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FIXED TIME IMPULSIVE DIFFERENTIAL
INCLUSIONS

Tzanko Donchev

Abstract. In the paper we study weak and strong invariance of differential inclusions with
fixed time impulses and with state constraints.

We also investigate some properties of the solution set of impulsive system without state con-

straints. When the right-hand side is one sided Lipschitz we prove also the relaxation theorem and

study the funnel equation of the reachable set.

1 Introduction

In the paper we will study the system

ẋ(t) ∈ F (t, x(t)), x(0) = x0 ∈ D, a.e. t ∈ I = [0, 1], t 6= ti, (1)
∆x|t=ti = Si(x(ti − 0)), i = 1, . . . , p, x(t) ∈ D, (2)

where x ∈ D (closed subset of a Banach space E) and F : I × D ⇒ E is a multi-
function with nonempty values, 0 = t0 < t1 < . . . < tm < 1 = tm+1, Si : D → D is
continuous function and ∆x|t=ti = x(ti +0)−x(ti−0). First we study the existence
of solutions, i.e. absolutely continuous on every (ti, ti+1) (and left continuous at ti)
functions which satisfy (1) for a.a. t with (possible) jumps (impulses) at ti.

When E is a Hilbert space we study weak and strong invariance when the right-
hand side is almost upper semi-continuous (USC) or almost lower semi-continuous
(LSC). If D ≡ E and if F (·, ·) is almost continuous we study the so called funnel
equation (with solution the reachable set). In this case we use the so called one
sided Lipschitz (OSL) condition.

The multifunction G : E ⇒ E with nonempty closed bounded values is said to
be upper semi-continuous (USC) at x0, when for every ε > 0 there exists δ > 0 with
G(x0) + εB ⊃ G(x0 + δB). Here B is the open unit ball. The multifunction G(·) is
said to be lower semi-continuous (LSC) at x0 when for every f ∈ G(x0) and every
sequence {xi}∞i=1 converging to x0 there exist fi ∈ G(xi) such that fi → f0. When
G(·) is USC (LSC) at every x ∈ D it is called USC (LSC). The multifunction F (·, ·)
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2 Tzanko Donchev

is said to be almost USC when for every ε > 0 there exists a compact set Iε ⊂ I
with Lebesgue measure meas(Iε) > 1 − ε such that F (·, ·) is USC on Iε × D. The
almost LSC maps are defined analogously. The multifunction is called continuous
when it is USC and LSC.

The multifunction F is said to be OSL if there exists a Kamke function w(·, ·)
such that:

for every x, y ∈ E and every fx ∈ F (t, x) there exists fy ∈ F (t, y) such that

〈x− y, fx − fy〉 ≤ w(t, |x− y|).

Recall that the almost continuous function w : I ×R+ → R is said to be Kamke
function when w(t, 0) ≡ 0 and the only solution of s(0) = 0, ṡ = w(t, s) is s(t) ≡ 0.

Let F be defined on the whole E. The solution x(·) is said to be viable if
x(t) ∈ D. The system (1)–(2) is said to be weakly invariant if there exists at least
one viable solution. It is called (strongly) invariant if all the solutions are viable.

TD(x) :=
{

v : lim inf
h↓0

dist(x + hv;D)
h

= 0
}

is the Bouligand contingent cone of

D at x and

NP
D (x) := {ζ ∈ E : ∃ σ > 0 and η > 0 satisfying 〈ζ, y−x〉 6 σ|y−x|2 ∀y ∈ S∩x+ηB}

is the proximal normal cone of D at x.

2 Existence of solutions

In this section we prove the existence of solutions for (1)–(2). In case of Hilbert
space and when F is defined on the whole E we study weak and strong invariance.

In this section we need the following hypotheses:

H1. There exists a Kamke function ω(·, ·) such that χ(F (t, A)) ≤ ω(t, χ(A)) for
every bounded A ⊂ D and a.e. t ∈ I. Here

χ(A) = inf{r > 0 : A can be covered by finitely many balls of radius ≤ r}

is the Hausdorff measure of non-compactness.

H2. There exists a null set N ⊂ I such that F (t, x)
⋂

TD(x) 6= ∅ for every
t ∈ I \ N and every x ∈ D.

