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UPPER AND LOWER BOUNDS OF SOLUTIONS
FOR FRACTIONAL INTEGRAL EQUATIONS

Rabha W. Ibrahim and Shaher Momani

Abstract. In this paper we consider the integral equation of fractional order in sense of
Riemann-Liouville operator

um(t) = a(t)Iα[b(t)u(t)] + f(t)

with m ≥ 1, t ∈ [0, T ], T < ∞ and 0 < α < 1. We discuss the existence, uniqueness, maximal,

minimal and the upper and lower bounds of the solutions. Also we illustrate our results with

examples.

1 Introduction and Preliminaries

Consider the Volterra integral equation of the second kind

u(t)− λ

∫ t

a
K(τ, t)u(τ)dτ = f(t)

where f,K are given functions, λ is a parameter and u is the solution. This equation
arises very often in solving various problems of mathematical physics, especially
that describing physical processes after effects [2, 4]. Fractional integral and diffeo-
integral equations involving Riemann-Liouville operators of arbitrary order α > 0
have been solved by various authors (see [5, 8, 10, 11, 13]), in many techniques,
but all of them leading to the solution involving the Mitag-Leffler function [8]. The
solution of the first kind Volterra integral equations Iαu(t) = f(t) are well known.
When α = 1/2, the equation is called Abel integral equation. In this paper, we
consider the Volterra fractional integral equations of the form

um(t) = a(t)Iα[b(t)u(t)] + f(t), m ≥ 1 (1)

where a(t), b(t), f(t) are real positive functions in C[0, T ], t ∈ [0, T ], and 0 < α < 1.
Equation (1) is solved for m = 1 by many authors. Recall the operator A is compact
if it is continuous and maps bounded sets into relatively compact ones.
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Definition 1. The fractional (arbitrary) order integral of the function f of order
α > 1 is defined by (see[8, 11, 6, 7])

Iα
a f(t) =

∫ t

a

(t− τ)α−1

Γ(α)
f(τ)dτ.

When a = 0, we write Iα
a f(t) = f(t) ∗ φα(t), where φα(t) = tα−1

Γ(α) , t > 0 and φα(t) =
0, t ≤ 0 and φα → δ(t) as α → 0 where δ(t) is the delta function.

Definition 2. The fractional (arbitrary) order derivative of the function f of order
α > 1 is defined by (see[8, 11, 6, 7])

Dα
a f(t) =

d

dt

∫ t

a

(t− τ)−α

Γ(1− α)
f(τ)dτ =

d

dt
I1−α
a f(t). (2)

The proof of the existence solution for the equations (1), depends on Schauder
fixed point theorem.

Theorem 3. (see[1, 3]). Let U be a convex subset of Banach space E and T : U → U
is a compact map. Then T has at least one fixed point in U .

And the proof of uniqueness theorem, will based on the following Banach theorem.

Theorem 4. (see[12]) Banach fixed point theorem). If X is a Banach space and
T : X → X is a contraction mapping then T has a unique fixed point.

2 The Existence and Uniqueness Theorems

In order to discuss the conditions for the existence and uniqueness for the solution
of equation (1), let us define B := C[0, T ] to be the Banach space endow with the
sup norm, the convex set U := {u ∈ C[0, T ] : ‖u‖m ≤ l, l > 0, m ≥ 1}, and the
operator

Aum(t) :=
a(t)
Γ(α)

∫ t

0
(t− τ)α−1b(τ)u(τ)dτ + f(t), t ∈ [0, T ], m ≥ 1, α > 0, (3)

with ‖a‖‖b‖ ≤ Γ(α+1)
2T α , ‖f‖ < l

2 . Then the properties of A are in the next lemma.

Lemma 5. The operator A is completely continuous.

