Surveys in Mathematics and its Applications

ISSN 1842-6208 (electronic), 1843-7265 (print)
Volume 8 (2013), 77 — 90

M-STRONGLY SOLID MONOIDS OF

GENERALIZED HYPERSUBSTITUTIONS
OF TYPE 7 = (2)

Sivaree Sudsanit and Sorasak Leeratanavalee

Abstract. The purpose of this paper is to characterize M-strongly solid monoids of generalized
hypersubstitutions of type 7 = (2) which is the extension of M-solid monoids of hypersubstitutions

of the same type.

1 Introduction

The concept of a generalized hypersubstitution is a generalization of the concept
of a hypersubstitution. It is used to study strong hyperidentities and strongly
solid varieties. Firstly, we give briefly the concept of the monoid of all generalized
hypersubstitutions.

Let X := {x1,x9,x3,...} be a countably infinite set of symbols called variables.
Let (f;)icr be an indexed set which is disjoint from X. Each f; is called an n;-ary
operation symbol, where n; > 1 is a natural number. Let 7 be a function which
assigns to every f; the number n; as its arity, written as (n;);er and is called a type.

An n-ary term of type 7 is defined inductively as follows :

(i) The variables x1,xa, ..., x, are n-ary terms of type 7.

(ii) If t1,t9,...,ty, are n-ary terms of type 7, then f;(t1,t2, ..., ty,) is an n-ary term
of type 7.

By W.(X,), we denote the smallest set which contains x1,x2, ..., 2, and is closed
oo

under finite application of (ii). Let W, (X) := U W-(X,) and is called the set of
n=1

all terms of type T.
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A generalized hypersubstitution of type T = (n;)icr is a mapping o : {fi|i €
I} — W.(X) which does not necessarily preserve the arity. We denote the set
of all generalized hypersubstitutions of type 7 by Hypg(7). To define a binary
operation on Hypg(7), we define first the concept of a generalized superposition of
terms S™ : W, (X)™ ! — W, (X) by the following steps:

(i) Ift =z;,1 <j <m, then S™(xj,t1,...,tm) :=t;.
(ii) If t =x5,m < j € N, then S™(xj,t1, ... tm) = ;.

(iii) If t = fi(s1,.., Sn,), then
Sm(t,tl, ...,tm) = fi(Sm(Sl,tl, ...,tm), ey Sm(sm,tl, ...,tm)).

Every generalized hypersubstitution ¢ can be extended to a mapping
6 : Wr(X) — W-(X) inductively defined as follows:

(i) 6[z] =z € X,

(i) o[fi(tiy....tn;)] := S™(o(fi),G[t1], .., O[tn;]), for any n;-ary operation symbol
fi and supposed that [t;],1 < j < n; are already defined.

Then we define a binary operation og on Hypg(7) by 01 oG 09 := &1 0 03 where
o denotes the usual composition of mapping and 01,09 € Hypg(7). Let 0,4 be
the hypersubstitution which maps each n;-ary operation symbol f; to the term
fi(z1, ..., zp;). In [3], S. Leeratanavalee and K. Denecke proved that :

Proposition 1. ([3]) For arbitrary terms t,t1,....t, € Wr(X) and for arbitrary
generalized hypersubstitutions o, 01,09 we have

(i) S™(olt],olt1],...,oltn]) = 6[S™(t, t1, ..., tn)],
(ZZ) (5’1 (¢] UQ)A: 5’1 e} &2.

Proposition 2. ([3]) Hypa () = (Hypa(7); oc, 0iq) is a monoid and the set of all
hypersubstitutions of type T forms a submonoid of Hypa(T).

As usual, instead of f(z,y) we write also xy.

