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DIFFERENT VERSIONS OF THE IMPRIMITIVITY
THEOREM

Tania-Luminiţa Costache

Abstract. In this paper we present different versions of the imprimitivity theorem hoping that

this might become a support for the ones who are interested in the subject. We start with Mackey’s

theorem [26] and its projective version [29]. Then we remind Mackey’s fundamental imprimitivity

theorem in the bundle context [14]. Section 5 is dedicated to the imprimitivity theorem for systems

of G-covariance [6]. In Section 6 and 7 we refer to the imprimitivity theorem in the context of

C∗-algebras [39] and to the symmetric imprimitivity theorem [36], [42], [11].

1 Introduction

The importance of induced representations was recognized and emphasized by George
Mackey [26], who first proved the imprimitivity theorem and used that to analyze
the representation theory of some important classes of groups (which include the
Heisenberg group and semi-direct products where the normal summand is abelian).
Mackey’s imprimitivity theorem gives a way of identifying those representations of
a locally compact group G which are induced from a given closed subgroup H.
This theorem has played a fundamental role in the development of the represen-
tation theory of locally compact groups and has found applications in other fields
of mathematics as well as in quantum mechanics. In [29], Mackey also proved the
imprimitivity theorem for projective representations. During the years it has been
extended to mathematical different structures from groups (for example [14]) and
new versions have appeared, some of them avoiding Mackey’s separability assump-
tions.

Fell [14] showed that a locally compact group extension H, N (that is, a locally
compact group H together with a closed normal subgroup N of H) can be regarded
as a special case of a more general object, called a homogeneous Banach ∗-algebraic
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bundle. In other words, the generalization of a group extension H, N to a ho-
mogeneous Banach ∗-algebraic bundle consists in letting H and N become Banach
∗-algebras, while their quotient G = H/N remains a group. His purpose was to clas-
sify the ∗-representations of the Banach ∗-algebra H in terms of the ∗-representations
of N and the projective representations of subgroups of G. By a Banach ∗-algebraic
bundle over a locally compact group G with unit e, we mean a Hausdorff space B to-
gether with an open surjection π : B → G such that each fiber Bx = π−1(x) (x ∈ G)
has the structure of a Banach space and a binary operation ”·” on B and a unary op-
eration ”∗” on B which are equivariant under π with the multiplication and inverse
in G, i.e. π(s · t) = π(s)π(t), π(s∗) = (π(s))−1, s, t ∈ B and satisfying the laws in
a Banach ∗-algebra, i.e. r · (s · t) = (r · s) · t, (r · s)∗ = s∗ · r∗, ‖r · s‖ ≤ ‖r‖‖s‖ (see
Definition 13). The equivariance conditions show that Be is closed under ”·” and ”∗,
which is in fact a Banach ∗-algebra, called the unit fiber subalgebra of B. If λ is Haar
measure on G, the operations ”·” and ”∗” induce a natural Banach ∗-algebra struc-
ture on the cross-sectional space L = L1(B, λ), consisting of all measurable functions
f : G → B such that π ◦ f = 1G and such that ‖f‖ =

∫
G ‖f(g)‖dλ(g) < ∞, called

the cross-sectional algebra of B, π. Thus, one may think of a Banach ∗-algebraic
bundle over G as a Banach ∗-algebra L together with a distinguished continuous
direct sum decomposition of L (as a Banach space), the decomposition being based
on the group G and the operations ”·” and ”∗” of L being equivariant with the
multiplication and inverse in G. This latter view of a Banach ∗-algebraic bundle is
clearly analogous to the concept of systems of imprimitivity for representations of
G. In Theorem 23 we remind Mackey’s fundamental imprimitivity theorem in the
bundle context.

Cattaneo [6] proved a generalization of the imprimitivity theorem by admitting
subrepresentations of induced representations. The imprimitivity theorem is still
valid provided transitive systems of imprimitivity are replaced by transitive systems
of covariance, i.e. provided positive-operator-valued measures take the place of
projection-valued measures. In particular, he showed that a strongly continuous
unitary representation of a second countable locally compact group G on a separable
(complex) Hilbert space is unitarily equivalent to a representation induced from
a closed subgroup of G if and only if there is an associated transitive system of
covariance. Then he extended the theorem to projective representations.

Ørsted presented in [32] an elementary proof of Mackey’s imprimitivity theorem,
not involving any measure theory beyond Fubini’s theorem for continuous functions.
For projective systems of imprimitivity a similar proof was given, but for unitary
systems, in the general case of non-unimodular groups.

S.T. Ali [1] proved a generalization of Mackey’s imprimitivity theorem in the
special case where projection-valued measure is replaced by a commutative positive-
operator-valued measure to the system of covariance.

When Rieffel [39] viewed inducing in the context of C∗-algebras, the imprimitiv-
ity theorem emerged as a Morita equivalence between the group C∗-algebra C∗(H)
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and the transformation group C∗-algebra C∗(G,G/H). The theorem states in fact
that the unitary representation U is induced precisely when it is part of a covariant
representation (π, U) of the dynamical system (C0(G/H), G). In other words, Rieffel
proved the theorem by showing that the crossed product C0(G/H) ./ G is Morita
equivalent to the group algebra C∗(H). This reformulation has found many gener-
alizations, both to other situations involving transformation groups and to crossed
products of non-commutative C∗-algebras. Of particular interest has been the re-
alization that the imprimitivity theorem has a symmetric version: if K is another
closed subgroup of G, then H acts naturally on the left of the right coset space G/K,
K acts on the right of H \G and the transformation group C∗-algebras C∗(H,G/K)
and C∗(K,H \G) are Morita equivalent [40]. The symmetric imprimitivity theorem
of Green and Rieffel involves commuting free and proper actions of two groups, G
and H, on a space X and asserts that C0(G \ X) ./ H is Morita equivalent to
C0(X/H) ./ G; one recovers Mackey’s theorem by taking H ⊂ G and X = G.
The extensions of Rieffel’s imprimitivity theorem to cover actions of G on a non-
commutative C∗-algebra A is due to Green [18]; it asserts that the crossed product
C∗(H,A) is Morita equivalent to C∗(G,C0(G/H,A)) where G acts diagonally on
C0(G/H,A) ∼= C0(G/H) ⊗ A. As Rieffel observed in [41], it is not clear to what
extent the symmetric imprimitivity theorem works for actions on non-commutative
algebras. Raeburn [36] formulated such a theorem and investigated some of its
consequences.

In several projects it was shown that imprimitivity thorems and other Morita
equivalences are equivariant, in the sense that the bimodules implementing the equiv-
alences between crossed products carry actions or coactions compatible with those
on the crossed products (see [10]). In [11], Echterhoff and Raeburn proved an equiv-
ariant version of Raeburn’s symmetric imprimitivity theorem ([36]) for the case when
two subgroups act on opposite sides of a locally compact group.

We point out some recent papers without presenting the results, but only summa-
rize them. Suppose that (X,G) is a second countable locally compact transformation
group and that SG(X) denotes the set of Morita equivalences classes of separable
dynamical systems (G,A, α), where A is a C0(X)-algebra and α is compatible with
the given G-action on X. Huef, Raeburn and Williams proved ([21, Theorem 3.1])
that if G and H act freely and properly on the left and right of a space X, then
SG(X/H) and SH(G\X) are isomorphic as semigroups and if the isomorphism maps
the class of (G,A, α) to the class of (H,B, β), then A ./α G is Morita equivalent
to B ./β H. In [33] the authors proved an analogue of the symmetric imprimitiv-
ity theorem of [36] concerning commuting free and proper actions of two different
groups. In fact, they proved two symmetric imprimitivity theorems, one for reduced
crossed products ([33, Theorem 1.9]) and one for full crossed products (Theorem
2.1, [33]). Pask and Raeburn also showed how comparing the two versions of the
imprimitivity theorem can lead to amenability results ([33, Corollary 3.1]). Huef
and Raeburn identified the representations which induce to regular representation
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under the Morita equivalence of the symmetric imprimitivity theorem ([22, Theorem
1, Corollary 6]) and obtained a direct proof of the theorem of Quigg and Spielberg
([22, Corollary 3]) that in [35] proved that the symmetric imprimitivity theorem has
analogues for reduced crossed products. The results in [23] showed that the different
proofs of the symmetric imprimitivity theorem for actions on graph algebras yield
isomorphic equivalences and this gives a new information about the amenability of
actions on graph algebras.

2 Mackey’s imprimitivity theorem

Let M be a separable locally compact space and let G be a separable locally compact
group. Let x, s −→ (x)s denote a map of M × G onto M which is continuous and
is such that for fixed s, x −→ (x)s is a homeomorphism and such that the resulting
map of G into the group of homeomorphisms of M is a homomorphism.

Let P (E −→ PE) be a σ homomorphism of the σ Boolean algebra of projections
in a separable Hilbert space H such that PM is the identity I.

Let U(s −→ Us) be a representation of G in H, that is a weakly (and hence
strongly) continuous homomorphism of G into the group of unitary operators in H.

Definition 1. ([26]) If UsPEU−1
s = P(E)s−1 for all E and s and if PE takes on

values other than 0 and I, we say that U is imprimitive and that P is a system
of imprimitivity for U .

We call M the base of P .

Definition 2. ([26]) P is a transitive system of imprimitivity for U if for
each x, y ∈M there is s ∈ G for which (x)s = y.

In general we define a pair to be a unitary representation for the group G together
with a particular system of imprimitivity for this representation.

Definition 3. ([26]) If U,P and U ′, P ′ are two pairs with the same base M we
say that they are unitary equivalent if there is a unitary transformation V from
the space of U and P to the space of U ′ and P ′ such that V −1U ′sV = Us and
V −1P ′EV = PE for all s and E.

Theorem 4. (Theorem 2, [26]) Let G be a separable locally compact group and let
G0 be a closed subgroup of G. Let U ′ and P ′ be any pair based on G/G0. Let µ be
any quasi invariant measure in G/G0. Then there is a representation L of G0 such
that U ′, P ′ is unitarily equivalent to the pair generated by L and µ. If L and L′ are
representations of G0 and µ and µ′ are quasi invariant measures in G/G0 then the
pair generated by L′ and µ′ is unitary equivalent to the pair generated by L and µ if
and only if L and L′ are unitary equivalent representations of G0.
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3 Mackey’s imprimitivity theorem for projective repre-
sentations

Definition 5. ([29]) Let G be a separable locally compact group. A projective
representation L of G is a map x −→ Lx of G into the group of all unitary
transformations of a separable Hilbert space H onto itself such that :

a) Le = I, where e is the identity of G and I is the identity operator;

b) Lxy = σ(x, y)LxLy for all x, y ∈ G, where σ(x, y) is a constant;

c) the function x −→ (Lx(φ), ψ) is a Borel function on G for each φ, ψ ∈ H.