Proof. In order to show that the equation (1) has a solution we have to show that
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the operator (3) has a fixed point. um ∈ U because ‖um‖ ≤ ‖u‖m ≤ l. For u ∈ U,

|Aum(t)| ≤ |a(t)|
Γ(α)

∫ t

0
(t− τ)α−1|b(τ)u(τ)|dτ + |f(t)|

≤ ‖a‖‖b‖‖u‖
Γ(α)

∫ t

0
(t− τ)α−1dτ + ‖f‖

≤ Γ(α + 1)
2Tα

.
lTα

Γ(α + 1)
+

l

2

=
l

2
+

l

2
= l,

proving that A maps U to itself. Moreover, A(U) is bounded operator. To prove
that A is continuous. Let u, v ∈ U, then we have

|Aum(t)−Avm(t)| ≤ |a(t)|
Γ(α)

∫ t

0
(t− τ)α−1|b(τ)||u(τ)− v(τ)|dτ

≤ ‖a‖‖b‖‖u− v‖
Γ(α)

∫ t

0
(t− τ)α−1dτ

≤ Γ(α + 1)
2Tα

.
2lTα

Γ(α + 1)
= l,

that is A is continuous. Now, we shall prove that A is equicontinuous. Let u ∈ U
and t1, t2 ∈ [0, T ]. If we denote C = ‖a‖‖b‖‖u‖, then

|Aum(t1)−Aum(t2)| ≤
C

Γ(α)
|
∫ t1

0
(t1 − τ)α−1dτ −

∫ t2

0
(t2 − τ)α−1dτ |+ |f(t1)− f(t2)|

≤ C

Γ(α + 1)
|tα1 − tα2 | ≤

Γ(α + 1)
2Tα

.
l

Γ(α + 1)
|tα1 + tα2 |+ 2‖f‖

≤ l

2Tα
.2Tα + l = 2l.

which is independent of u(t). Thus A is relatively compact. Arzela-Ascoli Theorem,
implies that A is completely continuous.

Then Schauder fixed point theorem gives that A has a fixed point, which corre-
sponding to the solution of equation (1). Then we have the following theorem.

Theorem 6. Let a(t), b(t), f(t) are real nonnegative functions in C[0, T ] and that
t ∈ [0, T ], 0 < α < 1, with ‖a‖‖b‖ ≤ Γ(α+1)

2T α , ‖f‖ < l
2 . Then equation (1) has a

solution u in a convex set U .

Theorem 7. Let the assumptions of Theorem 6 be hold. Then the solution of
equation (1) is unique.
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Proof. Since for u, v ∈ U, we have

|Aum(t)−Avm(t)| ≤ |a(t)|
Γ(α)

∫ t

0
(t− τ)α−1|b(τ)||u(τ)− v(τ)|dτ

≤ ‖a‖‖b‖‖u− v‖
Γ(α)

∫ t

0
(t− τ)α−1dτ

≤ Tα‖a‖‖b‖
Γ(α + 1)

‖u− v‖.

But T α‖a‖‖b‖
Γ(α+1) < 1

2 . Thus A is a contraction mapping, then in view of Theorem 4, A

has a unique fixed point corresponds to the unique solution of equation (1).

As an application of Theorem 6 we have the next result.

Theorem 8. Let a(t), f(t) and ϕi be positive functions in C[0, T ], and h(t, u(t)) :
[0, T ]×C[0, T ] → R+ is a continuous function with ‖hi(t, u(t))‖ ≤ ϕi(t)|u(t)|. Then
equation

um(t) = a(t)Iα[
n∑

i=1

hi(t, u(t))] + f(t), (4)

has a solution in U .

Proof. Setting b(t) :=
∑n

i=1 ϕi(t).

Theorem 9. Let hi : [0, T ] × C[0, T ] → R+ be a continuous function and satisfy
Lipschits condition in the second argument

‖hi(t, u)− hi(t, v)‖ < Li‖u− v‖,

where Li is a constant such that ‖a‖T
α(
Pn

i=1 Li)
Γ(α+1) < 1. Then equation (4) has a unique

solution.

Proof. For u ∈ U, define an operator B as follows

Bum(t) :=
a(t)
Γ(α)

∫ t

0
(t− τ)α−1[

n∑
i=1

hi(τ, u(τ))]dτ + f(t), t ∈ [0, T ], m ≥ 1, α > 0,

(5)
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with ‖a‖
∑n

i=1 ‖ϕi‖ ≤ Γ(α+1)
2T α . First we show that B has a fixed point. For u ∈ U

|Bum(t)| ≤ |a(t)|
Γ(α)

∫ t

0
(t− τ)α−1

n∑
i=1

|hi(τ, u(τ))|dτ + |f(t)|

≤
‖a‖

∑n
i=1 ‖ϕi‖‖u‖
Γ(α)