Let 7 = (n;)ier be a type with the sequence of operation symbols (f;);c;. Let
t € Wr(X,) for n € N and A = (A4; (fA);er) be an algebra of type 7. The n-ary
term operation t* : A" — A of type 7 is inductively defined by

(i) tA(al,ag, v ap) i=a; if t =z € X,

(ii) t4(a1,ag, ..., an) := A (t{ (a1, az, ..., an), ..,tﬁi(al,ag, .ty Qp)) if t is a compound
term fi(tl,tg, ...,tni).
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Let s,t be n-ary terms of type 7 and A be an algebra of type 7 = (n;);c;. An
equation of type T is a pair (s,t) ; such pair are commonly written as s ~ t. The set
of all equations of type 7 is denoted by E.(X).

An equation s ~ t is an identity of A, denoted by A |= s ~ t if sA = ¢4,

Let K be a class of algebras of type 7. The class K satisfies an equation s = t,
denoted by K = s~ t, if for every A € K, A E s =~ t.

Let 3 be a set of equations of type 7. The class K is said to satisfy >, denoted
by K E X, if K s~ tforevery s~teX. Let

[dK = {s~t € B, (X)|K = s~ t},

Mody := {A € Alg(1)|A = £}

We denote the class of all algebras of type 7 by Alg(7). Let V be a nonempty
subset of Alg(7). V is called a variety if V = ModIdV .

Theorem 3. A non-empty subset V' of Alg(7) is a variety if and only if V.= Mod%
for some ¥ C E-(X).

Let M be a submonoid of Hypg(7). An identity s & t of a variety V of type
7 is called an M-strong hyperidentity if 6[s| ~ &]t] is an identity in V for any o € M.
If every identity satisfied in the variety V is an M-strong hyperidentity, we call the
variety V be an M-strongly solid. A single semigroup S is called M-strongly solid if
the variety V(S) generated by S is M-strongly solid.

Definition 4. Let M be a submonoid of (Hypa(T);oq,0:iq). M is said to be M-
strongly solid if the reduct (M;oq) is M -strongly solid.

2 M-strongly solid submonoids of Hyps(2) which
M is implied to {o;4}

Throughout this paper, we restrict ourselves to study on the type 7 = (2). Let
f be a binary operation symbol. By o; we denote the generalized hypersubstitution
which maps f to the term ¢ in W) (X). Let OF and E* be the set of all positive
odd integers and the set of all positive even integers, respectively. For s € W(y) (X)
and 2 < m € N we denote :
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s? := the dual term of s obtained by rearranging all variables
occurring in s from right to left,
s’ := the term obtained by interchanging of 1 and xy occurring
in s,
s* := the term obtained from s by replacing of letter 1 by x,,,

:= the term obtained from s by replacing of letter x5 by =,
:= the set of all variables occurring in s,

the length of s,

the first variable (from the left) occurring in s,

the last variable occurring in s,

{s € Wig)(X)[var(s) = {z1}},

=
Il

We, = {s € Wg)(X)|var(s) = {z2}},
W = {s &€ Wyo(X)|z1,22 & var(s)},
Wg ({z1}) = {s€ Wy)(X)|r1 € var(s), z2 ¢ var(s)},
Wi ({z2}) = {s € W)(X)|zz € var(s), z1 ¢ var(s)},
WG ({z1}) = WG {zi})\Wa,,
WO = W)\ e
W&({@})xd = {se (2)({xl})|leftmost( s) = xj where i € {1,2},j € N},
W(%({xz})’”k = {se (2)({mz})\rzghtmost( s) =z, where 7 € {1,2}, k € N},
W(%({xz})iﬁ = {se (2)({x2})\leftmost( s) = xj and rightmost(s) = xy,
where i € {1,2},j,k € N},
PG(Q) = {U:Ei € HypG(2)|7’ €N,z € X}a
D¢ = {oy,, 0,01 € G},
P’iab = {ng,axi\a,b iEN}
G = {os€ Hypc(2)|s € Wiy (X)\X, 21,72 & var(s)},
Gz, = {os€ G|leftmost(s) = a:m,2 <m € N},
G*™ = {os € Glrightmost(s) = xm,2 < m € N},
Gy = {os € Glleftmost(s) = xy, and rightmost(s) = zy,
2 <m,n € N},
T; = {oy,0u} wheret; € WG ({xl})ﬁ or WG ({:1:2})3,2,
B, = A{oy,0p, 04y O (1) i} Where t; € W ({:El})ﬁ or W(Q)({CBQ});E?,
Ci = {oy,01} wheret; € Wg {x1})am