B. |F (t, x)| ≤ p(t)w(|x|) for all x ∈ D and a.e. t ∈ I, where p(·) ∈ L1(I, R+) and

w : R+ → R+ is nondecreasing, satisfying
∫

Ii

p(s) ds <

∫ ∞

Ni

du

w(u)
, i = 0, i, . . . ,m,

where N0 = |x0| and Ni = max
x∈(Mi−1B)

T
D
|Si(x)|. Here Mi−1 = Γ−1

I

(∫
Ii−1

p(s) ds

)
and ΓL(z) =

∫ z

Nl

du

w(u)
.
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Fixed time impulses 3

The following theorem is proved in [3] (theorem 3.1).

Theorem 1. For any Ii there exists a constant Mi such that |x(t)| ≤ Mi on Ii for
every (possible) solution x(·) of (1) – (2).

Remark 2. Given ε > 0. Using obvious modifications of the proof given in [3]
one can show that for every i = 0, 1, . . . ,m there exist constants Mi and integrable
functions λi(·) such that |x(·)| ≤ Mi and |co F (t, , x + εB)| ≤ λi(t)

Lemma 3. (Theorem 2 of [7]). Let X, Z be two Banach spaces, let Ω ⊂ I ×X be
nonempty and let M > 0. Then any closed valued LSC multifunction from Ω into
Z admits a ΓM -continuous selection.

Denote Ii := [ti, ti+1). The existence of solutions under hypotheses H1, H2, B
is proved. We will follow (with essential modifications) the proofs given in [10] for
differential inclusions without impulses.

Theorem 4. If F (·, ·) is almost USC with closed convex values, then under H1,
H2 and B the differential inclusion (1) – (2) has a solution.

Proof. Assume first that F (·, ·) is uniformly bounded with a constant M > 0. We
will prove the existence of solution x(·) on Ii = [ti, ti+1] assuming that the existence
on [0, ti] is already proved. Fix ε > 0. There exists a set Iε ⊂ Ii wit Lebesgue
measure meas(Iε) > ti+1−ti−ε such that F (·, ·) is USC on Iε×E. One can suppose
also without loss of generality that ω(·, ·) is (uniformly) continuous on Iε × [0, 2M ].
Denote xi = x(ti + 0). Then the problem

ẋ(t) ∈ F (t, x(t)), x(ti) = xi, (3)

on the interval [ti, ti+1] is a Cauchy problem without impulses. The proof of the
existence of solutions follows [10] and will be given without full details.

Due to the tangential condition one can find fi ∈ F (ti, xi) and sequences hn → 0+

yn → 0 such that xi +hn(fi− yn) ∈ D. Let δ > 0 be such that |ω(t, s)−ω(τ, ξ)| < ε
when |t − τ | < δ (t, τ ∈ Iε and |s − ξ| < 2Mδ. We take hn < δ, ti + hn ≤ ti+1 and
define v(t) = xi +(t− ti)(fi−yn) on [ti, ti +hn]. Obviously v(ti +hn) ∈ D. If ti /∈ Iε

then we choose hn such that [ti, ti + hn)
⋂

Iε = ∅. Using the same fashion and with
trivial application of Zorn lemma one can construct an approximate solution v(·) on
[ti, ti+1].

Given a sequence {εi}∞i=1 monotone decreasing to zero, we construct a sequence
of approximate solutions vn(·). Their derivatives v̇n(·) are strongly measurable and
hence almost separable valued. Therefore there exists a full measure set on which
v̇n(t) are in separable subspace X0. Therefore we can assume without loss of gen-

erality that vn(t) are in X0 (it is true if xi ∈ X0). Define B(t) = χ

( ∞⋃
n=1

{vn(t)}

)
.
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From Proposition 9.3 of [10] we know that

χ

({∫ t+h

t
v̇k(t) : k ≥ 1

})
dt ≤

∫ t+h

t
χ ({v̇k(t) : k ≥ 1}) dt.

As we have constructed the sequence of the approximate solutions {vn(·)}∞n=1 given
ε > 0 one has Ḃ(t) ≤ ω(t, B(t))+ε on a set Iε with measure greater than ti+1−ti−ε.
Since ε > 0 is arbitrary, one has that B(ti) = 0 and Ḃ(t) ≤ ω(t, B(t)) for a.a.
t ∈ [ti, ti+1).

Due to Arzela theorem the sequence {vn(·)}∞n=1 is C(Ii, E) precompact. Hence
passing to subsequences vn(t) → x(t) uniformly on [ti, ti+1]. It is straightforward to
prove that x(·) is a solution of (1)–(2) also on [0, ti+1].