The function σ : x, y −→ σ(x, y) is uniquely determined by L and it is called the
multiplier of L.

By a σ-representation of G we mean a projective representation whose multi-
plier is σ.

The multiplier σ of the projective representation L has the following properties
:

1. σ(e, x) = σ(x, e) = 1 and |σ(x, y)| = 1 for all x, y ∈ G;

2. σ(xy, z)σ(x, y) = σ(x, yz)σ(y, z) for all x, y, z ∈ G;

3. σ is a Borel function on G×G.

Any function fromG×G to the complex numbers which has these three properties
is called a multiplier for G.

If σ is a multiplier for G we define a group Gσ whose elements are pairs (λ, x),
where λ is a complex number of modulus one and x ∈ G and in which the multipli-
cation is given by (λ, x)(µ, y) = (λµ/σ(x, y), xy). In Gσ the identity element is (1, e)
and the inverse of (λ, x) is (σ(x, x−1)/λ, x−1). Let T denote the compact group of
all complex numbers of modulus one. T and G, as separable locally compact groups,
have natural Borel structures which are standard (in the sense described in [28]).
The direct product of these defines a standard Borel structure in Gσ with respect
to which (x, y) −→ xy−1 is a Borel function. Thus Gσ is a standard Borel group
(in the sense of [28]). Moreover, the direct product of Haar measure in T with a
right invariant Haar measure in G is a right invariant measure in Gσ. Thus it can
be applied [28, Theorem 7.1] and it results that Gσ admits a unique locally compact
topology under which it is a separable locally compact group whose associated Borel
structure is that just described. We suppose Gσ equipped with this topology.

For each σ-representation L of G let L0
λ,x = λLx and denote by L0 the map

(λ, x) −→ L0
λ,x. By [29, Theorem 2.1], for each σ-representation L of G, the map L0

is an ordinary representation of Gσ.
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Let H be a closed subgroup of G. If σ is a multiplier for G, then the restriction
of σ to H is a multiplier for H and we may speak of the σ-representations of H
as well as of G. In particular, the restriction to H of a σ-representation of G is
a σ-representation of H. In [26] it is discussed a process for going from ordinary
representation L of H to certain ordinary representation UL of G, called induced
representation. This process can be generalized for σ-representations as well. Let
θ denote the identity map of Hσ into Gσ. The range of θ is the inverse image of
the closed subgroup H under the canonical homomorphism of Gσ on G. Hence this
range is a close subgroup of Gσ and is locally compact. Since θ is both an algebraic
isomorphism and a Borel isomorphism, it follows from Theorem 7.1, [28] that it is
a homeomorphism. Let L be an arbitrary σ-representation of H. Then L0 is an
ordinary representation of Hσ which may be regarded as an ordinary representation
of the closed subgroup θ(Hσ) of Gσ. As described in [27] it can be formed UL0 and
from [27, Theorem 12.1] and [29, Theorem 2.1] it follows that UL0 is of the form V 0

for a uniquely determined σ-representation V of G. Actually UL0 is only defined
up to an equivalence. V is called the σ-representation of G induced by the
σ-representation L of H and it is denoted by UL.

Definition 6. ([29]) Let S be a metrically standard Borel space. A projection
valued measure on S is a map P , E −→ PE, of the Borel subsets of S into
the projections on a separable Hilbert space H(P ) such that PE∩F = PEPF , PS =

I, P0 = 0 and PE =
∞∑
j=1

PEj , when E =
∞⋃
j=1

Ej and the Ej are disjoint.

Definition 7. ([29]) Let L be a σ-representation of a separable locally compact group
G. A system of imprimitivity for L is a pair consisting of a projection valued
measure P with H(P ) = H(L) and an anti homomorphism h of G into the group of
all Borel automorphisms of the domain S of P such that:

a) if [x]y denotes the action of h(y) on x then y, x −→ [x]y is a Borel function;

b) LyPEL
−1
y = P[E]y−1 for all y ∈ G and all Borel sets E ⊆ S.

We call S the base of the system of imprimitivity.

Definition 8. ([29]) Let P, h and P ′, h′ be systems of imprimitivity for the same σ-
representation L. We say that P, h and P ′, h′ are strongly equivalent if there is a
Borel isomorphism ϕ of the base S of P onto the base S′ of P ′ such that P ′ϕ[E] = PE

for all E and h′(y) = ϕh(y)ϕ−1 for all y ∈ G.

Theorem 9. ( Theorem 6.6, [29]) Let G be a separable locally compact group, let H
be a close subgroup of G and let σ be a multiplier for G. Let V be a σ-representation
of G and let P ′ be a projection valued measure based on G/H such that P ′, h is a
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system of imprimitivity for V . Then there is a σ-representation L of H such that
the pair P ′, is equivalent to the pair P,UL, where P, h is the canonical system of
imprimitivity for UL based on G/H. If L1 and L2 are two σ-representations of H
and P1, h and P2, h are the corresponding canonical systems of imprimitivity then
the pairs P1, U

L1 and P2, U
L2 are equivalent if and only if L1 and L2 are equivalent

σ-representations of H.

4 Mackey’s imprimitivity theorem in the bundle con-
text

Definition 10. ([14]) Let G be a fixed (Hausdorff) topological group with unit e. A
bundle B over G is a pair 〈B, π〉, where B is a Hausdorff topological space and π
is a continuous open map of B onto G.

G is called the base space and π the bundle projection of B. For each x ∈ G,
π−1(x) is the fiber over x and is denoted by Bx.

Definition 11. ([14]) Let X and B be two Hausdorff topological spaces and let π be
a continuous open map of B onto X. A cross-sectional function for B is a map
γ : X → B such that π ◦ γ is the identity map on X. A continuous cross-sectional
function is called a cross-section of B.

We denote by L(B) the linear space of all cross-sections f of B which have
compact support (that is, f(x) = 0x for all x outside some compact subset K of X).

Definition 12. ([14]) A Banach bundle B over G is a bundle 〈B, π〉 over G
together with operations and a norm making each fiber Bx (x ∈ G) into a complex
Banach space and satisfying the following conditions:

i) s −→ ‖s‖ is continuous on B to IR;

ii) the operation + is continuous on
{
〈s, t〉 ∈ B ×B| π(s) = π(t)

}
to B;

iii) for each complex number λ, the map s −→ λ · s is continuous on B to B;

iv) if x ∈ G and (si)i is a net of elements of B such that ‖si‖ −→ 0 and π(si) −→ x
in G, then si −→ 0 in B, where 0 is the zero element of the Banach space
Bx = π−1(x).

Definition 13. ([14]) A Banach ∗-algebraic bundle B over G is a Banach
bundle 〈B, π〉 over G together with a binary operation ”·” on B × B to B and a
unary operation ”∗” on B satisfying :

i) π(s ·t) = π(s)π(t) for all s, t ∈ B (equivalently, Bx ·By ⊂ Bxy for all x, y ∈ G);
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ii) for each x, y ∈ G, the product 〈s, t〉 −→ s · t is bilinear on Bx ×By to Bxy;

iii) (r · s) · t = r · (s · t) for all r, s, t ∈ B;

iv) ‖s · t‖ ≤ ‖s‖‖t‖ for all s, t ∈ B;

v) ”·” is continuous on B ×B to B;

vi) π(s∗) = (π(s))−1 for all s ∈ B (equivalently, (Bx)∗ ⊂ Bx−1 for all x ∈ G);

vii) for each x ∈ G, the map s −→ s∗ is conjugate-linear on Bx to Bx−1;

viii) (s · t)∗ = t∗ · s∗ for all s, t ∈ B;

ix) s∗∗ = s for all s ∈ B;

x) ‖s∗‖ = ‖s‖ for all s ∈ B;

xi) s −→ s∗ is continuous on B to B.

Remark 14. ([14]) Let B = 〈B, π, ·,∗ 〉 be a Banach ∗-algebraic bundle. If H is a
topological subgroup of G, the reduction of B to H is a Banach ∗-algebraic bundle
over H (with the restrictions of the norm and the operations of B).

Definition 15. ([14]) Let B = 〈B, π, ·,∗ 〉 be a Banach ∗-algebraic bundle over the
topological group G (with unit e). If x ∈ G, a map λ : B → B is of left order x
(respectively of right order x if λ(By) ⊂ Bxy (respectively, λ(By) ⊂ Byx) for all
y ∈ G. We say that λ is bounded if there is a non-negative constant k such that
‖λ(s)‖ ≤ k‖s‖ for all s ∈ B. If λ is of some left or right order x, it is said to be
quasi-linear if, for each y ∈ G, λ|By is linear (on By to Bxy or Byx).

Definition 16. ([14]) A multiplier of B of order x is a pair u = 〈λ, µ〉, where
λ and µ are continuous bounded quasi-linear maps of B into B, λ is of left order x,
µ is of right order x and

(i) s · λ(t) = µ(s) · t

(ii) λ(s · t) = λ(s) · t

(iii) µ(s · t) = s · µ(t) for all s, t ∈ B.

If x ∈ G, we denote by Mx(B) the set of all multipliers of B of order x.

Definition 17. ([14]) A ∗-representation of a Banach ∗-algebraic bundle B over
G on a Hilbert space X is a map T assigning to each s ∈ B a bounded linear operator
Ts on X such that :

i) s −→ Ts is linear on each fiber Bx (x ∈ G);
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ii) Tst = TsTt for all s, t ∈ B;

iii) Ts∗ = (Ts)∗ for all s ∈ B;

iv) the map s −→ Ts is continuous with respect to the topology of B and the strong
operator topology.

X is called the space of T and is denoted by X(T ).

Definition 18. ([14]) A ∗-representation T of B is non-degenerate if the union
of the ranges of Ts (s ∈ B) spans a dense linear subspace of X(T ), or, equivalently,
if 0 6= ξ ∈ X(T ) implies that Tsξ 6= 0 for s ∈ B.