Let M be an M-strongly solid submonoid of Hypg(2). Clearly, (zy)z ~ x(yz)
is an identity in V(M) and for all ¢ € Hypa(2),4(6]xy]) < €(6[6[xy]]). Since
5l(zy)2] = S2((f), S0 (f),2,9), 2), 6la(y?)] = S(o(f), 2, S*(0(f), y,2)) and if
there exist x1,z2 occurring in o(f) k times and [ times respectively, then after
substitution there will be 2 occurs k? times and z occurs [ times in &[(zy)z] and z
occurs k times and z occurs [? times in 6[z(yz)]. Since M is M-strongly solid, so
o((zy)z] = &[x(yz)] is an identity in V' (M). Thus there exist a,b € N,a # b such
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that 2% ~ 2® is an identity in V/(M). Hence 0% = o*. If £(&[zy]) < £(6[6[xy]]), then
0% # o’ which is a contradiction. Therefore £(6[xy]) = £(6[6[zy]]).
Let U = {olo € Hypa(2) and ((6[xy]) = ((o]ofxy]])}
= {0id, Ozpay } U {ot|t € Wy UW,, UW U WG y{z1h U W ) ({a2})} -
Thus M CU.

Proposition 5. Let M be an M-strongly solid submonoid of Hypa(2). If M is one
of all subcases from Case 1-5, then M is implied to {o;q}.
Case 1: For i,m,n,k € N (m,n,k > 2).

1.1. M = {044,042, } U A, where A is one of these sets : {oy|t € W(%({$1})m1},
{orlt € WG ({ar)) m}u<U{%}), forlt € W&({xa})xm,oxm}u(Lﬂg{%}).

1.2. M ={0id,04,,002,} UA, where A is one of these sets : {o¢|t € W(%({xl})ﬁ},
{O't|t € W ({:1:2} } {at|t c WG ({z1})z }U<U{0‘xk}>, {at|t € W(%({:L‘g})%}

U (g{azk}), (g{m}) y (9{%}): (g;fk}) y (9{%}).

1.3. {0i4,00,,02,F € M C A, where A is either {o;q,04, } U {0t € Wy,} or
{0id, 00y} U{oe|t € Wy, }.

14 {O'id,O'zl,O't,O'xm} g M g {O'Z‘d,O'xl,O't,O'mm} U (U{Uzk}>; where Ot S Ga:m
3k

1.5. {Uiduaitl)o-xzvatvaxmao-xn} g M g {O-idao-xpo-xzvo-tvo-wmao-xn} U <U{U:Ck}>7
Ik
where oy € G .

1.6. {O-idao-xl)o-xzvo-tvo-xm} CMC {Uidaax170x27atuaxm} U (U{ka}>’ where t €

3k
(2)({351})

1.7. {0id, Oy Onys 04,05, } C M C {0id,02,, 044, 0t, 0z, } U (U{O‘xk}>, where t €

- dk
(2)({332})

1.8. {Uzd,0m1,0x2}U<UT> CMC{J,d,le,JIQ}U<UT> <g{amk}>.

i Vi
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1.9. {Gida0-2170-:vmlzm2...xmwO-:Elme...wmrvO-xmlme...:rmrilxzaUmml} CMC {Uid70$17

Oy Tmg - Tmp ) OZ1Tmg - Zmy s OTimg Timg - my._ 25 Oy } U U{Uﬂﬁk }> , where m; >

dk
2 Vle N,reN.
1.10. {Uidu 02150225 Omy Tomg - Ty ) OT1@mg o Ty ) OBy Trng oo Ty 20 Ty U:cmn} CMC
{Gidv
02150225 Oy Tmg - Ty ) OT1@mg Ty ) OBy Trng oo Ty 20 Ty 2 Oy }U < U{O'zk}> s

3k
where m; > 2 VI e N;r € N.

