)
0
− 2ciBi−1, i ≥ 0.

In the way similar to the derivation for Bi, we find

Qi =
i−1∑
j=0

(
2mj − 2rjwΛ

−1
)
◦ Li−j − 2(logL)− ◦ Li − 2ciBi−1.

Therefore,

i!
∂ψ2

∂bi
= Qi(ψ2) =

i−1∑
j=0

λi−j
(
2mj − 2rjwΛ

−1
)
(ψ2)

− 2(logL)−(ψ2)− 2ci

i−1∑
j=0

λi−1−j
(
Nj −RjwΛ

−1
)
(ψ2),

and

i!
∂ψ1

∂bi
= 2λi(log λ− ci)ψ1 +

i−1∑
j=0

λi−j
(
2mj − 2rjwΛ

−1
)
(ψ1)

− 2(logL)−(ψ1)− 2ci

i−1∑
j=0

λi−1−j
(
Nj −RjwΛ

−1
)
(ψ1).

Using these relations and using (4.10) and (4.11) with i = 0, and again by a lengthy calculation,
we find

e−Λ−1(σ)∂
(
eΛ

−1(σ)d
)

∂bi
= −2Λ−1(r0)d+ ∂x(d) = 0.

The lemma is proved. ■

It follows from Lemma 4.1 and (4.12) and (4.13) that

d(λ;x,b,m; ϵ) = λe−Λ−1(σ(x,b,m;ϵ))
∑
k≥0

dkλ
−k,

where dk, k ≥ 0, are constants with d0 = 1. Therefore, for any choice ψ1 of the wave functions of
type A associated to (v(x,b,m; ϵ), w(x,b,m; ϵ)), there exists a choice, ψ2, of the wave functions
of type B associated to (v(x,b,m; ϵ), w(x,b,m; ϵ)), such that

d(λ;x,b,m; ϵ) = λe−Λ−1(σ(x,b,m;ϵ)). (4.22)

As a generalization of the terminology in [44], we say that ψ1, ψ2 form a pair of wave functions
associated to (v(b+ x1,m; ϵ), w(b+ x1,m; ϵ)) if (4.22) holds.

We now define

D(λ, µ;x,b,m; ϵ)

:=
ψ1(λ;x,b,m; ϵ)ψ2(µ;x− ϵ,b,m; ϵ)− ψ1(λ;x− ϵ,b,m; ϵ)ψ2(µ;x,b,m; ϵ)

λ− µ
,

which coincides with the one introduced in [44] when restricted to b2 = b3 = · · · = 0.
We arrive at the following theorem.
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Theorem 4.2. The following identity holds:

ϵn
∑

i1,...,in≥0

n∏
j=1

(ij + 1)!

λ
ij+2
j

∂n log τ(b+ x1,m; ϵ)

∂mi1 · · · ∂min

= (−1)n−1
∑

n-cycles

n∏
j=1

B
(
λσ(j), λσ(j+1);x,b,m; ϵ

)
− δn,2

(λ− µ)2
, (4.23)

where n ≥ 2 and

B(λ, µ;x,b,m; ϵ)

:=
eσ(x−ϵ,b,m;ϵ)

µ
D(λ, µ;x,b,m; ϵ)

e
∑

i≥0
2
i!

bi
ϵ
µi(log µ−ci)+

∑
i≥0

mi
(i+1)!ϵ

µi+1

e
∑

i≥0
2
i!

bi
ϵ
λi(log λ−ci)+

∑
i≥0

mi
(i+1)!ϵ

λi+1

µ
x
ϵ

λ
x
ϵ

.

Proof. Let

Ψpair(λ;x,b,m; ϵ) :=

(
ψ1(λ;x,b,m; ϵ) ψ2(λ;x,b,m; ϵ)

ψ1(λ;x− ϵ,b,m; ϵ) ψ2(λ;x− ϵ,b,m; ϵ)

)
.

By using the arguments the same as in [44], one can show that

R(λ;x,b,m; ϵ) = Ψpair(λ;x,b,m; ϵ)

(
1 0
0 0

)
Ψpair(λ;x,b,m; ϵ)−1 (4.24)

(see [44, the proof of Proposition 3]). It follows from (4.4) and (4.24) that for n ≥ 2,

ϵn
∑

i1,...,in≥0

n∏
j=1

(ij + 1)!