∫ t

0
(t− τ)α−1dτ + ‖f‖

≤ lΓ(α + 1)
2Tα

.
Tα

Γ(α + 1)
+

l

2

=
l

2
+

l

2
= l,

proving that B maps U to itself. Moreover, B(U) is bounded operator. To prove
that B is continuous. Since h and g are continuous functions in a compact set
[0, T ]× [0, l], then they are uniformly continuous there. Thus for u, v ∈ U, and given
ε > 0, we can find µ > 0 such that ‖hi(t, u)− hi(t, v)‖ < Γ(α+1)ε

n‖a‖T α when ‖u− v‖ < µ.
Then

|Bum(t)−Bvm(t)| ≤ |a(t)|
Γ(α)

∫ t

0
(t− τ)α−1[

n∑
i=1

|hi(τ, u(τ))− hi(τ, v(τ))|]dτ

≤
‖a‖[

∑n
i=1 ‖hi(t, u)− hi(t, v)‖]

Γ(α)

∫ t

0
(t− τ)α−1dτ

≤ n‖a‖Tα

Γ(α + 1)
× Γ(α + 1)ε

n‖a‖Tα
= ε,

that is B is continuous. Now, we shall prove that B is equicontinuous. Let u ∈ U
and t1, t2 ∈ [0, T ]. Then

|Bum(t1)−Bm(t2)| ≤
‖a‖

∑n
i=1 ‖ϕi‖‖u‖

Γ(α + 1)
|tα1 − tα2 |+ 2‖f‖

≤ lΓ(α + 1)
2TαΓ(α + 1)

|tα1 + tα2 |+ 2‖f‖

≤ 2Tαl

2Tα
+ l = 2l,

which is independent of u(t), then B is relatively compact. Arzela-Ascoli Theo-
rem, implies that B is completely continuous. Then, Schauder fixed point theorem
(Theorem 3 gives that B has a fixed point. Now we show that B is a contraction
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mapping. Let u, v ∈ U the we have

|Bum(t)−Bvm(t)| ≤ |a(t)|
Γ(α)

∫ t

0
(t− τ)α−1[

n∑
i=1

|hi(τ, u(τ))− hi(τ, v(τ))|]dτ

≤
‖a‖[

∑n
i=1 ‖hi(t, u)− hi(t, v)‖]

Γ(α)

∫ t

0
(t− τ)α−1dτ

≤ ‖a‖Tα

Γ(α + 1)
(

n∑
i=1

Li)‖u− v‖,

then by Theorem 4 we obtain the result.

3 The Upper and Lower Estimates for Solutions

In this section we discuss the upper and the lower bounds of solutions for equations
(1) and (4). Moreover we use the results again to determined the conditions for the
uniqueness. Let us illustrate the following assumption:

mint∈[0,T ]a(t) := a, mint∈[0,T ]b(t) := b, mint∈[0,T ]f(t) := k. (H1)

Theorem 10. Let the assumption (H1) be hold. If equation (1) is solvable in
C[0, T ], then its solution satisfies the inequality

u(t) ≥ (
ab

Γ(α)
k1/m)1/mt(α−1)/m. (6)

Proof. Consequently to the fact that um > f ⇒ f1/m < u then f1/m ∈ C[0, T ].
According to Definition 1 and assumption (H1) we have

um(t) =
a(t)
Γ(α)

tα−1u(t)b(t)+f(t) ≥ ab

Γ(α)
tα−1u(t) ≥ ab

Γ(α)
tα−1f1/m ≥ ab

Γ(α)
tα−1k1/m

(7)
then we have the result. Substituting again inequality (6) in (7), we obtain

u(t) ≥ {k1/m}1/m{( ab

Γ(α)
)1/m}1/m+1{t(α−1)/m}1/m+1.

Repeating this operator n-times, we find

u(t) ≥ {k1/m}1/m{( ab

Γ(α)
)1/m}1/mn+1/mn−1+...+1/m+1{t(α−1)/m}1/mn+1/mn−1+...+1/m+1.

Taking the limit as n → ∞, we arrive at the inequality (6) which complete the
proof.
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Corollary 11. Under the assumption of Theorem 10, if equation (1) has a solution,
then asymptotic behavior of this solution is of the form

u(t) = ctγ + O(tα), c > 0, γ ≤ α− 1
m

.

Corollary 12. Under the assumption of Theorem 10, and that t, α → 0 then u(t) ≥
f1/m.

Similarly for equation (4).