Case 2: For i,m,k € N (m,k > 2).

2.1. {0ia} C M C {0,q}UA, where A is one of these sets : {o¢|t € Wy, }, (UPP),
Vi

(Un)
Vi
2.2. M = {oq} U (U{%}) U A, where A is either (U{%Zi }) or (913}2> .

3k 3
Case 3: For i,a,m,k € Nja>1 (m,k > 2).
3.1. {oia} C M C {0} U{oe|t € Wy, }.
3.2. {0i4,01,05} C M C{oiq} U{oy|v € W, UW}, where t € Wy, and

3.5. {Jid,agjm}U<U{0x§}> C M C{0id, s, }U{0ugla > 1}U{oy|t € Wg)({xg})m}
da

3.4. {Uid} @) <U{O’xf2l}> @) <U{Jti|0ti S G%n}) U {o’xgn} Cc M C {Uid7ggjk} U
Ja Ji
{ozgla > 1} U{or]or € G'™} U {oge |a > 1}.
3.5. {0} U <L3J{ati|ati € me}> U <gj{axg}> U (LHJ{USM € Wg)({@})zz}) U
(U{U$%}> U{Ut;*} C M C{oig, 04, }U{ot|or € GI’"}U{ng]a > 1}U{osls €
Ja
W(%({xg})l"?} U{oga } U{op=}.
Case 4: For i,k € N (k> 2).
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41 M = {O—idyo—zg.rpo—a?lyo—zg}u (UE)

=0
4.2. {0idy Ongays OnysOny t © M C A, where A is either {04, Ogprys Tuyt U {O'mzi”b. €
O} or {Gid, Ougzys Oy s Oy } U {ogili € Et}.
4.3 {0idy Ongays OnysOny } © M C A, where A is either {04, Ogonys Ouy t U {Uwé’i €
O} or {0id, Owgwys Oy s Oy } U {ogili € Et}.

4.4. M = {0i4,0non,s0ny, Oy } U <U{ka}> UA , where A is one of these sets :
Jk

(ngawﬁ}), (ﬂ%{%g}), <Hig+{ox;}), (Hg+{az;}), (HE P?).
Case 5: {0ig, Oppey } U (3&& ]32.12> C M C {0ig,0ppe,} U <ng+ pl.12) U

(U{ka}>, where i,k € N and k > 2.
3k

Proof. For Case 1, we have V(M) | xyr =~ yx. Since M is M-strongly solid,
so ¢lzyz] ~ 6lyx] € IdV (M) for all 0 € M. Since o,, € M for all M, we get
Oz, [0t[xyx]] = 64, [0¢lyx] € IdV (M) for all o, € M. Thus z =~ y € IdV(M).
Therefore M is implied to {o;q}.

The proof of Case 2-5 are similar to the proof of Case 1 in which for Case 2
V(M) | 2? = z,7yz ~ yr and oze € M where a € N, therefore M is implied to
{oia}. Case 3 V(M) = 2® =~ z,zyx ~ zy and 0.9 € M where a € N, therefore M
is implied to {o;q}. Case 4 V(M) | 2?y?2z? ~ y?2? and 0,, € M where a € N,
therefore M is implied to {oy}. Case 5 V(M) | 2 ~ x,2%y%? ~ y*z? and
0gs € M where a € OF, therefore M is implied to {o;q}.

O

3 M-strongly solid submonoids of Hyps(2) which
M is not implied to {04}

In this section, we consider M C U where M is M-strongly solid submonoid and
M is not implied to {o;q}. Since M has a lot of elements. It is difficult to write all
submonoids M of U in the exactly form. But there are some cases where it is clear
that M is not implied to {oq}.

Proposition 6. Let M be an M -strongly solid submonoid of Hypg(2). If M is one
of all subcases from Case 1-2, then M is not implied to {o;q}.
Case 1:
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1.1. M ={0id4, 00y, }-
1.2. {054} C M C {054} U A, where A is one of these sets : {o4|t € W}, {oy|t €
(2)({.%'1} )ar }» {oelt € WG ({xQ}) 2, < U T,) and | M| > 2.