λ
ij+2
j

∂n log τ(b+ x1,m)

∂mi1 · · · ∂min

= (−1)n−1 e
nσ(x−ϵ,b,m;ϵ)∏n

j=1 λj

∑
n-cycles

n∏
j=1

D
(
λσ(j), λσ(j+1);x,b,m; ϵ

)
− δn,2

(λ− µ)2
.

This yields identity (4.23). ■

By taking m = 0, we immediately obtain the following corollary.

Corollary 4.3. We have

ϵn
∑

i1,...,in≥0

n∏
j=1

(ij + 1)!

λ
ij+2
j

∂n log τ(b+ x1,m; ϵ)

∂mi1 · · · ∂min

∣∣∣∣
m=0

= (−1)n−1
∑

n-cycles

n∏
j=1

B
(
λσ(j), λσ(j+1);x,b; ϵ

)
− δn,2

(λ− µ)2
, (4.25)

where B(λ, µ;x,b; ϵ) := B(λ, µ;x,b,m = 0; ϵ).

In terms of the functions ϕ1 and ϕ2, the pair condition (4.22) reads

ϕ1(λ;x,b,m; ϵ)ϕ2(λ;x− ϵ,b,m; ϵ)

− w(x,b,m; ϵ)λ−2ϕ2(λ;x,b,m; ϵ)ϕ1(λ;x− ϵ,b,m; ϵ) ≡ 1, (4.26)

and the function B(λ, µ;b,m; ϵ) reads

B(λ, µ;x,b,m; ϵ) (4.27)

:=
ϕ1(λ;x,b,m; ϵ)ϕ2(µ;x− ϵ,b,m; ϵ)− w(x,b,m;ϵ)

λµ ϕ1(λ;x− ϵ,b,m; ϵ)ϕ2(µ;x,b,m; ϵ)

λ− µ
.
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Lemma 4.4. The function B(λ, µ;x,b,m; ϵ) admits the following expansion:

B(λ, µ;x,b,m; ϵ) =
1

λ− µ
+

∑
i,j≥0

Ai,j(x,b,m; ϵ)

λj+1µi+1
. (4.28)

In particular,

B(λ, µ;x,b; ϵ) =
1

λ− µ
+

∑
i,j≥0

Ai,j(x,b; ϵ)

λj+1µi+1
, (4.29)

where Ai,j(x,b; ϵ) = Ai,j(x,b,m = 0; ϵ).

Proof. Recall the following identity:

ϕ2(µ) = ϕ2(λ) + ϕ′2(λ)(µ− λ) + (µ− λ)2∂λ

(
ϕ2(λ)− ϕ2(µ)

λ− µ

)
,

where we omit the arguments x, b, m from ϕ2(λ;x,b,m; ϵ). Similarly,

ϕ2(µ)

µ
=
ϕ2(λ)

λ
+ ∂λ

(
ϕ2(λ)

λ

)
(µ− λ) + (µ− λ)2∂λ

(
ϕ2(λ)/λ− ϕ2(µ)/µ

λ− µ

)
.

Substituting these identities in (4.27) and using (4.26), (4.14) and (4.15), we find the validity of
the expansion (4.28). ■

Proof of Theorem 1.3. By using (4.25) and (4.29) and Corollary 2.2. ■

Like in the previous section, if we write

τ(b+ x1,m; ϵ) = τ0(b+ x1; ϵ)τ1(b+ x1,m; ϵ), τ1(b+ x1,0; ϵ) ≡ 1,

then by Theorem 1.3 we know that τ1(b+x1,m; ϵ) is a KP tau-function in the big cell. The factor
τ0(b+x1; ϵ) can be determined from the definition of the tau-structure [9]. Let τ̃1(x,b,m; ϵ) be
the KP tau-function associated to the point in the infinite Grassmannian with affine coordinates
Ai,j(x,b; ϵ), with Ai,j(x,b; ϵ) given in (4.29). Then there exists ai(x,b; ϵ), i ≥ 0, such that

τ1(b+ x1,m; ϵ) = e
∑

i≥0 ai(x,b;ϵ)mi τ̃1(x,b,m; ϵ).

By further applying Proposition 2.4, we can find a formula for the affine coordinates for τ1(b+
x1,m; ϵ), whose dependence on b0, x is through b0 + x.

5 Application to Gromov–Witten invariants of P1

In this section, we give an application of the above results regarding the topological solution to
the ETH.