Definition 19. ([14]) Let X be a Hilbert space and let M be a locally compact
Hausdorff space. A Borel X-projection-valued measure on M is a map P
assigning to each Borel subset W of M a projection P (W ) on X such that :

a) P (M) = IX(=identity operator on X);

b) if W1,W2, . . . is a sequence of pairwise disjoint Borel subsets of M , then P (Wn)
(n = 1, 2, . . .) are pairwise orthogonal and

P (
∞⋃
n=1

) =
∞∑
n=1

P (Wn).

P is regular if, for every Borel set W ,

P (W ) = sup
{
P (C)| C is a compact subset of W

}
.

Definition 20. ([14]) Let M be a locally compact Hausdorff space on which the
locally compact group G acts continuously to the left as a group of transformations
〈x,m〉 −→ xm. A system of imprimitivity for B over M is a pair 〈T, P 〉,
where T is a non-degenerate ∗-representation of B and P is a regular Borel X(T )-
projection-valued measure on M satisfying

TsP (W ) = P (π(s)W )Ts

for all s ∈ B and all Borel subsets W of M .

Definition 21. ([14]) If T = 〈T, P 〉 and T ′ = 〈T ′, P ′〉 are two systems of im-
primitivity over the same M , a bounded linear operator F : X(T )→ X(T ′) is T , T ′
interwining if FTs = T ′sF and FP (W ) = P ′(W )F for all s ∈ B and all Borel
subsets W of M . If F is isometric and onto X(T ′), then T and T ′ are equivalent.
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Definition 22. ([14]) The non-degenerate ∗-representation T 0 of L(M,B) defined
by

T 0
f ξ =

∫
G

[∫
M
dPmTf(m,x)

]
ξdλx (f ∈ L(M,B))

is called the integrated form of the system of imprimitivity 〈T, P 〉.

Theorem 23. ( [14, Theorem 15.1]) Let K be a closed subgroup of G and M the
G-transformation space G/K. Let 〈T, P 〉 be a system of imprimitivity for B over M .
Then there is a non-degenerate ∗-representation S of BK , unique to within unitary
equivalence, such that 〈T, P 〉 is equivalent to the system of imprimitivity attached to
US, the induced representation (see [14, Section 11]).

Proof. We assume that there is a cyclic vector ξ for 〈T, P 〉. Let T 0 be the integrated
form of 〈T, P 〉.

For each pair of elements φ, ψ of L(B) we define α = α[φ, ψ] of L(M,B) as follows
:

α(yK, x) =
∫
K
ψ∗(yk)φ(k−1y−1x)dνk. (4.1)

Notice that α = α[φ, ψ] depends linearly on φ and conjugate-linearly on ψ.
We define a conjugate-bilinear form (·, ·)0 on L(B)× L(B) as follows :

(φ, ψ)0 = (T 0
α[φ,ψ]ξ, ξ) (4.2)

We define a representation Q of M(BK) on L(B) (M(BK) is identified as usual
with MK(B) =

⋃
x∈K

Mx(B)). For t ∈M(BK), φ ∈ L(B), put

(Qtφ)(x) = (δ(π(t)))
1
2 (∆(π(t)))−

1
2 t · φ(π(t)−1t) (x ∈ G) (4.3)

Clearly, Qtφ ∈ L(B), Qt is linear in t on each fiber and

Qst = QsQt (s, t ∈M(BK)). (4.4)

We claim that

(Qtφ, ψ)0 = (φ,Qt∗ψ)0 (t ∈M(BK), φ, ψ ∈ L(B)). (4.5)

Indeed, it is sufficient to show

α[Qtφ, ψ] = α[φ,Qt∗ψ]. (4.6)

If y, x ∈ G, we have
α[Qtφ, ψ](yK, x) =
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= (δ(π(t)))
1
2 (∆(π(t)))−

1
2

∫
K

∆(k−1y−1)(ψ(k−1y−1))∗tφ(π(t)−1k−1y−1x)dνk

= (∆(π(t)))
1
2 (δ(π(t)))−

1
2

∫
K

∆(k−1y−1)(ψ(π(t)k−1y−1))∗tφ(k−1y−1x)dνk

=
∫
K

∆(k−1y−1)((Qt∗ψ)(k−1y−1))∗φ(k−1y−1x)dνk

=
∫
K

(Qt∗ψ)∗(yk)φ(k−1y−1x)dνk

= α[φ,Qt∗ψ](yK, x).

So (4.6) is proved and hence (4.5) also.
Next we claim that if φi −→ φ and ψi −→ ψ in L(B) uniformly on G with

uniformly bounded compact supports, then

(φi, ψi)0 −→ (φ, ψ). (4.7)

Indeed, one verifies that α[φi, ψi] −→ α[φ, ψ] uniformly on M × G with uniformly
bounded compact supports; hence (T 0

α[φi,ψi]
ξ, ξ) −→ (T 0

α[φ,ψ]ξ, ξ).

For each f ∈ L(M,B) we define a map f̂ : U → L(B) as follows :

f̂(u)(x) = u−1f(π(u)K,π(u)x) (u ∈ U, x ∈ G). (4.8)

It is clear that f̂(u) belongs to L(B) and that u −→ f̂(u) is continuous in the sense
that, if ui −→ u in U , f̂(ui) −→ f̂(u) uniformly on G with uniformly bounded
compact support. It follows that this and (4.7) that, if f, g ∈ L(M,B), the function
u −→ (f̂(u), ĝ(u))0 is continuous on U . We also observe that

f̂(ut) = (δ(π(t)))
1
2 (∆(π(t)))−

1
2Qt−1(f̂(u)) (u ∈ U, t ∈ UK) (4.9)

From (4.5) and (4.9) it follows that

(f̂(ut), f̂(ut))0 = δ(π(t))(∆(π(t)))−1(f̂(u), f̂(u))0 (u ∈ U, t ∈ UK). (4.10)

We prove that for each f ∈ L(M,B),

(T 0
f ξ, T

0
f ξ) =

∫
M

(ρ(π(u)))−1(f̂(u), f̂(u))0dµρ(π(u)K) (4.11)

(By (4.10), the integrant in (4.11) depends only on π(u)K; it has compact support in
M and we have seen that it is continuous), where ρ is a G,K rho-function, i.e. a non-
negative-valued continuous function ρ on G satisfying ρ(xk) = δ(k)(∆(k))−1ρ(x) for
all x ∈ G, k ∈ K and ρ gives rise to a unique regular Borel measure µρ on M
satisfying

∫
G ρ(x)f(x)dλx =

∫
M dµρ(xK)

∫
K f(xk)dνk, for all f ∈ L(G) .
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Fix an element f ∈ L(M,B). Since E =
{
π(u)K | f̂(u) 6= 0

}
has compact

closure in M , we can choose an element σ ∈ L(G) such that
∫
K σ(xk)dνk = 1

whenever xK ∈ E. Then∫
M

(ρ(π(u)))−1(f̂(u), f̂(u))0dµρ(π(u)K) =
∫
G
σ(π(u))(f̂(u), f̂(u))0dλ(π(u))

(4.12)
To evaluate the right side of (4.12), we observe first by (4.6) and (4.9) that α[f̂(u), f̂(u)]
depends only on π(u). Therefore, if u ∈ U and π(u) = x, we denote α[f̂(u), f̂(u)] =
αx. From the openness of π and from the continuity of u 7−→ f̂(u) and 〈φ, ψ〉 7−→
α[φ, ψ], we deduce that x 7−→ αx is continuous in the sense that, if xi 7−→ x in
G, then αxi 7−→ αx uniformly with uniformly bounded compact support. It follows
that

β =
∫
G
σ(x)αxdλx (4.13)

exists as a Bochner integral in L(M,B) (with the supremum norm over a large
compact set). Thus, since (f̂(u), f̂(u))0 = (T 0

απ(u)
ξ, ξ), it follows from (4.12) and

(4.13) that ∫
M

(ρ(π(u)))−1(f̂(u), f̂(u))0dµρ(π(u)K) = (T 0
β ξ, ξ) (4.14)

Consequently, since T 0 ia a ∗-representation of L(M,B), we see that (4.11) will be
proved if we can show that

β = f∗f (4.15)

To prove (4.15) we evaluate each side of (4.13) at the arbitrary point 〈yK, z〉 ∈M×G,
getting by Proposition 2.5, [14]

β(yK, z) =
∫
G
σ(x)αx(yK, z)dλx. (4.16)

But, if u ∈ U , π(u) = x, then

αx(yK, z) =
∫
K

(f̂(u))∗(yk)(f̂(u))(k−1y−1z)dνk

= ∆(y−1)
∫
K

∆(k)(δ(k))−1(f̂(u)(ky−1))∗f̂(u)(ky−1z)dνk

= ∆(y−1)
∫
K

∆(k)(δ(k))−1(f(xK, xky−1))∗f(xK, xky−1z)dνk

So by (4.16), we have

β(yK, z) = ∆(y−1)
∫
G

∫
K

∆(k)(δ(k))−1σ(x)(f(xK, xky−1))∗f(xK, xky−1z)dνkdλx

(4.17)
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Now the integrand on the right side of (4.17) is a continuous function with compact
support K ×G to Bz. So we may use Fubini’s Theorem to interchange the order of
integration, replace x by xk−1 and interchange back again, getting

β(yK, z) = ∆(y−1)
∫
G

∫
K

(δ(k))−1σ(xk−1)(f(xK, xy−1))∗f(xK, xy−1z)dνkdλx

= ∆(y−1)
∫
G

∫
K
σ(xk)(f(xK, xy−1))∗f(xK, xy−1z)dνkdλx

= ∆(y−1)
∫
G

(f(xK, xy−1))∗f(xK, xy−1z)dλx

=
∫
G

(f(xyK, x))∗f(xyK, xz)dλx

=
∫
G

∆(x−1)(f(x−1yK, x−1))∗f(x−1yK, x−1z)dλx = (f∗f)(yK, z).

By the arbitrariness of yK and z, this implies (4.15). So (4.11) is proved.
It follows from (4.11) that

(φ, φ)0 ≥ 0 (φ ∈ L(B)) (4.18)

Indeed, if τ is an arbitrary element of L(M), we may replace f in (4.11) by

g : 〈m,x〉 7−→ τ(m)f(m,x),

getting∫
M
|τ(π(u)K)|2(ρ(π(u)))−1(f̂(u), f̂(u))0dµρ(π(u)K) = (T 0

g ξ, T
0
g ξ) ≥ 0 (4.19)

Since u 7−→ (f̂(u), f̂(u))0 is continuous, the arbitrariness of τ implies by (4.19)
that (f̂(u), f̂(u))0 ≥ 0 for all u ∈ U ; this holds for all f ∈ L(M,B). So (4.18) is
established.