VieN

1.3. {0id, Oz, } C M C{0id, Ogoa, JUA, where A is either( U DZG> or < U Bi)
VieN VieN
and |M| > 4.
1.4. {oig,0t,0s} C M C {oiq} U{oy|lv € WU A}, wheret € W, s € A and A is
either W ({:1;1}) or W(2)({:172}).

1.5. AU{oy, 05,00, C M C AU {oylu € WU WG {x1}) U WG ({mg})} where

teW,se W(%({xl})}, v e (2)({x2}) and A is either {Uzd} or {idy Oy, }-

Case 2: For i,a,b,m,k € Nya,b>1 (m,k > 2).

2.1. {0id; Onyz } C M C {0id, Oy } U < U I)iu> and |[M| > 4.
VieE+

2.2. {0i4,01,05,00} C M C{ojqt UAU{oy,|u € WUWG ({131})zm}, where s € W,
NS W ({$1})zm, t € A and A is either {03 |a > 1} or {ol,|b > 1}.

2.8. M = {0ig, Oape, } U <UP;2> U <L3JB>

Ja
2.4. {0ia,05,,00} UA C M C {oiq} U{og, la > 1} U{osls € WU (2)({301})
(%({xg})zm} wheret € W and A is either {0, 0.} withv € W, ({xl}),u €
WG {22}z, or {oe, 05} with e € WG ({21}, f €W, ({ﬁz})xm

2.5. {0i4,05,, 00} UAC M C {0y} U{og,la> 1} U{oss € WU WG ({:El})mm U
Wg)({xg})} wheret € W and A is either {0y, 0y} withv € W ({xl})xk U €
W(%({xg}) or {oe,0¢} with e € (2)({331}) ,f € W(%({J:g})g”k.

2.6. {0jq,02 05,00} UA C M C {034} U{o2 |a > 1} U{ol|b > 1} U {os|s €
W u WG {x1}) U Wg)({xg})}, where t € W and A is either {o,,0,} with
v € WG ({xl})xm,u € W(%({xg}) or {oc,0¢} with e € W(%({xl}),f €

(2)({372})“”
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2.7. {Gid,Jzﬂl,agl,agwat,as,av} C M C {0id,00pa, } U{0ag]a > 1} U {0'$127|b >
1} U{oylu € WU Wg)({xl}) U W(g)({xg})}, where t € W, s € Wg)({ml}),

v E Wg)({azg})

Proof. Let M be an M-strongly solid submonoid of Hyp(2) and let M is one of all
subcases in Case 1, we have o, ¢ M where t € Wy, or W,,. And for M in the Case
2, we have o, or 0., ¢ M and M is not idempotent. So we get z ~y ¢ IdV (M).
Therefore M is not implied to {o;4}. O

Next, we consider the remaining cases which M can be classified into three groups
by using V(M) as a tool.

Proposition 7. Let M be an M -strongly solid submonoid of Hypg(2) and i, j,a, m,
k€ Nya > 1 with m,k > 2. If M is one of the following cases, then V(M) C
Mod{(zy)z = x(yz),g = h} where leftmost(g) = leftmost(h).

1. {O-idao-x%vo-tao-x%} C M C{0id,02,,} U {0':1:‘11} U{oslos € G}, where oy € Gy,

2. {0id; Oy 028,01, 0n,py s Oza } © M C {044, 00y, 00, }U{02e }U{0s|0s € G}, where
ot € GCEm

J. {Uid’axm’o-xk’aff(f’at’gff?n} CMC {UidaUxm70'xk}U{Ux(f}U{Us’S € W}; where
o € Gmm

4. {oiq, 00,053 € M C {0} U{oylv € Wy, Um} where t € W, ,
s € W(%({l‘l})xl and in case of |M| =3, then o, ¢ M.