Recall that the free energy FP1
= FP1

(b,m; ϵ, q) of GW invariants of P1 is defined by

FP1
=

∑
k≥1

1

k!

∑
1≤α1,...,αk≤2

i1,...,ik≥0

k∏
j=1

tαj ,ij
∑
g≥0

ϵ2g−2
∑
d≥0

qd⟨τi1(α1) · · · τik(αk)⟩P
1

g,d

where bi = t1,i, mi = t2,i, i ≥ 0, and ⟨τi1(α1) · · · τik(αk)⟩P
1

g,d are genus g and degree d GW invari-

ants of P1 [20, 22, 37, 38]. When α1 = · · · = αk = 2 the GW invariants ⟨τi1(α1) · · · τik(αk)⟩P
1

g,d
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are called in the stationary sector [37, 38], and are denoted as ⟨
∏n

j=1 τij (H)⟩P1

g,d in some litera-
tures. The exponential

expFP1
(b,m; ϵ, q) =: ZP1

(b,m; ϵ, q)

is called the partition function of GW invariants of P1. The restrictions

FP1
(b = 0,m; ϵ, q) =: FP1

(m; ϵ, q), ZP1
(b = 0,m; ϵ, q) =: ZP1

(m; ϵ, q)

are called the free energy and respectively the partition function of stationary GW invariants
of P1, which are of particular interest due to their closed formulas [20] and their relations to the
representations of the symmetric group [38].

It is proved by Dubrovin and Zhang [22] that assuming Virasoro constraints the partition
function ZP1

(b + x1,m; ϵ, q = 1) =: ZP1
(b + x1,m; ϵ) of GW invariants of P1 is a particular

tau-function for the ETH.
(
Note that by degree-dimension counting the Novikov variable q can

be recovered via a rescaling ϵ→ q−1/2ϵ, bi → q(i−1)/2bi, and mi → qi/2mi.
)
Then, as given in

Introduction, the result of Dubrovin–Zhang together with Theorem 1.3 implies Corollary 1.5.
As before, we can write the partition function ZP1

(b+ x1,m; ϵ) as follows:

ZP1
(b+ x1,m; ϵ) = ZP1

corr(b+ x1; ϵ) · ZP1

1 (b+ x1,m; ϵ),

where the factor ZP1

corr(b+x1; ϵ) can be determined by using the definition of tau-function for the
ETH [22], and the factor ZP1

1 (b+ x1,m; ϵ), which satisfies ZP1

1 (b+ x1,0; ϵ) ≡ 1, is a particular
KP tau-function in the big cell.

Denote ZP1

1 (b+ x1,m; ϵ, q) the normalized factor with q recovered, and by AP1

i,j(b+ x1; ϵ, q)
the affine coordinates of ZP1

1 (b+ x1,m; ϵ, q). The restrictions of these affine coordinates to
b = 0, x = 0 are of particular interest, and will be denoted by AP1

i,j(ϵ, q). In the next two
subsections, we will derive two formulas for AP1

i,j(q) := AP1

i,j(1, q).

5.1 Explicit generating series for AP1

i,j(q)

It was proved in [20, Theorems 1–5 and equation (93)] (see also [19, 33, 44]) that, for each n ≥ 2,

∑
i1,...,in≥0

n∏
j=1

(ij + 1)!

ξ
ij+2
j

∑
g≥0

∑
d≥0

qd

〈
n∏

j=1

τij (2)

〉P1

g,d

= (−1)n−1
∑

n-cycles

n∏
j=1

B
(
ξσ(j), ξσ(j+1); q

)
− δn,2

(ξ1 − ξ2)2
,

where B(λ, µ; q) is the asymptotic expansion of the following analytic function

− 1

µ− λ
2F3

(
λ− µ

2
,
λ− µ+ 1

2
;
1

2
− µ ,

1

2
+ λ , λ− µ+ 1; −4q

)
(5.1)

for λ, µ /∈ Z+ 1
2 as λ, µ→ ∞, and is explicitly given by

B(λ, µ; q) =
1

λ− µ
(5.2)

−
∑
i,j≥0

(−1)j+1

λj+1µi+1

∑
k≥1

qk

k!