We’ll write ‖φ‖0 for (φ, φ)
1
2
0 (φ ∈ L(B)).

We prove that for all φ ∈ L(B) and t ∈ BK we have

‖Qtφ‖0 ≤ ‖t‖‖φ‖0 (4.20)

Indeed, from (4.18) and (4.6) we obtain

‖Qtφ‖0 = (Qt∗tφ, φ)0 ≤ ‖Qt∗tφ‖0‖φ‖0 = (Q(t∗t)2φ, φ)
1
2
0 ‖φ‖0 ≤

‖Q(t∗t)2φ‖
1
2
0 ‖φ‖

3
2
0 = (Q(t∗t)4φ, φ)

1
4 ‖φ‖

3
2
0 = . . . = ‖Q(t∗t)2nφ‖2

−n
0 ‖φ‖2−2−n

0 (4.21)
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for each positive integer n. We estimate now the right side of (4.21).
If s ∈ BK , we have ‖Qsφ‖20 = (T 0

αξ, ξ), where α = α[Qsφ,Qsφ]; that is, for
x, y ∈ G,

α(yK, x) =
∫
K

(Qsφ)∗(yK)(Qsφ)(k−1y−1x)dνk =∫
K

(∆(k)(δ(k))−1∆(y−1)((Qsφ)(ky−1))∗(Qsφ)(ky−1x)dνk =

∆(y−1)
∫
K

∆(k)(δ(k))−1(φ(ky−1))∗s∗sφ(ky−1x)dνk. (4.22)

We define the numerical function γ on M ×G as follows :

γ(yK, x) = ∆(y−1)
∫
K

∆(k)(δ(k))−1‖φ(ky−1)‖‖φ(ky−1x)‖dνk (x, y ∈ G)

It is easy to see that the definition is legitimate and that γ is continuous with
compact support on M ×G. Comparing γ with (4.22) we see that

‖α(yK, x)‖ ≤ ‖s∗s‖γ(yK, x) (x, y ∈ G).

Therefore the L(M,B)- norm of α satisfies

‖α‖ ≤ k‖s∗s‖ (4.23)

where k =
∫
G supm∈M γ(m,x)dλx. Here k depends only on φ. By (4.23), ‖T 0

α‖ ≤
k‖s∗s‖, so that ‖Qsφ‖0 = (T 0

αξ, ξ)
1
2 ≤ k

1
2 ‖ξ‖‖s∗s‖

1
2 . Applying this to (4.21), with

s = (t∗t)2
n
, we get for each positive integer n

‖Qtφ‖20 ≤ k2−n−1‖ξ‖2−n‖(t∗t)2n+1‖2−n−1‖φ‖2−2−n

0 ≤

k2−n−1‖ξ‖2−n‖t‖2‖φ‖2−2−n

0 (4.24)

Letting n −→∞ in (4.24) we obtain (4.20). So the claim is proved.
Now, having established in (4.18) that the form (, )0 is positive, we define N

to be the linear subspace
{
φ ∈ L(B) | (φ, φ)0 = 0

}
of L(B) and Y to be the pre-

Hilbert space L(B)/N with the inner product (κ(φ), κ(ψ))0 = (φ, ψ)0 (φ, ψ ∈ L(B),
κ : L(B) → Y ) being the quotient map. Let Yc be the Hilbert space completion of
Y and ‖ ‖0 the norm in Yc. Note that, by (4.7), κ is continuous with respect to the
inductive limit topology of L(B).

In virtute of (4.20), each t ∈ BK gives rise to a continuous linear operator
St on Yc satisfying ‖St‖0 ≤ ‖t‖ (‖ ‖0 being here the operator norm on Yc) and
St ◦κ = κ◦Qt (t ∈ BK). In view of (4.24) and (4.15), the same relations hold for S.
If φ, ψ ∈ L(B) and t ∈ BK , we have (Stκ(φ), κ(ψ))0 = (Qtφ, ψ)0; so the continuity of
(Stκ(φ), κ(ψ))0 in t follows from (4.7). Thus we have established all the conditions
for S to be a ∗-representation of BK on Yc.
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We prove that S is non-degenerate. Let F be the linear span of Qtφ (t ∈
A, φ ∈ L(B)). Evidently F is closed under multiplication by continuous complex
functions on G. Using an approximate unit in B, we see that for each x ∈ G, the set{
ψ(x) | ψ ∈ F

}
is a dense subspace of Bx. So by the proof of Proposition 2.2, [14],

any function ψ ∈ L(B) can be uniformly approached by functions
{
ψα
}

in F having
uniformly bounded compact support. Applying κ we see that κ(ψα) −→ κ(ψ) in Yc.
But κ(ψα) is in the linear span of the ranges of St. So S is non-degenerate.

We have constructed a non-degenerate ∗-representation S of BK . We show that
〈T, P 〉 is equivalent to the system of imprimitivity 〈US , P ′〉 attached to the induced
representation US of B.

For each f ∈ L(M,B), let f̃ : U → Y be given by f̃(u) = κ(f̂(u)) (u ∈ U). By
the continuity of κ and of f̂ , f̃ is continuous. Applying κ to (4.9) we find that

f̃(ut) = (δ(π(t)))
1
2 (∆(π(t)))−

1
2St−1(f̃(u)) (u ∈ U, t ∈ UK).

Since f̃ , like f̂ , has compact support in M , it follows that f̃ ∈ X(US). So f 7−→ f̃
is a linear map of L(M,B) into X(US). We notice that the right side of (4.11) is
just ‖f̃‖2 (norm in X(US)). So (4.11) asserts that

‖f̃‖2 = ‖T 0
f ξ‖ (4.25)

for all f ∈ L(M,B). Since T 0 is non-degenerate, (4.25) shows that there is a (unique)
linear isometry ι of X (=X(T )) into X(US) satisfying

ι(T 0
f ξ) = f̃ for all f ∈ L(M,B) (4.26)

We show that ι intertwines 〈T, P 〉 and 〈US , P ′〉. Let s = av (a ∈ A, v ∈ U) and let
η = T 0

f ξ (f ∈ L(M,B)). Defining sf by (sf)(m,x) = s·f(π(s)−1m,π(s)−1x), 〈m,x〉 ∈
M ×G and taking into account that TsT 0

f = T 0
sf , PψT

0
f = T 0

ψf , we find

ι(Tsη) = (sf )̃ (4.27)

Now, if u ∈ U, y ∈ G, x = π(s), we have

[Qu−1auf̂(v−1u)](y) = u−1au(f̂(v−1u))(y)
= u−1auu−1vf(π(v−1u)K,π(v−1u)y)
= u−1sf(x−1π(u)K,x−1π(u)y) = u−1(sf)(π(u)K,π(u)y)
= (sf )̂(u)(y).

So Qu−1au(f̂(v−1u)) = (sf )̂(u). Applying κ to both sides of this we get

(sf )̃(u) = Su−1au(f̃(v−1u)). (4.28)
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By relation (21), § 11, [14], Su−1au(f̃(v−1u)) = (USs f̃)(u). So by (4.28), (sf )̃ = USs f̃ .
Combining this with (4.26) and (4.27), we have (by the denseness of the η in X)

ι ◦ ◦Ts = USs ◦ ι (s ∈ B). (4.29)

A similar calculation shows that

ι ◦ ◦Pφ = P ′φ ◦ ι (φ ∈ L(M)). (4.30)

But (4.29) and (4.30) together assert that ι intertwines 〈T, P 〉 and 〈US , P ′〉.
To prove that 〈T, P 〉 and 〈US , P ′〉 are equivalent under ι it remains only to show

that ι is onto X(US). Since ι is an isometry, it is in fact sufficient to show that
range(ι) is total in X(US).

By Proposition 11.2, [14],
{
Fφ,κ(ψ) | φ, ψ ∈ L(B)

}
is total in X(US). We

show that, if φ, ψ ∈ L(B), Fφ,κ(ψ) belongs to range(ι). For this purpose we define
f = α[ψ, φ∗], i.e.

f(yK, z) =
∫
K
φ(yk)ψ(k−1y−1z)dνk (y, z ∈ G).

Thus f ∈ L(M,B) and

f̂(u)(x) = u−1f(π(u)K,π(u)x) =
∫
K
u−1φ(π(u)k)ψ(k−1x)dνk. (4.31)

On the other hand, consider the Bochner integral in L(B) (with the supremum norm
over a large compact set)

ζ(u) =
∫
K

(∆(k))
1
2 (δ((k))−

1
2 (Qu−1φ(π(u)k)ψ)dνk (u ∈ U). (4.32)

Applying κ to both sides of (4.32) we obtain (by the continuity of κ and Proposition
2.5, [14])

κ(ζ(u)) =
∫
K

(∆(k))
1
2 (δ(k))−

1
2Su−1φ(π(u)k)(κ(ψ))dνk = Fφ,κ(ψ)(u) (4.33)

Again, applying to both sides of (4.32) the continuous functional of evaluation at a
point x of G, we have by (4.33) :

ζ(u)(x) =
∫
K

(∆(k))
1
2 (δ(k))−

1
2 (Qu−1φ(π(u)k)(ψ))(x)dνk =

∫
K
u−1φ(π(u)k)ψ(k−1x)dνk = f̂(u)(x). (4.34)

******************************************************************************
Surveys in Mathematics and its Applications 7 (2012), 69 – 103

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v07/v07.html
http://www.utgjiu.ro/math/sma


Different versions of the imprimitivity theorem 85

Combining (4.33), (4.34) and (4.26), we get Fφ,κ(ψ) = f̃ ∈ range(ι). Thus the
range(ι) contains all Fφ,κ(ψ) (φ, ψ ∈ L(B)); and hence coincides with X(US). Con-
sequently, 〈T, P 〉 ∼= 〈US , P ′〉. Thus we have proved the existence part of Theorem
for those 〈T, P 〉 which have cyclic vectors. But an arbitrary 〈T, P 〉 is a direct sum⊕
i

〈T (i), P (i)〉 of systems of imprimitivity which have cyclic vectors. By what is

already proved, for each i there is a non-degenerate ∗-representation S(i) of BK such
that the system of imprimitivity attached to US

(i)
is equivalent 〈T (i), P (i)〉. By the

Remark preceding Proposition 13.1, [14], the system of imprimitivity attached to
US , where S =

⊕
i

S(i) is equivalent to 〈T, P 〉. Thus the existence of S has been

completely proved.