Now the assumption that F (·, ·) is uniformly bounded will be dispensed with.
Due to Theorem 1 there exists a constant Mi such that every (possible) solution x(·)
of (1)–(2) satisfies |x(t)| ≤ Mi on Ii. We redefine

G(t, x) =

 F (t, x) (t, x) ∈ Ii ×D and |x| ≤ Mi

F

(
t,

Mix

|x|

)
(t, x) ∈ Ii ×D and |x| > Mi.

Obviously (1)–(2) preserves the solution set and all other conditions when F (·, ·)
is replaced by G(·, ·). So one can assume without loss of generality that F is bounded
by Lebesgue integrable function λ(·). Next one can modify G on every Ii × D to
obtain |G(t, x)| ≤ 1 without destroying the other hypotheses. We will follow [6].

Namely define ϕ(t) = max{1, λ(t)} > 0. The map t →
∫ t

ti

ϕ(s) ds is continu-

ous and strongly monotone increasing, i.e. invertible. Let Φ(·) be its inverse, i.e.

Φ
(∫ t

0
ϕ(s) ds

)
= t, define F̃ (t, x) =

1
ϕ(Φ(t))

F (Φ(t), x) for (t, x) ∈ I × D. Evi-

dently F̃ satisfies all the conditions mentioned above with λ(t) ≡ 1. Moreover the
set of trajectories, as curves in the phase space, is preserved.

The following corollary is trivial consequence of Theorem 4 and Lemma 3.

Corollary 5. Let F (·, ·) be almost LSC with closed values. If it satisfies H1, B and
F (t, x) ⊂ TD(x) for a.e. t ∈ I and every x ∈ D then the differential inclusion

(1) – (2) has a solution.

Proof. Since F (·, ·) is almost LSC, one has that there exists a sequence {Jn}∞n=1 of
pairwise disjoint compacts Jn ⊂ I such that F (·, ·) is LSC on Jn × D for every n.
Furthermore, its union is of full measure. Without loss of generality one can assume
that |F (t, x)| ≤ Mk on Jk×D. Consequently on Jk×D there exist ΓMk+1–continuous
selection fk(t, x) ∈ F (t, x). We let Gk(t, x) =

⋂
ε>0

co fk([t−ε, t+ε]
⋂

Jk, x+εB
⋂

D).
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Fixed time impulses 5

Define G(t, x) = Gk(t, x) for (t, x) ∈ Jk ×D, k = 1, 2, . . .. Obviously the so defined
multifunction G(·, ·) is almost USC with nonempty convex compact values. Further
G satisfies the compactness and the tangential conditions. Due to Theorem 4 the
Cauchy problem (1)–(2) with F replaced by G has a solution x(·). As it is shown in
[6] (theorem 4.1) and in [10] (lemma 6.1) x(·) is also a solution to

ẋ(t) = fn(t, x(t)), x(0) = x0, for (t, x) ∈ Jn ×D.

Indeed let Ĩ ⊂ Ik be such that ẋ(·) is continuous on Ĩ and fk(·, ·) is ΓMk+1–continuous
on Ĩ × D. If t′ is its point of density, then there exists ti ↘ t, ẋ(ti) → ẋ(t).
Furthermore (tn − t, xn − x) ∈ ΓMk+1 and hence f(tn, xn) → fk(t, x) as n → ∞.
Thus ẋ(t) ∈ fk(t, x(t)). Since fn(t, x) ∈ F (t, x) one has that x(·) is also a solution
of (1)–(2).

3 Weak and strong invariance. Funnel equation

In this section we study existence of viable solutions when F is defined on I × E.
We assume that E is a Hilbert space.

We will said that the multi-map G(t, x) ⊂ F (t, x) is a sub-multifunction (of F )
when G(·, ·) is almost USC with nonempty convex compact values.

We assume that:
B1. F : I × E ⇒ E is almost USC with nonempty convex compact values.
B2. The multifunction F is OSL.
The following lemma is then valid:

Lemma 6. (Invariance principle) Suppose that B, B1, B2 hold. The system (1)–
(2) is invariant if and only if the system:

ẋ(t) ∈ G(t, x(t)), x(0) = x0 ∈ D, a.e. t ∈ I = [0, 1], t 6= ti, (4)
∆x|t=ti = Si(x(ti − 0)), i = 1, . . . , p, x(t) ∈ D, (5)

is weakly invariant for every sub-multifunction G.