∑
1≤i1,j1≤k

(−1)i1+j1
(i1 + j1 − 2k)k−1

(
i1 − 1

2

)i(
j1 − 1

2

)j
(i1 − 1)!(j1 − 1)!(k − i1)!(k − j1)!

.
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If we define AP1,+
i,j (q) via∑

i,j≥0

AP1,+
i,j (q)λ−j−1µ−i−1 := B(λ, µ; q)− 1

λ− µ
(5.3)

and let ZP1,+(m, q) be the KP tau-function associated to the point in Gr0 with the affine co-
ordinates AP1,+

i,j (q) (i.e., using formula (2.2)), then we know that ZP1

1 (0,m; 1, q) = ZP1
(m; 1, q)

and ZP1,+(m, q) can only differ by multiplication by the exponential of a particular linear func-
tion of m.

Proposition 5.1. We have

logZP1,+(m, q) =
∑
n≥1

1

n!

∑
i1,...,in≥0

n∏
j=1

mij

∑
g≥0

∑
d>0

qd

〈
n∏

j=1

τij (2)

〉P1

g,d

. (5.4)

Proof. We already know that logZP1
(m; 1, q)−logZP1,+(m, q) is a linear function ofm. Below,

we will often omit the arguments “1, q”, “q” for simplifying the notations. According to, e.g., [38,
p. 529], ⟨

∏n
j=1 τij (2)⟩P

1

g,0 vanish whenever n ≥ 2, thus we get the validity of the nonlinear part
of (5.4). By using [20, equations (31), (32) and (34)] and the asymptotic expansion of the
digamma function

ψ

(
ξ +

1

2

)
∼ log ξ +

∑
m≥2

(−1)m−1
(
21−m − 1

)Bm

m
ξ−m

as ξ being large with arg ξ < π − ϵ, we calculate out the linear function

logZP1
(m)− logZP1,+(m) = −

∑
k≥1

(
1− 2−k

)
ζ(−k) mk−1

(k − 1)!
, (5.5)

with ζ(−k) given by

ζ(−k) = (−1)k
Bk+1

k + 1
, k ≥ 1.

Here Bj denotes the j-th Bernoulli number. The proposition is then proved by identifying this
linear function with the degree zero part of stationary P1 free energy (see [20, p. 163] or [38,
equation (0.26)]). ■

Proposition 5.1, formula (5.5) and Proposition 2.4 imply the following theorem.

Theorem 5.2. The generating series of the affine coordinates AP1

i,j(q) is given by

∑
i,j≥0

AP1

i,j(q)ξ
−j−1η−i−1 = B(ξ, η; q)

e
−
(
log

Γ(ξ+1
2 )

√
2π

−ξ log ξ+ξ
)

e
−
(
log

Γ(η+1
2 )

√
2π

−η log η+η
) − 1

ξ − η
,

where B(ξ, η; q) is given by (5.1) (cf. (5.2)), and Γ
(
ξ + 1

2

)
is understood as its asymptotic

expansion for ξ large with arg ξ < π − ϵ.

Remark 5.3. We consider the computations of logZP1

0 (b) and AP1

i,j(b) by using Virasoro con-
straints [22] and the ETH in a future publication.
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5.2 Affine coordinates from the Okounkov–Pandharipande formula

We proceed with recalling the Okounkov–Pandharipande formula [38] for ZP1
(m), which is

derived from the GW/H (Gromov–Witten/Hurwitz) correspondence established by Okounkov
and Pandharipande [38].

To consider the GW invariants of P1, one has to consider all the moduli spaces Mg,n

(
P1, d

)
of stable maps, where g is the genus of the domain curve, n is the number of marked point on
the domain curve, d is the degree of the map. For the purpose of GW/H correspondence, it is
necessary to consider the n = 0 case. The expected dimension of Mg,0

(
P1, d

)
is 2g − 2 + 2d.

When

2g − 2 + 2d = 0,

we have a contribution of qd to the free energy. This happens only when (g, d) = (0, 1) and
(g, d) = (1, 0), The first case corresponds to M0,0

(
P1, 1

)
, and the second case is impossible.

With the contribution of zero point correlators, the free energy of the stationary GW invari-
ants of P1 is then

F̃P1
(m) = q + FP1

(m).

Let Z̃P1
(m) = exp F̃ P1

(m) be the corrected partition function. Then

Z̃P1
(m) = eq · ZP1

(m). (5.6)

As a corollary to Corollary 1.5, we get the following.