5 Imprimitivity theorem for systems of G-covariance

For each topological space X we denote by BX the Borel structure (i.e. σ-field)
generated by the closed sets of X. Every Hilbert space H considered is understood
to be a complex one and L(H) is the complex vector space of all continuous linear
operators in H. We denote the characteristic function of a set A by ψA.

Definition 24. ([6]) Let X be a topological space and let H be a Hilbert space.
A (weak) Borel positive-operator-valued measure on X acting in H is a map
P : BX → L(H) such that

i) P is positive, i.e. P (∅) = 0 and P (B) ≥ 0 for all B ∈ BX ;

ii) P is (weakly) countably additive, i.e. if (Bi)i∈IN is a sequence of mutually

disjoint elements of BX , then P (
∞⋃
i=0

Bi) = w−
∞∑
i=0

P (Bi), where w−
∑

means

that the series (P (Bi)) converges in the weak operator topology on L(H).

If P (X) = IH, then P is said to be normalized.
If in addition P satisfies iii) P (B)P (B′) = P (B ∩ B′) for all B,B′ ∈ BX , then

P is a Borel projection-valued measure.

Definition 25. ([6]) If G be a topological group. A topological space X 6= ∅ is a
topological (left) G-space if G operates continuously on (the left of) X, i.e. if
there is a continuous map (g, x) −→ g(x) of the topological product space G × X
into X such that for each x ∈ X we have 1(x) = x and (gg′)(x) = g(g′(x)) for all
g, g′ ∈ G.

If H is a subgroup of G, we denote by G/H the topological homogeneous space
of left cosets of H in G, which is a topological G-space in a canonical way.
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Definition 26. ([6]) Let G be a topological group, let X be a topological G-space,
let U be a strongly continuous unitary representation of G on a Hilbert space H and
let P be a normalized Borel positive-operator-valued measure on X acting in H. We
say that that P is G-covariant and that the ordered pair (U,P ) is a system of
G-covariance in H based on X if U,P satisfy

UgP (B)U−1
g = P (g(B))

for all g ∈ G and all B ∈ BX . The system (U,P ) is called transitive if so is the
G-space X.

Remark 27. ([6]) If P is a Borel projection-valued measure, then (U,P ) is a
Mackey’s system of imprimitivity for G based on X and acting on H.

Definition 28. ([6]) Two systems of G-covariance, (U,P ) in H and (U ′, P ′) in H′,
both based on X are unitarily equivalent if there is a unitary map V of H onto
H′ such that

V Ug = U ′gV for all g ∈ G

and
V P (B) = P ′(B)V for all B ∈ BX .

Proposition 29. (Proposition 1, [6]) Let G be a second countable locally compact
group, let X be a countably generated Borel G-space and let H,H′ be separable Hilbert
spaces. If (U,M) is a system of G-covariance in H based on X there are a separable
Hilbert space He, an isometric map W of H into He and a system of imprimitivity
(Ue, P ) for G based on X and acting in He satisfying

WU(g) = Ue(g)W for all g ∈ G (5.1)

WM(B) = P (B)W for all B ∈ BX (5.2)

and such that the set

M =
{
P (B)Wψ| B ∈ BX and ψ ∈ H

}
is total in He.

The mapping W is surjective if and only if (U,M) is a system of imprimitivity.
Let (U ′,M ′) be a system of G-covariance in H′ based on X and unitarily equiva-

lent to (U,M). If there are H′e,W ′, P ′, U ′e,M′ mutually satisfying the same relations
as, respectively, He,W, P, Ue,M when H′, U ′,M ′ replace H, U,M , then the systems
of imprimitivity (Ue, P ) and (U ′e, P

′) are unitarily equivalent.

Proof. By a theorem of Neumark [31], there are a Hilbert space He, an isometric
map W of H into He and a normalized Borel positive-valued-measure P on X acting
in He such that

WM(B) = P (B)W for all B ∈ BX .
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Let EH(BX) be the complex vector space of all step functions based on BX taking
values in H. Define a positive Hermitian sesquilinear form 〈 · 〉 on EH(BX) by

〈
∑
i

ψiφBi |
∑
j

ψjφBj 〉 =
∑
i,j

(M(Bi ∩Bj)ψi|ψj), (5.3)

where the sums are finite and (·|·) is the inner multiplication on H. The positivity of
〈·|·〉 is a consequence of the positivity of M . Let J be the subspace of all f ∈ EH(BX)
such that 〈f |f〉 = 0; then He is the completion of the quotient space EH(BX)/J
equipped with the extended quotient form which we denote by (·|·)e. The map W
is defined by

Wψ = [fψ],

where fψ ∈ EH(BX) is the constant map with the value ψ and [fψ] denotes the
equivalence class of fψ modulo J ; the positive valued-measure P is given by

P (B)

[∑
i

ψiφBi

]
=

[∑
i

ψiφB∩Bi

]
(ψi ∈ H, Bi ∈ BX)

and extension by continuity. We remark that, for each B ∈ BX), we have M(B) =
W ∗P (B)W and W ∗W = IdH, where W ∗ is the adjoint of W . The set M ={
P (B)Wψ|B ∈ BX and ψ ∈ H

}
is total in He; it follows that P is weakly count-

ably additive because the subset
{
P (B)|B ∈ BX

}
of L(He) is norm-bounded and

for each sequence (Bi) of mutually disjoint elements of BX and each pair P (B)Wψ,
P (B′)Wψ′ of elements of M, we have

(P (
∞⋃
i=0

Bi)P (B)Wψ|P (B′)Wψ′)e = (M(
∞⋃
i=0

(B ∩B′ ∩Bi))ψ|ψ′) =

∞∑
i=0

(M(B ∩B′ ∩Bi)ψ|ψ′) =
∞∑
i=0

(P (Bi)P (B)Wψ|P (B′)Wψ′)e

Since BX is countably generated and H is separable, He is separable. Let
{
Bi
}
i∈N

be a clan of elements of BX) generating BX) and let
{
ψi
}
i∈N be a dense subset of

elements of H; the set M0 =
{
P (Bk)ψl|Bk ∈

{
Bi
}

and ψl ∈
{
ψi
}}

is dense in M.
In fact, for each P (B)Wψ ∈ M and an arbitrary positive real number ε, we can

choose Bk ∈
{
Bi
}

such that (P (B∆Bk)Wψ|Wψ)
1
2
e <

ε
2 ([20], § 13, Theorem D) and

ψl ∈
{
ψi
}

such that ‖ψ − ψl‖ < ε
2 ; then we have

‖P (B)Wψ − P (Bk)Wψl‖e ≤ ‖(P (B)− P (Bk))Wψ‖e + ‖P (Bk)W (ψ − ψl)‖e ≤

(P (B∆Bk)Wψ|Wψ)
1
2
e + ‖ψ − ψl‖ < ε.
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For each g ∈ G, let Ue(g) be the unitary operator in He defined in M by

Ue(g)P (B)Wψ = P (g.B)WU(g)ψ (5.4)

and extended to He by linearity and continuity. This definition makes sense since

(Ue(g)P (B)Wψ|Ue(g)P (B′)Wψ′)e = (M(g.(B ∩B′))U(g)ψ|U(g)ψ′) =

(M(B ∩B′)ψ|ψ′) = (P (B)Wψ|P (B′)Wψ′)e

for all P (B)Wψ,P (B′)Wψ′ in M. Let Ls(He)1 be the closed unit ball of L(He)
equipped with the strong operator topology. The map g 7−→ (P (g.B),WU(g)ψ) of
G into the topological product space Ls(He)1 ×He is Borel for all B ∈ BX and all
ψ ∈ H by Lemma 3 (Remark 3), [6] and because the Borel structure of Ls(He)1×He
coincides with the product Borel structure. In addition, the map (A,ψ) 7−→ Aψ of
Ls(He)1×He into He is continuous. From this, Lemma 1, [6] and the equicontinuity
of the unitary group U(He), we can conclude ([4], Chapter III, § 3, Proposition 5)
that the homomorphism g 7−→ Ue(g) of G into U(He) equipped with the strong
operator topology is identical on U(He) with the weak operator one and makes
U(He) into a Polish group ([8], Lemma 4). Finally, we get that (Ue, P ) is a system
of imprimitivity for G based on X and acting in He .

Given the system of G-covariance (U ′,M ′), suppose that we have Hilbert space
H′e an isometric map W ′ of H′ into H′e, a system of imprimitivity (U ′e, P

′) for G
based on X and acting in H′e satisfying W ′∗P ′(B)W = M ′(B) for all B ∈ BX ,
W ′∗U ′e(g)W ′ = U ′(g) for all g ∈ G and suppose that the set M′ =

{
P ′(B)W ′ψ|B ∈

BX and ψ ∈ H′
}

is total in H′e. If Z is a unitary map of H onto H ′ establishing
the equivalence of (U,M) to (U ′,M ′), then the map P (B)Wψ 7−→ P ′(B)W ′Zψ of
M onto M′’ extends by linearity and continuity to a unitary map of He onto H′e
making (Ue, P ) and (U ′e, P

′) unitarily equivalent.

Let G be a locally compact group and let H be a closed subgroup of G. We
denote by IndGHU the (strongly continuous unitary) representation of G induced
from H by a strongly continuous representation U of H on a Hilbert space H. In
what follows, whenever G is second countable and H separable, we assume that
IndGHU is realized on L2(G/H,µ), the Hilbert space of all equivalence classes of
µ-square integrable maps of G/H into H, where µ is a G-quasi-invariant measure
on G/H. Moreover, we denote by PH the standard Borel projection-valued measure
on G/H acting in L2

H(G/H,µ) defined by PH(B)f = ψBf (f ∈ L2
H(G/H,µ))

Theorem 30. (Proposition 2, [6]) Let G be a second countable locally compact
group, let H be a closed subgroup of G, let µ be a G-quasi-invariant measure on G/H
and let H,H′ be separable Hilbert spaces. If (U,M) is a system of G-covariance in
H based on G/H, there are a strongly continuous unitary representation γ(U) of
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H on a separable Hilbert space K and an isometric map V of H into L2
K(G/H,µ)

satisfying
V Ug = IndGHγ(U)gV for all g ∈ G (5.5)

VM(B) = PK(B)V for all B ∈ BX (5.6)

and such that the set {
PK(B)V ξ| B ∈ BG/H and ξ ∈ H

}
is total in L2

K(G/H,µ).
The map V is surjective if and only if (U,M) is a system of imprimitivity.
If (U ′,M ′) is a system of G-covariance in H′ based on G/H and unitarily equiv-

alent to (U,M) and if K′ is the carrier space of γ(U ′), then the systems of imprim-
itivity (IndGHγ(U), PK) and (IndGHγ(U ′), PK′) are unitarily equivalent.