5. M = {0i0,00,} U (Lﬂ*w) 0 (U{at e WG ohn) ).
6. (o} (Uto) ) U (Utorlon, € 6o, ) U (Utowlss € WG (Garhin} ) 0

Ja i 33
{O'wgn,O's;f} C M C {0i4,00,} U{owela > 1} U{oiloy € Gy, } U {os|s €

Wg)({xl})m} U{oas, Us;}-
7. ({01,000, 0,05} € M C {oiah U {onlo € WU W, UWG ({z1])}) \ My,
wheret € W, s € WG ({;1:1}) and {0id, 0z, 02, 0u} C My C {044, 04,,0u} U

(JH{ow ), where w € WG ({21}, -
3k
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Proof. Let M be an M-strongly solid submonoid of Hypg(2). Clearly, (xy)z =~ z(yz)
is an identity in V(M). Let g &~ h be an arbitrary identity in V(M) and ¢,d € N,
where ¢ # d. From o,c € M and oy¢ 0 04¢ = 0g¢ © Opd = Oag and for all o €
M,6(g) =~ &[h] € IdV (M) it follows that the first variables in g and h are the same.
Thus V(M) C Mod{(xzy)z =~ z(yz),g = h} where leftmost(g) = leftmost(h). O

The examples of M and V(M) corresponding to Proposition 7 as follows.
L. {0id, 0x2,01,000 } © M C {04,004, } U{0ozs} U{os|os € G}, where 0y € Gy,

2. {oig,01,0sF € M C {ojq} U{oplv € Wy, U Wg)({xl})ml}, where t € Wy,
s € W(%({xl})xl and in case of |M| = 3, then o4, ¢ M.

3. M = {010.02,} U (gaj{axg}) y (U{amt ¢ WG (o)}

i {o}U (gm) U (Lﬂ;{%\ati € Gu} U (g{asj|sj € WG e} ) U

{awgn,as;f} C M C {0i4,00,} U{owla > 1} U{oiloy € Gy, } U {os|s €
Wg)({xl})m} U {0, , Us;}-

For M in each case, we have V(M) C Mod{(zy)z ~ xz(yz), 2> ~ z, zyx ~ xy}.

Proposition 8. Let M be an M -strongly solid submonoid of Hypg(2) and a,m,k €
N,,a > 1 with m,k > 2. If M is one of the following cases, then V(M) C
Mod{(zy)z = x(yz), g = h} where rightmost(g) = rightmost(h).

1. {0id, Ouyy Oy} © M C {0ig, 04 U{0zgla > 1} U (U{ka}>, where oy € G.
Jk

2. {0id; 0zg, 00,5 0z} © M C {oiq} U{ozgla > 1} U{ow|t € W}

o

{Cidy Oy, 01,05} C M CH{044,04,} U{oy|v € W}, where 04,05 € G.

BN

- AGidy Ouy, 00y, 00} T M C {044, 02, } U{02g]|a > 1} U{os|s € W}, where oy € G.

S

M ={0i4,04,,01} U (U{azk }> , where t € I/V(CQ*V)({xQ})I2

Jk

S

({01 Oason, 05} € M C {oia} Ufoulv € WU Way UWG ({22})}) \ My,

where t € W, s € WG ({xg}) and {04, 025,04, 00} € My C {044, 02,,00} U

(U{m}) where v € WG ((z2))7™.

Jk
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7. {Uz‘d,%g,%m,gxk,gt} CMC {O'id}U{ngm > 1}U{08|5 € WUW(CQ;)({mZ})IQ}’
where t € Wg)({$2})$2.
Proof. Let M be an M-strongly solid submonoid of Hypg(2). Clearly, (zy)z =~ z(yz)
is an identity in V(M). Let g &~ h be an arbitrary identity in V(M) and ¢,d € N,
where ¢ # d. From 0,5 € M and 0,500, = 04 00,4 = Ous and for all 0 € M, d[g] ~

a[h] € IdV (M) it follows that the last variables in g and h are the same. Thus
V(M) C Mod{(xzy)z = x(yz),g ~ h} where rightmost(g) = rightmost(h). O

The examples of M and V(M) corresponding to Proposition 5 (4.3) are as follows.