Corollary 5.4. The corrected partition function Z̃P1
(m) is a KP tau-function.

The corrected partition function Z̃P1
has the following expansion:

Z̃P1
(m) =

∑
d≥0

qd
∑
n≥0

∑
i1,...,in≥0

mi1 · · ·min

n!

〈
n∏

j=1

τij (2)

〉•P1

d

,

where ⟨
∏n

j=1 τij (2)⟩•P
1

d denotes the not-necessarily connected GW invariants of P1 of degree d
in the stationary sector. By using the GW/H correspondence Okounkov and Pandharipande
obtained [38] the following formula:〈

n∏
j=1

τij (2)

〉•P1

d

=
∑
λ∈Pd

(
dimV λ

d!

)2 n∏
j=1

pij+1(λ)

(ij + 1)!
, (5.7)

where V λ is the irreducible representation of Sd indexed by λ, and pk(λ) is defined by

pk(λ) =
∑
i≥1

[(
λi − i+

1

2

)k

−
(
−i+ 1

2

)k]
+
(
1− 2−k

)
ζ(−k),

where k ≥ 1. Dubrovin [17] gave a different proof of formula (5.7) using symplectic field theory.
(We would like to mention that pk(λ) are generators of shifted symmetric functions that play
a key role in the Bloch–Okounkov theorem [7], and are explained in detail in, e.g., [7, 47].)

We now have

Z̃P1
(m) =

∑
d≥0

qd
∑
n≥0

∑
i1,...,in≥0

mi1 · · ·min

n!

∑
λ∈Pd

(
dimV λ

d!

)2 n∏
j=1

pij+1(λ)

(ij + 1)!

=
∑
d≥0

qd

d!

∑
λ∈Pd

(
dimV λ

)2
d!

exp
∑
i≥0

mi

(i+ 1)!
pi+1(λ).
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When all mi’s are taken to be 0, we get the vacuum expectation value

Z̃P1
(m = 0) =

∑
d≥0

qd

d!

∑
λ∈Pd

(
dimV λ

)2
d!

= eq.

By the definition (5.6), we have

ZP1
(m) = e−qZ̃P1

(m)

=
∑
d≥0

qd

d!
e−q

∑
λ∈Pd

(
dimV λ

)2
d!

exp
∑
i≥0

mi

(i+ 1)!
pi+1(λ).

Now note that
{{ qd

d! e
−q (dimV λ)2

d!

}
λ∈Pd

}
d≥0

is the Poissonized Plancherel measure on the set of
partitions and exp

∑
i≥0

mi
(i+1)!pi+1 is a random variable on the set of partitions, so the partition

function ZP1
(m) is just the expectation value,

ZP1
(m) =

〈
exp

∑
i≥0

mi

(i+ 1)!
pi+1(λ)

〉
Plancherel

.

Now we notice that pk =
mk−1

(k−1)! , k ≥ 1, so we get

ZP1
(m) =

∑
d≥0

qd

d!
e−q

∑
λ∈Pd

(
dimV λ

)2
d!

exp
∑
k≥1

pk
k
pk(λ).

Recall

exp
∑
k≥1

1

k
pkp

′
k =

∑
µ∈P

sµ(p)sµ(p
′),

where sµ is the Schur polynomial (cf. (2.1)) which has the expression

sµ(p) =
∑
ν∈P

χµ
ν

zν
pν , µ ∈ P (5.8)

(see Macdonald [32] for the details). Here, χµ
ν denotes the character table, zν=

∏∞
i=1 i

mi(ν)mi(ν)!,
and pν = pν1 · · · pνℓ(ν) . It follows that

ZP1
(m) =

∑
d≥0

qd

d!
e−q

∑
λ∈Pd

(
dimV λ

)2
d!

∑
µ∈P

sµ(p)sµ(λ) =
∑
µ∈P

⟨sµ⟩Plancherel · sµ(p).

Together with Corollary 1.5, we have the following.

Theorem 5.5. The affine coordinates AP1

i,j of ZP1
(m) are given by the Plancherel expectation

value of s(i+1,1j):

AP1

i,j = (−1)j
〈
s(i+1,1j)

〉
Plancherel

,

or explicitly,

AP1

i,j = (−1)j
∑
d≥0

qd

d!
e−q

∑
λ∈Pd

(
dimV λ

)2
d!

s(i+1,1j)(λ).
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Combining Theorems 5.2 and 5.5, we have the following.