Proof. Applying Mackey’s imprimitivity theorem to the system of imprimitivity
(Ue, P ) constructed in Proposition 29 with X = G/H; so we get γ(U) and a uni-
tary map We of He onto L2

K(G/H,µ) making (IndGHγ(U), PK) unitarily equivalent
to (Ue, P ) and such that (5.5), (5.6) are satisfied with V = WeW . Obviously, V is
onto L2

K(G/H,µ) if and only if W is onto He, i.e. if and only if (U,M) is a system
of imprimtivity.

Remark 31. Equation (5.5) expresses the unitary equivalence of U to a subrepre-
sentation of IndGHγ(U); conversely, if an isometric map V of H into L2

K(G/H,µ)
establishes such an equivalence, then (5.5) is satisfied and we have V ∗V = IH. More-
over, if M is defined by (5.6), i.e. by M(B) = V ∗PK(B)V , then (U,M) is a system
of G-covariance in H based on G/H.

We present now Ali’s generalization of Mackey’s imprimitivity theorem in the
special case where the positive-operator-valued measure associated to the system of
covariance is commutative ([1]).

Let X be a metrizable locally compact topological space, let G be a metrizable
locally compact topological group, let H be a separable Hilbert space and let P be
a normalized positive-operator-valued measure as in Definition 24. We assume that
P is commutative, i.e. for all B1, B2 ∈ BX , P (B1)P (B2) = P (B2)P (B1). Let U
be a strongly continuous unitary representation of G on H. The pair (U,P ) forms
a commutative system of covariance if, for all g ∈ G and B ∈ BX , UgP (B)U∗g =
P (g(B)).

Let A(P ) be the commutative von Neumann algebra generated by the operators
P (E) for all E ∈ BX and denoteMI(X;A(P )) the set of all positive-operator-valued
measures b defined on BX such that b(E) ∈ A(P ) for all E ∈ BX and which satisfy
the normalization condition b(x) = IH. MI(X;A(P )) has a natural topology under
which it is compact and convex. Furthermore, the set of its extreme points E is a
Gδ and consists of all the positive-valued measures in it.
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Proposition 32. (Proposition 1, [1]) Let U be a strongly continuous unitary rep-
resentation of the metrizable locally compact group G on the separable Hilbert space
H and let X be a metrizable locally compact homogeneous G-space. Then there is a
normalized positive-operator-valued measure P on BX for which (U,P ) is a transi-
tive commutative system of covariance if and only if U is a representation which is
induced from a subgroup H of G and there is a probability measure ν on BX which
is invariant under H. Furthermore, given P , ν is uniquely fixed and conversely.

Proof. Let U be induced from the unitary representation V of H acting on the
Hilbert space H0 and let Y = G/H. Corresponding to H, let g = kghg be the
Mackey decomposition for any element g ∈ G such that kg ∈ G, hg ∈ H. The
coset representative kg ∈ G/H is to be chosen in such a way that ke = e, the
neutral element of G. Let β : Y → G be the Borel section for which, for all y ∈ Y ,
β(y) = kβ(y) . Then, following [26] we write H in the form H = H0 ⊗ L2(Y, λ) and

(Ugφ)(y) = B(g, y)φ(g−1(y)) (5.7)

for all φ ∈ H, where the multiplier B(g, y) is given by

B(g, y) = [ξ(g, y)]
1
2V (hg−1β(y))

−1,

where ξ is the usual Radon-Nikodym derivate for the quasi-invariant measure λ with∫
Y
u(g(y))dλ(y) =

∫
Y
u(y)ξ(g, y)dλ(y).

Suppose that ν is a probability measure on BX which is invariant H, i.e. ν(h(E)) =
ν(E) for all E ∈ BX and h ∈ H. For each x ∈ X and E ∈ BX consider the operator
Px(E) on H,

(Tx(E)φ)(y) = χE(β(y)(x))φ(y), (5.8)

where χE is the characteristic function of the set E. It is straightforward to check
that for fixed x, E 7−→ Tx(E) is a positive-valued measure on H. Moreover, for fixed
E, the function x 7−→ χE(β(y)(x)) is measurable. Hence consider

P (E) =
∫
X
Tx(E)dν(x) (5.9)

the integral being defined strongly. It is easy to verify that E 7−→ P (E) is a nor-
malized commutative positive-operator-valued measure. Furthermore, (U,P ) is a
system of covariance. Indeed, by (5.7) and (5.8), for all φ ∈ H,

(UgP (E)U∗gφ)(y) =
∫
X
dν(x)χE(β(g−1(y))(x))φ(y)

=
∫
X
dν(x)χE(β(g−1β(y)h−1

g−1β(y)
(x))φ(y)

=
∫
X
dν(x)χ(g−1β(y))−1(E)(h

−1
g−1β(y)

(x))φ(y).
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Hence, since ν is invariant under h ∈ H,

(UgP (E)U∗gφ)(y) =
∫
X
dν(x)χg(E)(β(y)(x))φ(y)

so that
UgP (E)U∗g = P (g(E)).

From Theorem, Section 2, [1], it follows that the positive-operator-valued measure
P in (5.9) is uniquely determined by ν.

Suppose that (U,P ) is a commutative transitive system of covariance. Then,
since the commutative von Neumann algebra A(P ) is invariant under the action of
G and the spectrum Y of A(P ) is a transitive G-space, it follows from Takesaki’s
extension of Mackey’s imprimitivity theorem to invariant von Neumann algebras,
that U is induced from a unitary representation of H .

6 Imprimitivity theorems in the context of C∗-algebras

Definition 33. ([39]) If A is a ∗-normed algebra ([37]) then a Hermitian left
A-module is a Hilbert space W on which A acts by means of a norm continuous
non-degenerate ∗-representation by bounded operators (2.2. [9]), action denoted by
aw for a ∈ A, w ∈W . If this action of A on W is by means of an antirepresentation,
then we speak about a Hermitian right A-module.

Let G be a locally compact group. We denote by L(G) the group algebra of
G, that is the ∗-normed algebra of all complex-valued functions on G which are
integrable with respect to left Haar measure on G with convolution as multiplication
and with the usual involution. If R is a strongly continuous unitary representation
of G on a Hilbert space W , then a ∗-representation, also denoted by R, of L(G) can
be defined by Rfw =

∫
G f(x)Rxwdx, for all f ∈ L(G), w ∈ W . Then we can define

on L(G) a C∗-algebra norm by

‖f‖C∗(G) = sup
{
‖Rf‖ : R is a unitary representation of G

}
.

The C∗-algebra obtained by completing L(G) with respect to this norm is called
the group C∗-algebra of G denoted by C∗(G) (see 13.9.1, [9]).

Definition 34. ([39]) If A is a C∗-algebra and if B is a C∗-subalgebra of A, then
a conditional expectation from A to B is a continuous positive projection of A
onto B which satisfies the conditional expectation property

P (ab) = bP (a) and P (ab) = P (a)b

for b ∈ B and a ∈ A.
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Let the pre C∗-algebra C = L(A)/J , where L(A) consists of operators on the C∗-
algebra A which provide bounded operators on every Hermitian A-module A⊗B V
which is induced from the subalgebra B via the conditional expectation P (see
Lemma 1.7, Theorem 1.8, [39]) and J is the ideal of operators of norm zero in L(A).

For each a ∈ A let La denote the operator of left multiplication on A by a. By
Proposition 3.2, [39], La ∈ L(A). Let E denote the linear span of the set of elements
of L(A) of the form LaPLc for a, c ∈ A. By Proposition 3.5, [39], E is a two-sided
ideal in L(A) and every element of E has an adjoint in E. Moreover, the image of E
in C is a two-sided ∗-ideal of C and, in particular, is a pre-C∗-algebra, also denoted
by E, called the imprimitivity algebra of the conditional expectation P .

Definition 35. ([39]) Let B be pre-C∗-algebra. A right B-rigged space is a right
B-module X (in the algebraic sense) which is a pre-B-Hilbert space (with compatible
multiplication by complex numbers on B and X) with preinner product conjugate
linear in the first variable such that 〈x, yb〉B = 〈x, y〉Bb for all x, y ∈ X and b ∈ B,
which implies that 〈xb, y〉B = b∗〈x, y〉B and such that the range of 〈, 〉B generates a
dense subalgebra of B. Left B-rigged spaces are defined similarly except that it is
required that B acts on the left of X, that the preinner product be conjugate linear
in the second variable and that 〈bx, y〉B = b〈x, y〉B.

It can be defined a seminorm on a B-rigged space by setting ‖x‖B = ‖〈x, x〉B‖
1
2 .

Definition 36. ([39]) Let A and B be pre-C∗-algebras. A left pre-Hermitian
B-rigged A-module is a right B-rigged space X which is a left A-module by means
of a continuous ∗-homomorphism of A into L(X) which is non-degenerate in the
sense that AX is dense in X with respect to the B-seminorm on X. If the B-
preinner product on X is definite and if X is complete with respect to the B-norm,
then we call X a Hermitian B-rigged A-module. Right pre-Hermitian left B-
rigged A-modules are defined similarly. If B = C, we say simply pre-Hermitian
A-module.

Given A and B two pre-C∗-algebras and X a pre-Hermitian B-rigged A-module,
by Theorem 5.1, [39], for any Hermitian B-module V we define a preinner product on
X⊗BV whose value on elementary tensors is given by 〈x⊗v, x′⊗v′〉 = 〈〈x′, x〉Bv, v′〉
and the action of L(X) on X ⊗B V which is defined on elementary tensors by
T (x⊗ v) = (Tx)⊗ v for T ∈ L(X), x ∈ X, v ∈ V is an action by bounded operators
of norm no greater that ‖T‖ with respect to this preinner product and any adjoint
of T acts as an adjoint of T on X ⊗B V . In this way we obtain a continuous
non-degenerate ∗-representation of the quotient C∗-algebra, C = L(X)/J , on the
corresponding Hilbert space AV . When restricted to A, this representation is still
non-degenerate, so that AV becomes a Hermitian A-module, called the Hermitian
A-module obtained by inducing V from B to A via X.