L. {0id, Ouy, 02, } © M C {0ig, 01} U{0zgla > 1} U <U{amk}>, where 0y € G.
3k

2. M ={044,04,,00} U (U{ka}), where ¢ € W(%({xg})m.
3k
For M in each case, we have V(M) C Mod{(zy)z ~ x(yz),2? =~ x, zyx ~ yz}.

Proposition 9. Let M be an M -strongly solid submonoid of Hypg(2) and i, j,a, m,n,
k€ Nya > 1 and m,n,k > 2. If M is one of the following cases, then V(M) C
Mod{(zy)z ~ x(yz),g ~ h} where le ftmost(g) = leftmost(h) and rightmost(g) =
rightmost(h).
1. {0idy Ozy+Ony, 01,05 C M C {ojq} U{ow|v € Wy, UW,, UW U W(%({xg})},
wheret € W, s € W(%({:cg}) and M is not implied to o;q.

2. {0ia, 0ug,01, 05,00} © M C {0ia} U{oagla > 1} U{oufu € WUWE ({21})a, U
Wg)({.%'g})m2 }, wheret e W, s € Wg)({ml})xl, v E W(%({a:g})f;fn

Tm

3. {0id, Oy, 01, 05,00} C M C {0iq, 04, }U{ou|u € WUW(%({xl})UW(%({J:Z})xm}f
wheret e W, s € W(%({xl}), v e Wg)<{l‘2})xm and M do not implies to o;q.

4. {0id, 0z, 025} U <U{Ut¢|0ti € Gﬁ’:ﬂ}) U{0s,,,02,} UA C M C {04,042, } U
D

{o¢|t € WUW,,}, where A is either ( U{agg%}) U{oga} or ( g{%g}) U{oga}.

Jda

5. {oiq} U (Up;?) U (y{%\oti € Ggfn}) U om0} © M C {oia} U

i

<9P32> {01,101, € G2} U oy 0y }U (U{%})

dn
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10.

11.

12.

15.

1.

15.

{O—id70-$170—$2} U <U{O—t1‘0—tz e Ggi}) U {J$m70$k} g M g {O-’id70—$170—1‘2} U
3
{o]t € W}.

M = {0id, Ouyiys Oays Oy } U (g{%}) U ( U PP) U ( U 13].12).

JicO+ Jjek+

N

(100200223 U (ol € 622 ) U (0o} U o) € 01
=0

(01t 022,022 U oot € G25) U (00} Ul U (U ).
dn

N

{0id, Oggar } U <U{Utmat;ﬂ’0ti € Gi;}) U <UP]12> U {Umfn’axf;} c M

3 35

(7220 Ut ol € 6223 )u(UR? ) toy 00 Utend).
Vg dn

Vi

v=oahu(Ur2) (U{at € WG (i)

=)
M = {044, 0%,,0z, }UA, where A is either <U{chlz}>U<U{Uti]ti € W
Ja =l
(Ut ) u (Utowts € WG (@D} ).
da =)
{014,003, 00,05} © M C {0ia,00,} U {oulv € WU € WG ({21})}, where
teW, sc W

{Cidy Oy s Oy, 002, 0,00} C M C {044, 02, fU{0s|s € WUW,, UW(%({xl})},
where t € Wg)({ml})

{0idy 021,00,y UA C M C {044, 02,,0z,} U {oe|t € WU (2)({1'1})} where
A is either {os,0,} with 05 € G,u € W(Q)({xl}) or {os,,00} with v €

W(g)({xl})xk'

(01t O g 02 00,0} € M € oi0.01,02,)0( N} ) lolu € WG (G,
3k
where t, s € W ({xl})
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16. {O'idao'tao's,o'vao'u} CMC {Jid} U {0w|w € W:m U sz U WG ({$1})%U €
Wg)({@})ig}, where t € Wy,, s € Wy,, v € WG ({ml})ii, u € Wg)({m})ig
and M is not implied to o;q.