Theorem 13. Denotes by

min(t,u)∈[0,T ]×C[0,T ]hi(t, u(t)) := hi.

If equation (4) is solvable then its solution satisfies

u(t) ≥ { a

Γ(α)
(

n∑
i=1

hi)}1/mt(α−1)/m.

Now we discuss the upper bounds for solution of equations (1) and (4).

Theorem 14. If equation (1) is solvable in U, then its solution satisfies

u(t) ≤ (
‖a‖‖b‖l
Γ(α + 1)

Tα + ‖f‖)1/m.

Proof.

|um(t)| ≤ |a(t)|
Γ(α)

∫ t

0
(t− τ)α−1|b(τ)u(τ)|dτ + |f(t)|

≤ ‖a‖‖b‖‖u‖
Γ(α)

∫ t

0
(t− τ)α−1dτ + ‖f‖

≤ ‖a‖‖b‖l
Γ(α + 1)

tα + ‖f‖

≤ ‖a‖‖b‖l
Γ(α + 1)

Tα + ‖f‖,

then we obtain the result.

Theorem 15. If equation (4) is solvable in C[0, T ] then its solution satisfies

u(t) ≤ (
‖a‖l

∑n
i=1 ‖ϕi‖

Γ(α + 1)
Tα + ‖f‖)1/m.
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Now, we discuss the uniqueness for solution of equations (1) and (4) using Theorem
10. For this purpose, we illustrate the following assumption:

Assume m > 1. Denote N :=
ab

Γ(α)
k

1
m−1 and M := ‖a‖‖b‖t < mNΓ(α+1). (H2)

Theorem 16. Let assumption (H2) be hold with a(t), b(t) ∈ C[0, T ]. If equation (1)
is solvable then its solution is unique in C[0, T ].

Proof. Let u, v be two solutions for equation (1) in C[0, T ]. Since m > 1 then by
mean value Theorem

|um(t)− vm(t)| ≥ m|u(t)− v(t)|(min(u, v))m−1.

On the other hand by equation (1) we have

|um(t)− vm(t)| ≤ a(t)
Γ(α)

∫ t

0
(t− τ)α−1b(τ)|u(τ)− v(τ)|dτ.

According to Theorem 10, and assumption (H2), we have

|um(t)− vm(t)| ≥ mNtα−1|u(t)− v(t)|, then

mNtα−1|u(t)− v(t)| ≤ a(t)
Γ(α)

∫ t

0
(t− τ)α−1b(τ)|u(τ)− v(τ)|dτ. (8)

Let us denote x(t) by
x(t) := b(t)|u(t)− v(t)| (9)

then the inequality (8) can be written as

x(t) ≤ a(t)b(t)
mNΓ(α)

t1−α

∫ t

0
(t− τ)α−1x(τ)dτ. (10)

Let t0 ∈ [0, T ] and x0 be the max. point of x(t) in [0, T ] : x(t0) = max0≤t≤t0x(t).
Then ∫ t

0
(t− τ)α−1x(τ)dτ ≤

∫ t

0
(t− τ)α−1dτ.x(t0) =

tα

α
x0. (11)

Substituting into (10) we obtain

x(t) ≤ a(t)b(t)x0

mΓ(α + 1)
t.

Again by assumption (H2) we have

x0 ≤
Mx0

mNΓ(α + 1)

since M < mNΓ(α + 1) then x0 = 0 at the max point on arbitrary interval [0, t0],
then x(t) ≡ 0, ∀ t ∈ [0, T ] which leads to u(t) = v(t), which complete the proof.

******************************************************************************
Surveys in Mathematics and its Applications 2 (2007), 145 – 156

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v02/v02.html
http://www.utgjiu.ro/math/sma


UPPER AND LOWER BOUNDS OF SOLUTIONS 153

Similarly for equation (4), with the assumption

Assume m > 1.Denote N :=
a

Γ(α)
(

n∑
i=1

hi) andM := ‖a‖
n∑

i=1

‖hi‖t < mNΓ(α + 1),

(H3)
we can prove the following theorem.

Theorem 17. Let assumption (H3) be hold. If equation (4) is solvable then its
solution is unique in C[0, T ].

Definition 18. Let M be a solution of the equation (1) then M is said to be a
maximal solution of (1), if for every solution u of (1) existing on [0, T ], the inequality
u(t) ≤ M(t), t ∈ [0, T ] holds. A minimal solution may be define similarly by reversing
the last inequality.