We define now an analog of the imprimitivity algebra E. We assume that X a
B-rigged space; L(X) is the natural analog for B-rigged spaces of the algebra of all
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bounded operators on an ordinary Hilbert space. In view of this, it is natural to look
for the analog of the two-sided ideal of compact operators. Now the ideal of compact
operators is generated by the operators of rank one. In the present setting we define
an analog of these operators. For any x, y ∈ X we let T(x,y) be the operator on X
defined by T(x,y)z = x〈y, z〉B for all z ∈ X. By Proposition 6.3, [39], E, the linear
span of the set of operators in L(X) of the form T(x,y), x, y ∈ X, is a two-sided ideal
in L(X), called the imprimitivity algebra of the B-rigged space X.

Theorem 37. (Theorem 6.29, [39]) Let A and B be pre-C∗-algebras and let X be
a Hermitian B-rigged A-module. Let E be the imprimitivity algebra of the B-rigged
space X. Then a Hermitian A-module W is unitarily equivalent to a Hermitian
A-module induced from a Hermitian B-module via X if and only if W can be made
into a Hermitian E-module such that

a(ex) = (ae)x (6.1)

for all a ∈ A, e ∈ E, x ∈ X, where ae is the product of a and e as elements of L(X)
(this product is an element of E).

Proof. If W is induced from a Hermitian B-module, then it follows from Theorem
5.1, [39] that W is also a Hermitian E-module satisfying (6.1).

Suppose, conversely, that W can be made into a Hermitian E-module satisfying
(6.1). Then by Theorem 6.23, [39] there is a Hermitian B-module V such that as
E-modules EV is unitarily equivalent to W . Let S be a unitary E-isomorphism of
EV onto W . By Theorem 5.1, [39], EV is an A-module such that a(eu) = (ae)u for
a ∈ A, e ∈ E, u ∈E V . Since the action of A on W is assumed to satisfy the same
relation, we have

S(a(eu)) = S((ae)u) = (ae)S(u) = aS(eu)

for all a ∈ A, e ∈ E and u ∈E V . But the linear span of the elements of the form eu
in EV is dense in EV and so S is a unitary A-isomorphism as well.

Rieffel showed how Mackey’s imprimitivity theorem for induced representations
of locally compact groups can be derived from the imprimitivity theorem for induced
representations of C∗-algebras (Theorem 37).

Let G be a locally compact group and let H be a closed subgroup of G. Cc(G)
denotes the algebra of the continuous complex-valued functions on G of compact
support. Let A and B denote the pre-C∗-algebras Cc(G) and Cc(H) respectively,
with A viewed as a pre-Hermitian B-rigged A-module. Let C(G/H) denote the
C∗-algebra of bounded continuous complex-valued functions on G/H with pointwise
multiplication and supremum norm ‖·‖∞ and let C∞(G/H) denote its C∗-subalgebra
of functions vanishing at infinity. Whenever convenient we tacitly identify elements
of C(G/H) with the corresponding bounded continuous functions on G which are
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constant on the cosets of H. To facilitate this, our notation will not distinguish
between points of G and points of G/H. According to Blattner’s formulation [3]
of Mackey’s imprimitivity theorem, a system of imprimitivity based on G/H for a
unitary G-module W is a representation of C∞(G/H) on W such that x(Fw) =
(xF )(xw) for all x ∈ G,F ∈ C∞(G/H) and w ∈ W , where (xF )(y) = F (x−1y) for
all y ∈ G.

Theorem 38. (Theorem 7.18, [39]) Let G be a locally compact group, let H be
a closed subgroup of G and let W be a unitary G-module. Then W is unitarily
equivalent to a unitary G-module induced from a unitary H-module if and only if W
can be made into a Hermitian C∞(G/H)-module such that

x(Fw) = (xF )(xw) (6.2)

for all x ∈ G,F ∈ C∞(G/H) and w ∈ W . (A representation of C∞(G/H) on W
satisfying the relation (6.2) is called a system of imprimitivity for W based on
G/H).

Proof. The necessity of the conditions follows from Proposition 7.3, [39].
Suppose that W is a unitary G-module which satisfies the conditions of the

theorem. We make W a Hermitian E-module. For any Φ ∈ E and w ∈ W , view Φ
as an element of Cc(G,C∞(G/H)) and define Φw by

Φw =
∫
G

Φ(y)(yw)dy (6.3)

Following the proof of Proposition 7.6, [39], it is easily seen that W becomes an
E-module giving a ∗-representation of E by bounded operators and in fact that

‖Φw‖ ≤ ‖w‖
∫
G
‖Φ(y)‖∞dy.

In particular, this last fact shows that the representation is continuous for the induc-
tive limit topology in the sense of Theorem 7.16, [39]. Finally, a standard argument
shows that the representation is nondegenerate ([3], [13], [16]). Applying Theorem
7.16, [39], we conclude that W is a Hermitian E-module.

Now, if f ∈ A,Φ ∈ E and w ∈W then, by using 7.14, 7.19, 7.20, [39], it is easily
calculated that

f(Φw) = (f ? Φ)w.

An application of Theorem 37 concludes the proof.
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7 The symmetric imprimitivity theorem

There are a number of Morita equivalences that play a fundamental role in the
study of the representation theory of crossed products. These equivalences go by
the name of imprimitivity theorems as the original motivation and statements can
be traced back through Rieffel’s work ([39]) and from there to Mackey’s systems of
imprimitivity [26], which we presented before. Most of these are subsumed by the
Raeburn’s symmetric imprimitivity theorem [36] which we reproduce here.

Definition 39. ([36], [42]) Let X be a (left) G-space and le x ∈ X. The orbit
through x is the set G · x =

{
s · x ∈ X| s ∈ G and x ∈ X

}
. The stability group

at x is Gx =
{
s ∈ G| s · x = x

}
. The G-action is called free if Gx =

{
e
}

for all
x ∈ X. The set of orbits is denoted by G \X.

Definition 40. ([36], [42]) If X and Y are locally compact Hausdorff spaces, then
a continuous map f : X → Y induces a map f∗ : Cb(Y ) → Cb(X) via f∗(ϕ)(y) =
ϕ(f(y)). If f−1(K) is compact in X when K is compact in Y , we call f a proper
map.

Definition 41. ([36], [42]) A locally compact G-space X is called proper if the map
(s, x) −→ (s · x, x) is a proper map from G×X to X ×X.

If X is a proper G-space we say that G acts properly on X.

Let X be a G-space and let (G,A, α) be a C∗-dynamical system, i.e. a triple
consisting of a locally compact group G, a C∗-algebra A and a continuous homo-
morphism α : G→ Aut(A). If f : X → A is a continuous function such that

f(s · x) = αs(f(x)) (7.1)

for all x ∈ X and s ∈ G, then x −→ ‖f(x)‖ is constant on G-orbits and gives a
well-defined function on G \X. The induced algebra is

IndXG (A,α) =
{
f ∈ Cb(X,G)| f satisfies (7.1) and G·x −→ ‖f(x)‖ is in C0(G\X)

}
.

Since IndXG (A,α) is a closed ∗-subalgebra of Cb(X,A), it is a C∗-algebra with respect
to the supremum norm. When the context is clear, we’ll shorten IndXG (A,α) to
IndXGα or Ind α.

Example 42. ([42]) Let H be a closed subgroup of a locally compact group G and
let (H,D, β) be a dynamical system. Then G is a right H-space with orbit space the
set of left cosets G/H. Then

IndGH(D,β) =
{
f ∈ Cb(G,D)| f(sh) = β−1

h (f(s)) for s ∈ G, h ∈ H

and sH −→ ‖f(s)‖ is in C0(G/H)
}
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IndGH(D,β) is nontrivial if β can’t be lifted to an action of G. If β = α|H for
a dynamical system (G,A, α), then ϕ : Cb(G,D) → Cb(G,D) given by ϕ(f)(s) =
αs(f(s)) defines an isomorphism of IndGH(D,β) onto C0(G/H,D). The algebra
IndGHβ is special to the imprimitivity theory.

The setup requires two commuting free and proper actions of locally compact
groups K and H on a locally compact space X. It is convenient to have one group,
K in this case, acts on the left and the other, H, on the right. Then the fact that
the actions commute simply amounts to the condition

t · (p · h) = (t · p) · s for all t ∈ K, p ∈ X and s ∈ H.

In addition, we suppose that there are commuting strongly continuous actions α and
β of K and H, respectively on a C∗-algebra A.

By [42, Lemma 3.57], there are dynamical systems

(IndXH(A,α),K, σ) and (IndXK(A,α), H, τ),

where
σ : K → Aut(IndXH(A, β)) and τ : H → Aut(IndXK(A,α))

are strongly continuous actions given by

σt(f)(p) = αt(f(t−1 · p)) and τs(f)(p) = βs(f(p · s)). (7.2)

The actions σ and τ are often called diagonal actions, because, for example, σ
is the restriction to Ind β of the canonical extension of lt ⊗ α on C0(X) ⊗ A to
Cb(X,A).

The symmetric imprimitivity theorem states that the crossed products Ind β ./σ
K and Ind α ./τ H are Morita equivalent.

We denote by Ccc(Y, Indcα) the collection of functions f ∈ Cc(Y × X,A) such
that

(a) f(y, s · x) = αs(f(y, x)) for y ∈ Y, x ∈ X and s ∈ G;

(b) there are compact sets C1 ⊂ Y and C2 ⊂ G \X such that f(y, x) = 0 if the
element (y,G · x) is not in C1 × C2, where Y is a locally compact space, X is
a locally compact G-space and (G,A, α) is a dynamical system.