Corollary 5.6. The following identity holds:

1

ξ − η
+

∑
i,j≥0

(−1)j
∑
d≥0

qd

d!
e−q

∑
λ∈Pd

(
dimV λ

)2
d!

s(i+1,1j)(λ)

ξj+1ηi+1

= B(ξ, η; q)
e
−
(
log

Γ(ξ+1
2 )

√
2π

−ξ log ξ+ξ
)

e
−
(
log

Γ(η+1
2 )

√
2π

−η log η+η
) , (5.9)

where Γ
(
ξ + 1

2

)
is understood as its asymptotic expansion for ξ large with arg ξ < π − ϵ,

and B(ξ, η; q) is given by (5.2) (cf. (5.1)).

For example,

AP1

0,0 =
∑
d≥0

qd

d!
e−q

∑
λ∈Pd

(
dimV λ

)2
d!

s(1)(λ)

= e−q

[
− 1

24
+

23

24
q +

((
1

2!

)2 47

24
+

(
1

2!

)2 47

24

)
q2

+

((
1

3!

)2 71

24
+

(
2

3!

)2 71

24
+

(
1

3!

)2 71

24

)
q3 + · · ·

]
= − 1

24
+ q,

AP1

1,0 =
∑
d≥0

qd

d!
e−q

∑
λ∈Pd

(
dimV λ

)2
d!

s(2)(λ)

=
∑
d≥0

qd

d!
e−q

∑
λ∈Pd

(
dimV λ

)2
d!

(
1

2
p(2)(λ) +

1

2
p1(λ)

2

)

=
1

2
e−q

[
0 + 0 · q +

((
1

2!

)2

· 2 +
(
1

2!

)2

· (−2)

)
q2

+

((
1

3!

)2

· 6 +
(
2

3!

)2

· 0 +
(
1

3!

)2

· (−6)

)
q3 + · · ·

+

(
− 1

24

)2

+

(
23

24

)2

q +

((
1

2!

)2(47

24

)2

+

(
1

2!

)2(47

24

)2)
q2

+

((
1

3!

)2(71

24

)2

+

(
2

3!

)2(71

24

)2

+

(
1

3!

)2(71

24

)2)
q3 + · · ·

]
=

1

1152
+

11q

24
+
q2

2
.

These match with the right-hand side of (5.9).
Inspired by Han’s conjecture [27], it was proved by Stanley [42] that

⟨pµ⟩d :=
∑
λ∈Pd

(
dimV λ

)2
d!

pµ(λ)

is a polynomial in d of degree |µ|, where pµ(λ) :=
∏ℓ(µ)

j=1 pµj (λ). Note that Han’s conjecture is
on the polynomiality of ⟨pk⟩d (confirmed also in [40]). It follows that

⟨sµ⟩d :=
∑
λ∈Pd

(
dimV λ

)2
d!

sµ(λ)
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is a polynomial in d of degree |µ|, where sµ(λ) := sµ(p(λ)) with sµ denoting Schur functions as
in (5.8) or (2.1). For example,〈

p(1)

〉
d
= d− 1

24
,〈

p(2)

〉
d
= 0,〈

p(12)

〉
d
=

(
d− 1

24

)2

,

〈
p(3)

〉
d
=

3d2

2
− 5d

4
+

7

960
,〈

p(21)

〉
d
= 0,〈

p(13)

〉
d
= d3 − 1

8
d2 +

1

192
d− 1

13824
,

and from these explicit expressions we get〈
s(1)

〉
d
= d− 1

24
,

〈
s(2)

〉
d
=

〈
s(12)

〉
d
=

(
d− 1

24

)2

,

〈
s(3)

〉
d
=

〈
s(13)

〉
=
d3

6
+

23

48
d2 − 479

1152
d+

1003

414720
,〈

s(21)
〉
d
=
d3

3
− 13

24
d2 +

241

576
d− 509

207360
.

When µ are hook partitions, Corollary 5.6 not only confirms polynomiality of ⟨sµ⟩d (so of the
original Han’s conjecture as well) but also leads to elementary formulas for them. The explicit
expressions, as well as general ones using results in [18, 19, 20, 33], will be given in a subsequent
publication.