In order to discuss the maximal and the minimal solution of equation (1) and
(4), we study the maximal and the minimal solution of equation

um(t) = a(t)Iα[h(t, u(t))] + f(t). (12)

We need to the following assumption:

(H4)

1. f(t) ≥ 0,∀t ∈ [0, T ].

2. h is continuous nondecreasing function in the first argument t ∈ [0, T ].

3. There exist two positive constants µ, γ with µ < γ such that

µ

mint∈[o,T ]f(t) + ||a||T α

Γ(α+1)h(t, µ)
<

γ

||f ||+ ||a||T α

Γ(α+1)h(t, γ)
,

Theorem 19. Let assumption (H4) be hold. Then there exists a maximal and
minimal solution of the integral equation (12) on [0, T ].

Proof. Consider the fractional order integral equation

um(t) = ε + a(t)Iα[h(t, u(t))] + f(t). (13)

Then for some positive constants µ, ν

µ

ε + mint∈[o,T ]f(t) + ||a||T α

Γ(α+1)h(t, µ)
<

γ

ε + ||f ||+ ||a||T α

Γ(α+1)h(t, γ)
.

Now, let 0 < ε2 < ε1 ≤ ε. Then we have uε2(0) < uε1(0). Thus we can prove that

um
ε2(t) < um

ε1(t), or uε2(t) < uε1(t), ∀ t ∈ [0, T ]. (14)
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Assume that it is false. Then there exist a t1 such that

um
ε2(t1) = um

ε1(t1) ⇒ uε2(t1) = uε1(t1) and uε2(t) < uε1(t) ∀ t ∈ [0, t1).

Since f is monotonic non-decreasing in u, it follows that h(t, uε2(t)) ≤ h(t, uε1(t)).
Consequently, using equation (13), we get

um
ε2(t1) = ε2 + a(t1)Iα[h(t1, uε2(t1))] + f(t1)

< ε1 + a(t1)Iα[h(t1, uε1(t1))] + f(t1)
= um

ε1(t1).

Which contradict the fact that uε2(t1) = uε1(t1). Hence the inequality (14) is true.
That is, there exist a decreasing sequence εn such that εn → 0 as n → ∞ and
limn→∞uεn(t) exist uniformly in [0, T ]. We denote this limiting value by M(t). Ob-
viously, the uniform continuity of h then the equation

um
εn

(t) = εn + a(t1)Iα[h(t, uεn(t))] + f(t),

yield that M is a solution of equation (12). To show that M is a maximal solution
of equation (12), let u be any solution of equation (12). Then

um(t) < ε + a(t)Iα[h(t, u(t))] + f(t) = um
ε (t).

Since the maximal solution is unique (see [9]), it is clear that uε(t) tend to M(t)
uniformly in [0,T] as ε → 0. Which proves the existence of maximal solution to the
equation (12). A similar argument holds for the minimal solution.

Example 20. For the integral equation

u2(t) = tI1/2 t2

8
u(t) +

1
16

t, J := [0, 1], l =
1
2

(15)

with ‖a‖‖b‖ ≤ 1
8 < Γ(3/2)

2 =
√

π
4 = 0.443 and ‖f‖ < 1

16 . Then in view of Theorem 6,
equation (15) has a solution which is unique in U := {u ∈ C[0, 1] : ‖u‖2 ≤ 1

2}.

Example 21. For the integral equation

u3(t) = tI1/2

√
t

10
u(t) +

cos t

4
, J := [0, 1], l = 1 (16)

with ‖a‖‖b‖ ≤ 1
10 < Γ(3/2)

2 =
√

π
4 = 0.443 and ‖f‖ < 1

4 < 1
2 . Then in view of Theorem

6, equation (16) has a solution which is unique in U := {u ∈ C[0, 1] : ‖u‖3 ≤ 1}.

******************************************************************************
Surveys in Mathematics and its Applications 2 (2007), 145 – 156

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v02/v02.html
http://www.utgjiu.ro/math/sma


UPPER AND LOWER BOUNDS OF SOLUTIONS 155

References

[1] K. Balachandran and J. P. Dauer, Elements of Control Theory, New Delhi,
Narosa Publishing House, 1999. Zbl 0965.93002

[2] P. Butzer and L. Westphal, An introduction to fractional calculus. Hilfer, R.
(ed.), Applications of fractional calculus in physics. Singapore: World Scientific.
(2000), 1-85. MR1890105(2003g:26007). Zbl 0987.26005

[3] K. Deimling, Nonlinear Functional Analysis, Berlin, Springer-Verlag, 1985.
MR0787404(86j:47001). Zbl 0559.47040.