By Lemma 3.53, [42] we can define E0 = Ccc(K, Indcβ) ⊂ Ind β ./σ K and
B0 = Ccc(H, Indcα) ⊂ Ind α ./τ H. Therefore E0 consists of A-valued functions
on K × X and B0 of A-valued functions on H × X which are viewed as dense
∗-subalgebras of the corresponding crossed products as in [42, Lemma 3.53].
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Definition 43. ([12]) Let A and B be C∗-algebras. A right-Hilbert A-B bi-
module is a Hilbert B-module F which is also a non-degenerate left A-module (i.e.
AF = F ) satisfying

a · (x · b) = (a · x) · b

〈a · x, y〉B = 〈x, a∗ · y〉B
for all a ∈ A, x, y ∈ F and b ∈ B.

Definition 44. ([38], [12]) Let A and B be C∗-algebras. A partial A-B imprimi-
tivity bimodule is a complex vector space F which is a right Hilbert B-module and
a left Hilbert A-module such that

a · (x · b) = (a · x) · b and A〈x, y〉 · z = x · 〈y, z〉B

for all a ∈ A, b ∈ B and x, y, z ∈ F . If A〈F, F 〉 = A (i.e. F is full as a Hilbert A-
module), we say that F is a right-partial imprimitivity bimodule. If 〈F, F 〉B =
B, F is left-partial imprimitivity bimodule. If both A〈, 〉 and 〈, 〉B are full,
then F is called an A-B imprimitivity bimodule. A and B are called Morita
equivalent if there is at least one A-B imprimitivity bimodule.

Theorem 45. ([36], [42], [12]) (Raeburn’s Symmetric Imprimitivity Theo-
rem) Suppose that we have free and proper actions of locally compact groups K and
H on the left and right, respectively, of a locally compact space X and commuting
strongly continuous actions α and β of K and H, respectively, on a C∗-algebra A.
Let E0 and B0 be viewed as dense ∗-subalgebras of Ind β ./σ K and Ind α ./τ H,
respectively, and define Z0 = Cc(X,A). If c ∈ E0, b ∈ B0 and f, g ∈ Z0, then define

c · f(p) =
∫
K
c(t, p)αt(t−1 · p))∆K(t)

1
2dµK(t)

f · b(p) =
∫
H
β−1
s (f(p · s−1)b(s, p · s−1))∆H(s)−

1
2dµH(s)

E0〈f, g〉(t, p) = ∆K(t)−
1
2

∫
H
βs(f(p · s)αt(g(t−1 · p · s)∗))dµH(s)

〈f, g〉B0(s, p) = ∆H(s)−
1
2

∫
K
αt(f(t−1 · p)∗βs(g(t−1 · p · s)))dµK(t),

where ∆K and ∆H are the modular functions of K, respectively H. Then the comple-
tion Z = ZKH is a Ind β ./σ K-Ind α ./τ H-imprimitivity bimodule and Ind β ./σ K
is Morita equivalent to Ind α ./τ H.

A similar symmetric imprimitivity theorem has been deduced independently by
Kasparov ([24, Theorem 3.15]) which gave a Morita equivalence for the reduced
crossed products.
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There is a number of special cases of the symmetric theorem that pre-date Rae-
burn’s theorem. One result due to Green is the case where A is the one-dimensional
algebra C of the complex number. This follows from Theorem 45 together with the
observation that IndXH(C0(X), rt) and IndXK(C0(X), lt) are identified with C0(X/H)
and C0(K \X), respectively.

Corollary 46. ([42], [12])(Green’s Symmetric Imprimitivity Theorem) Sup-
pose that K and H are locally compact groups acting freely and properly on the right
and left, respectively, of a locally compact space X. If the actions commute then
C0(X/H) ./lt K and C0(K \ X) ./rt H are Morita equivalent via an imprimitivity
bimodule Z which is the completion of Z0 = Cc(X) equipped with actions and inner
products given by

c · f(p) =
∫
K
c(t, p ·H)f(t−1 · p)∆K(t)

1
2dµK(t)

f · b(p) =
∫
H
f(p · s−1)b(s,K · p · s−1)∆H(s)−

1
2dµH(s)

E0〈f, g〉(t, p ·H) = ∆K(t)−
1
2

∫
H
f(p · s)g(t−1 · p · s)dµH(s)

〈f, g〉B0(s,K · p) = ∆H(s)−
1
2

∫
K
f(t−1 · p)g(t−1 · p · s)dµK(t)

for all c ∈ Cc(K ×X/H), b ∈ Cc(H ×K \ P ) and f, g ∈ Cc(X).

Corollary 47. ([42], [12]) Suppose that H is a closed subgroup of a locally compact
group G and that (H,D, β) is a dynamical system. Let σ : G→ Aut(IndGH(B, β)) be
defined by σr(f)(t) = f(r−1t). View E0 = Cc(G, Indcβ) and B0 = Cc(H,D) as dense
subalgebras of IndGH(D,β) ./τ G and D ./β H, respectively. Let Z0 = Cc(G,D). If
c ∈ E0, f, g ∈ Z0 and b ∈ B0, then define

c · f(r) =
∫
G
c(t, r)f(t−1 · r)∆G(t)

1
2dµG(t)

f · b(r) =
∫
H
β−1
s (f(rs−1)b(s))∆H(s)−

1
2dµH(s)

E0〈f, g〉(t, r) = ∆G(t)−
1
2

∫
G
βs(f(rs)g(t−1rs)∗)dµH(s)

〈f, g〉B0(s) = ∆H(s)−
1
2

∫
G
f(t−1)∗βs(g(t−1s))dµG(t).

Then the completion Z of Z0 is a IndGH(D,β) ./σ G-D ./β H-imprimitivity bimodule
and IndGH(D,β) ./σ G is Morita equivalent to D ./β H.
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The next result is a really corollary of the symmetric imprimitivity theorem.

Theorem 48. ([42], [12]) (Green’s imprimitivity theorem) Suppose that (G,A, α)
is a dynamical system, that H is a closed subgroup of G and that σ is the diago-
nal action of G on C0(G/H,A) defined in (2). Let γ(s) = ∆G(s)

1
2 ∆H(s)−

1
2 . View

E0 = Cc(G × G/H,A) and B0 = Cc(H,A) as ∗-subalgebras of C0(G/H,A) ./σ G
and A ./α|H H, respectively. Let Y0 = Cc(G,A). If c ∈ E0, f, g ∈ Y0 and b ∈ B0,
then define

c · f(s) =
∫
G
c(r, sH)αr(f(r−1s))dµ(r)

f · b(s) =
∫
H
f(sh)αsh(b(h−1))γ(h)dν(h)

〈f, g〉B0(h) = γ(h)
∫
G
α−1
s (f(s)∗g(sh))dµ(s).

E0〈f, g〉(r, sH) =
∫
H
f(sh)αr(g(r−1sh)∗)∆(r−1sh)dν(h).

Then the completion Y = Y G
H of Y0 is a C0(G/H,A) ./σ G-A ./α|H H-imprimitivity

bimodule and C0(G/H,A) ./σ G is Morita equivalent to A ./α|H H.

If G is a locally compact group, we denote by λG the left regular representation
of G, by C∗r (G) the reduced group C∗-algebra of G which is the norm closure of
λG(L1(G)), by M(A⊗C∗r (G)) the multiplier algebra of all adjointable operators from
A ⊗ C∗r (G) to itself and by δG the usual comultiplication on C∗r (G), δG : C∗r (G) →
M(C∗r (G)⊗C∗r (G)), which is the integrated form of the representation s −→ λ(s)⊗
λ(s).

A coaction of a locally compact group G on a C∗-algebra A is an injective
non-degenerate homomorphism

δ : A→M(A⊗ C∗r (G))

satisfying

(δ ⊗ idG) ◦ δ = (idA ⊗ δG) ◦ δ and δ(A)(1⊗ C∗r (G)) ⊂ A⊗ C∗r (G).

If α : G→ Aut(α) is an action, we denote the canonical embeddings in the crossed
product by iA : A → M(A ./α G) and iG : G → UM(A ./α G). We write uG : G →
UM(C∗(G)) for the canonical embedding of G in its group algebra. Composing the
integrated form (iA ⊗ 1) ./ (iG ⊗ uG) with the regular representations of A ./α G
and C∗(G) gives a homomorphism which factors through a coaction α̂ : A ./α,r G→
M((A ./α G)⊗ C∗r (G)), called the dual coaction of G on A ./α,r G ([34]).

If H is a closed subgroup of G, a theorem of Herz implies that the integrated
forms of λG|H and λH have the same kernel in C∗(H). Thus λG|H factors through
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an injective and non-degenerate homomorphism CH : C∗r (H)→M(C∗r (H)). By [34,
Example 2.4], for normal H, if ε : A → M(A ⊗ C∗r (H)) is a coaction of H, then
InfGHε = (idA ⊗ CH ◦ ε) : A → M(A ⊗ C∗r (G)) is a coaction of G on A, called the
inflation of ε to G.

Echterhoff and Raeburn inflated the dual coactions on the crossed products in
the symmetric imprimitivity theorem and the next theorem states these inflated
systems are Morita equivalent in the sense of [5], [10].

Theorem 49. ([11, Theorem 2]) Let K and H be closed subgroups of a locally
compact group G. Then the systems

(IndGH(D,β) ./τ,r K, InfGK(τ̂)) and (IndGK(D,α) ./σ,r H, InfGH(σ̂))

are Morita equivalent, where τ and σ are the diagonal actions.

Remark 50. ([11]) In Theorem 49 the coactions are inflated up to the group G: K
and H could both lie in a smaller subgroup L, but the inflated coactions of L need not
be Morita equivalent. For example, suppose K =

{
e
}

, so that we can take L = H.
If further D = C, then IndGKC = C0(G), IndGHC = C0(G/H) and the symmetric im-
primitivity theorem states that C0(G) ./σ H is Morita equivalent to C0(G/H). Since
K =

{
e
}

, the inflated coaction of H on C0(G/H) is trivial and an H-equivariant
version of the theorem would imply that (C0(G) ./σ H) ./σ̂ H is Morita equiv-
alent to C0(G/H) ⊗ C0(H); by the Rieffel correspondence, this equivalence would
induce a homeomorphism on spectra. But the spectrum G of (C0(G) ./σ H) ./σ̂
H ∼= C0(G)⊗ K(L2(H)) need not be homeomorphic to the spectrum G/H ××H of
C0(G/H)⊗ C0(H) for example if G = IR and H = ZZ.

Remark 51. ([11]) The symmetric imprimitivity theorem of [36] concerns a locally
compact space X which carries commuting free and proper actions of two groups
K and H. Remark 50 shows why we do not expect an equivariant version in this
generality.
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