17. {0idy Onomys Onys Ong, 01, 05t C M C {04q, Opony JU{0w|v € WMUWIQUW ({1‘1})
U Wg) {z9})z2}, where t € Wg) {z1})as, s € Wg) {z2})22

18. {0i4,024,0z,,,01,0s} C M C {0i4,04,} U{op|v € WG ({a:l})xk UW ({a:g})
W}, where t € Wg)({:cl}) , S € Wg)({xg})

19. {0id, 025,01, 05,00} C M C {0iq} U{og [a > 1}U{oyu|u € WUWG ({z1})*m U

W(%({xg})x?}, wheret € W, s € W {xl})ﬁ’f, v e WG ({31;2})%’2

20. {0iq,009,025,01,05,00F C M C {0oiq} U{og, la > 1} U {ol,1b > 1} U{oulu €
W u W ({xl})xl U WG ({xg})m} where t € W, s € (2)({1’1})351, v €

(2)({952})”-

21. {0id,Ouy,0uq,0t,05,00} C M C {059} U{ou|u € Wy, UW,, UWUWg)({xl})U

(2)({m2})} where t € W, s € WG ({xl}) v € W(%({:Ug}) and M is not
implied to o;q.

22. {0idy Ougrys Onys Oy Oty Os, Op } C M C {054, Onguy } U{ou|u € Wy, UW,, UW U
W(%({xl}) (2)({1‘2})}, wheret € W, s € W ({xl}) v e W ({$2})

Proof. Let M be an M-strongly solid submonoid of Hypi(2). Clearly, (zy)z =~ x(yz)
is an identity in V(M). Let g =~ h be an arbitrary identity in V(M )and ¢,d € N
where ¢ # d. From ou¢,0, g € M and o4¢ 0 0, 4 = Oug, Oug O Opd = Ouf and
for all o € M,6[g] ~ &[h] €1 dV (M) it follows that the first variables in g and
h are the same and the last variables in g and h are the same. Thus V(M)
Mod{(zy)z ~ x(yz),g ~ h} where leftmost(g) = leftmost(h)and rightmost(g)
rightmost(h).

Oun

4 M-strongly solid monoids of generalized
hypersubstitutions of type 7 = (2)

From the previous section, we can characterize M-strongly solid monoids of
generalized hypersubstitutions of type 7 = (2) which are implied to {o;4} and M-
strongly solid submonoids which are not implied to {o;5}. So in this section, we
collect M-strongly solid monoids of generalized hypersubstitutions of type 7 = (2).
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Theorem 10. Let M be a submonoid of Hyp(2). Then the following are equivalent:
(i) M is M-strongly solid.
(ii) M is one of all cases in Proposition 5 and Proposition 6-9.

Proof. Let M be an M-strongly solid submonoid of Hypg(2). Then (ii) follows from
Proposition 5 and Proposition 6-9.

On the other hand, if M is one of the cases in Proposition 5. We get M is implied
to {oiq}. So V(M) = I is the trivial variety. Clearly, I is M-strongly solid.

For M is one of Case 1 in Proposition 6, we consider M = {04, 04,2, }, we have
the commutative law is an identity in the variety V(M). And 6,y [u] = 6y [v] is also
an identity in V/(M). Thus V(M) is M-strongly solid. And if M = {04} U {o¢|t €
W then we have t = d¢u] = d¢[v] = t. Thus V(M) is M-strongly solid. For
other cases. Let g ~ h be an arbitrary identity in V' (M). Then we can derive new
identities &[g] =~ d[h| € IdV (M) VYo € M. Consequently, V(M) is M-strongly solid.

Next, if M is one of the cases in Proposition 7. We get V(M) C Mod{(zy)z ~
(yz),u =~ v} where leftmost(u) = leftmost(v). For all o € M, we have ¢[(zy)z] =
[x(yz)] and 6[u] = &[v]. Consequently, V(M) is M-strongly solid.

The proof for Proposition 8 and Proposition 9 are similar to Proposition 7.

x
o
O
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