[4] R. Gorenflo and S. Vessella, Abel integral equations. Analysis and applica-
tions. Lecture Notes in Mathematics, 1461 Springer-Verlag, Berlin, 1991.
MR1095269(92e:45003). Zbl 0717.45002

[5] E. Hille and J. Tamarkin, On the theory of linear integral equations, Ann. of
Math. (2) 31 (1930), 479-528. MR1502959. JFM 56.0337.01.

[6] V. Kiryakova, Generalized Fractional Calculus and Applications, Pitman Re-
search Notes in Mathematics Series, 301. Longman Scientific & Technical, Har-
low; copublished in the United States with John Wiley & Sons, Inc., New York,
1994. MR1265940(95d:26010). Zbl 0882.26003.

[7] K. S. Miller and B. Ross, An introduction to the fractional calculus
and fractional differential equations, John Wiley & Sons, Inc., 1993.
MR1219954(94e:26013). Zbl 0789.26002.

[8] I. Podlubny, Fractional differential equations. An introduction to fractional
derivatives, fractional differential equations, to methods of their solution and
some of their applications. Mathematics in Science and Engineering, 198. Aca-
demic Press, 1999. MR1658022(99m:26009). Zbl 0924.34008.

[9] M. R. Rao, Ordinary Differential Equations. Theory and applications, New
Delhi-Madras: Affiliated East-West Press, 1980. Zbl 0482.34001.

[10] B. Ross and B. K. Sachdeva, The solution of certain integral equations by
means of operators of arbitrary order, Amer. Math. Monthly 97 (1990), 498-
502. MR1055906(91e:45005). Zbl 0723.45002.

[11] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and
Derivatives. Theory and Applications. Gorden and Breach, New York, 1993.
MR1347689(96d:26012).

[12] D. R. Smart, Fixed Point Theorems, Cambridge University Press, 1980. Zbl
0427.47036.

******************************************************************************
Surveys in Mathematics and its Applications 2 (2007), 145 – 156

http://www.utgjiu.ro/math/sma

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0965.93002&format=complete
http://www.ams.org/mathscinet-getitem?mr=1890105
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0987.26005&format=complete
http://www.ams.org/mathscinet-getitem?mr=787404
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0559.47040&format=complete
http://www.ams.org/mathscinet-getitem?mr=1095269
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0717.45002&format=complete
http://www.ams.org/mathscinet-getitem?mr=1502959
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:56.0337.01&format=complete
http://www.ams.org/mathscinet-getitem?mr=1265940
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0882.26003&format=complete
http://www.ams.org/mathscinet-getitem?mr=1219954
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0789.26002&format=complete
http://www.ams.org/mathscinet-getitem?mr=1658022
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0924.34008&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0482.34001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1055906
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0723.45002&format=complete
http://www.ams.org/mathscinet-getitem?mr=1347689
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0427.47036&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0427.47036&format=complete
http://www.utgjiu.ro/math/sma/v02/v02.html
http://www.utgjiu.ro/math/sma


156 R. W. Ibrahim and S. Momani

[13] H. M. Srivastava and R. G. Buschman, Theory and Applications of Convolutions
Integral Equations, Kluwer Acad., Dordrecht,1992. MR1205580(94a:45002). Zbl
0755.45002.

Rabha W. Ibrahim Shaher Momani
P.O. Box 14526, Sana’a, Department of Mathematics, Mutah University,
Yemen. P.O. Box 7, Al-Karak, Jordan.
e-mail: rabhaibrahim@yahoo.com e-mail: shahermm@yahoo.com

******************************************************************************
Surveys in Mathematics and its Applications 2 (2007), 145 – 156

http://www.utgjiu.ro/math/sma

http://www.ams.org/mathscinet-getitem?mr=1205580
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0755.45002&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0755.45002&format=complete
http://www.utgjiu.ro/math/sma/v02/v02.html
http://www.utgjiu.ro/math/sma

	Introduction and Preliminaries
	The Existence and Uniqueness Theorems
	 The Upper and Lower Estimates for Solutions