Note that by (5.5), we have

ZP1
(m) = Z+,P1

(m) · exp
∑
k≥1

(
1− 2−k

)
ζ(−k) mk−1

(k − 1)!
,

so we can also define

p̂k(λ) =
∑
i≥1

[(
λi − i+

1

2

)k

−
(
−i+ 1

2

)k]
.

Then we repeat everything we have done in this subsection by replacing every pk with p̂k to get

ZP1,+(m) =
∑
d≥0

qd

d!
e−q

∑
λ∈Pd

(
dimV λ

)2
d!

exp
∑
i≥0

mi

(i+ 1)!
p̂i+1(λ),

and

ZP1,+(m) =

〈
exp

∑
i≥0

mi

(i+ 1)!
p̂i+1(λ)

〉
Plancherel

.

And if we set

ŝµ =
∑
ν∈P

χµ
ν

zν
p̂ν ,
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then we have

ZP1,+(m) =
∑
d≥0

qd

d!
e−q

∑
λ∈Pd

(
dimV λ

)2
d!

∑
µ∈P

sµ(p)ŝµ(λ) =
∑
µ∈P

⟨ŝµ⟩Plancherel · sµ(p).

Theorem 5.7. The affine coordinates AP1,+
i,j of ZP1,+(m) are given by the Plancherel expectation

value of ŝ(i+1,1j),

AP1,+
i,j = (−1)j

〈
ŝ(i+1,1j)

〉
Plancherel

,

or explicitly,

AP1,+
i,j = (−1)j

∑
d≥0

qd

d!
e−q

∑
λ∈Pd

(
dimV λ

)2
d!

ŝ(i+1,1j)(λ).

Combining (5.3) and Theorem 5.7, we have the following.

Corollary 5.8. The following identity holds:

∑
i,j

(−1)j
∑
d≥0

qd

d!
e−q

∑
λ∈Pd

(
dimV λ

)2
d!

ŝ(i+1,1j)(λ)

ξj+1ηi+1
= B(ξ, η; q), (5.10)

where B(ξ, η; q) is given by (5.2).

For example,

AP1,+
0,0 =

∑
d≥0

qd

d!
e−q

∑
λ∈Pd

(
dimV λ

)2
d!

ŝ(1)(λ)

= e−q

[
0 + 1 · q +

((
1

2!

)2

· 2 +
(
1

2!

)2

· 2
)
q2

+

((
1

3!

)2

· 3 +
(
2

3!

)2

· 3 +
(
1

3!

)2

· 3
)
q3 + · · ·

]
= q,

AP1,+
1,0 =

∑
d≥0

qd

d!
e−q

∑
λ∈Pd

(
dimV λ

)2
d!

ŝ(2)(λ)

=
∑
d≥0

qd

d!
e−q

∑
λ∈Pd

(
dimV λ

)2
d!

(
1

2
p̂(2)(λ) +

1

2
p̂(1)(λ)

2

)

=
1

2
e−q

[
0 + 0 · q +

((
1

2!

)2

· 2 +
(
1

2!

)2

· (−2)

)
q2

+

((
1

3!

)2

· 6 +
(
2

3!

)2

· 0 +
(
1

3!

)2

· (−6)

)
q3 + · · ·

+ 02q + 12q +

((
1

2!

)2

· 22 +
(
1

2!

)2

· 22
)
q2

+

((
1

3!

)2

· 32 +
(
2

3!

)2

· 32 +
(
1

3!

)2

· 32
)
q3 + · · ·

]
=
q

2
+
q2

2
.
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These match with the right-hand side of (5.10). The Plancherel averages of p̂µ and ŝµ are again
polynomials, but they seem to be simpler than the averages of pµ and sµ. For example,

⟨p̂1⟩d = d, ⟨p̂2⟩d = 0,
〈
p̂
〉2
1
= d2,

⟨p̂3⟩d =
3

2
d2 − 5d

4
, ⟨p̂2p̂1⟩d = 0,

〈
p̂3
1

〉
d
= d3,

and from these we get〈
ŝ(1)

〉
d
= d,〈

ŝ(2)
〉
d
=

〈
ŝ(12)

〉
=
d2

2
,〈

ŝ(3)
〉
d
=

〈
ŝ(13)

〉
=
d3

6
+

1

2
d2 − 5

12
d,〈

ŝ(21)
〉
d
=
d3

3
− 1

2
d2 +

5

12
d.
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