This Lemma is proved in [14] in case without impulses and in [13] in case of
non-fixed time impulses. The proof here is a trivial extension of the these in [13, 14]
and it is omitted.

Proposition 7. Let G(·, ·) be a sub-multifunction of F . Under B, B1, B2 the
system (4)–(5) is weakly invariant (on [0, T ]) iff there exists a null set AG ⊂ I such
that σ(−p, F (t, x)) ≥ 0 ∀ p ∈ NP

D (x) ∀ t ∈ I \AG.

Proof. Let this proposition be proved in [0, ti). By virtue of proposition 3 of [14]
this solution exists also on [ti, ti+1). The proof is complete.
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As a simple corollary of Lemma 6 and Proposition 7 we obtain the following
characterization of invariance:

Theorem 8. Let us assume that B, B1, B2 hold. The system (1)–(2) is invariant
if and only if for every sub-multifunction G(t, x) of F (t, x) there exists a null set
AG ⊂ I such that σ(−p, G(t, x)) ≥ 0, ∀p ∈ NP

D (x), ∀x ∈ D, ∀t ∈ I \AG.

Further we assume that F is almost continuous. We show that the reachable set
St of (1) is a unique solution of the so called funnel equation (cf [17]). The funnel
equation for (1)–(2) has the form

lim
h→0+

h−1DH

Γ(t + h),
⋃

x∈Γ(t)

{x + hF (s, x)}

 = 0, t 6= ti. (6)

If t = ti then Γ(ti + 0) =
⋃

x∈Γ(ti−0)

{x + Si(x)}.

Using theorems 1 and 2 of [11], and the approach of [21] (with obvious modifi-
cations) one can prove:

Theorem 9. Under B, B1, B2 the reachable set St of (1) is a solution of the
funnel equation (6). If moreover w(t, ·) is monotone nondecreasing then t → St is
the unique closed solution of (6).

Proof. The fact that St is a solution of the funnel equation (in case without impulses)
is given in [21]. Here we will modify the proof of [12] to show the uniqueness.

Let L(t) be other solution of (6). Following the proof of theorem 5.4.4 of [21] we
let r(t) = ex (L(t),St). If x ∈ St then |x−y| ≤ r(t) for some y ∈ L(t). If fx ∈ F (t, x)
then there exists fy ∈ F (t, y) such that

〈x− y, fx − fy〉 ≤ w(t, |x− y|),

because F (t, ·) is OSL. Consequently

lim
h→0+

r(t + h)− r(t)
h

≤ lim
h→0+

|x− y − h(fx − fy)| − |x− y|
h

≤ w(t, |x− y|).

Since r(0) = 0 one has that r(t) ≡ 0. Analogously ex
(
L(t),St

)
≡ 0.

Remark 10. The funnel equation is considered in [17, 21]. The solution L(·) of (6)
is called R–solution of (1). In this light theorem 9 may be reformulated:

Under B, B1, B2 the set valued map t → St is the unique R–solution of (1).

Notice that the almost continuity of the right-hand side is essential.
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Example 11. (Example 1 of [12]) Consider the following differential inclusion

ẋ(t) ∈ F (x(t)), x(0) = 0,

where F (·) is defined as follows:

F (x) :=


−1 x > 0
[−1, 1] x = 0
1 x < 0

It is easy to see that the right-hand side F (·) is OSL with a constant 0. Furthermore
the unique solution of (1) is x(t) ≡ 0.

Thus the reachable set St ≡ {0}. However, lim
h→0+

h−1DH

(
St+h,

⋃
x∈St

x + hF (x)

)
=

1 ∀t > 0, i.e. St does not satisfy the funnel equation.

Recall that ex(A,B) := sup
a∈A

inf
b∈B

|a− b|.

The following proposition, however, is true.

Proposition 12. Suppose B, B2 hold. If F (·, ·) is USC then:

lim
h→0+

h−1ex

(
St+h,

⋃
x∈St

{x + hF (s, x)}

)
= 0.

If F (·, ·) is LSC then:

lim
h→0+

h−1ex ({x + hF (s, x)},Γ(t + h)) = 0, ∀x ∈ St.

The jump condition remains the same as in almost continuous case.

The proof in case without impulses is given in [12] and is valid (with obvious
modifications) in our case.
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