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COINCIDENCE AND COMMON FIXED POINT OF
F-CONTRACTIONS VIA CLRST PROPERTY

Anita Tomar, Giniswamy, C. Jeyanthi, P. G. Maheshwari

Abstract. The aim of this paper is to establish the existence of coincidence and common fixed

point of F-contractions via CLRST property. Our results generalize, extend and improve the results

of Wardowski [D. Wardowski, Fixed points of a new type of contractive mappings in complete metric

spaces, Fixed Point Theory and Applications (2012) 2012:94, 6 pages, doi: 10.1186/1687-1812-2012-

94], Batra et al. [Coincidence Point Theorem for a New Type of Contraction on Metric Spaces, Int.

Journal of Math. Analysis, Vol. 8(27) 2014, 1315-1320] and others existing in literature. Examples

are also given in support of our results.

1 Introduction

The concept of F-contraction for a single valued map on a complete metric space was
introduced by Wardowski [17] as a generalization of the famous type of map called
Banach Contraction. Recently several authors have obtained various extensions and
generalizations of F-contraction for single valued as well as multiple valued maps
(for instance [5], [11], [12], [13], [15], [17], [18]). The aim of this paper is to establish
the existence and uniqueness of coincidence and common fixed point of two pairs
of weakly compatible maps using a new type of contraction, called F-contraction
via CLRST property. Our results generalize, extend and improve the results of
Wardowski [17], Batra et al. [13] and others existing in literature (for instance
Minak et al. [11], Wardowski and Dung [18], Cosentino and Vetro [5], Ćirić [3],
Hardy-Rogers [6], Kannan [9], Chatterjee [2], Reich [14] and references there in)
without completeness or closedness of space/subspace, containment and continuity
requirement of involved maps. In this paper we use Ćirić type F- contraction and
Hardy-Roger type F-contraction for two pairs of self maps, which are more general
than the contraction introduced by Wardowski [17] and others.
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2 Preliminaries

We denote the set of all real numbers by R, the set of all positive real numbers by
R+ and the set of all natural numbers by N. Let (X, d) be a metric space.

Definition 1. [3] A self map A on X is called Ćirić type contraction if
d(Ax,Ay) ≤ c max{d(x, y), d(x,Ax), d(y,Ay), d(x,Ay), d(y,Ax)}, where 0 ≤ c < 1,
for all x, y ∈ X.

Definition 2. [6] A self map A on X is called Hardy-Roger type contraction if
d(Ax,Ay)) ≤ αd(Ax, x) + βd(Ay, y) + γd(x, y) + δd(Ax, y) + Ld(Ay, x)), where
α+ β + γ + δ + L < 1 and α, β, γ, δ, L > 0, for all x, y ∈ X.

Definition 3. [17] A self map A on X is an F-contraction if there exist τ > 0 such
that

d(Ax,Ay) > 0 ⇒ τ + F (d(Ax,Ay)) ≤ F (d(x, y)) (2.1)

for all x, y ∈ X where F : R+ → R is a function satisfying:

(F1) F is strictly increasing, i.e. for all α, β ∈ R such that α < β, F (α) < F (β);

(F2) For each sequence {αn}, n ∈ N of positive numbers, the following holds:
limn→∞αn = 0 if and only if limn→∞F (αn) = −∞;

(F3) There exist k ∈ (0, 1) such that limα→0+(α
kF (α)) = 0.

From (F1) and (2.1) it is easy to conclude that every F-contraction A is a
contractive map and hence necessarily continuous. We denote by F , the family
of all F : R+ → R satisfying the conditions (F1)-(F3). Taking different functions
F, we obtain a variety of F-contractions, some of them being already known in the
literature. Some examples of the functions belonging to F are:

(1) F (α) = lnα; (2) F (α) = lnα+ α, α > 0;

(3) F (α) =
−1√
α
, α > 0; (4) F (α) = ln(α2 + α), α > 0.

Every F-contraction A is a contractive map, i.e. d(Ax,Ay) < d(x, y) for all
x, y ∈ X, Ax ̸= Ay. The Banach contraction [1] is a particular case of F-contraction.
Meanwhile there exist F-contractions, which are not Banach contractions [17].

Following Wardowski, Shukla and Radenovic [15] introduced the concept of Ćirić
type F-contraction for a pair of map in 0-complete partial metric space without
giving any name to it. Later on Minak et al. [11] and Wardowski and Dung [18]
independently introduced Ćirić type F-contraction for a single map in metric space.
Minak et al. called it Ćirić type generalized F-contraction and Wardowski and Dung
called it F-weak contraction. Later Cosentino and Vetro [5] introduced Hardy-Rogers
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type F-contraction.

If there exists F ∈ F and τ > 0 such that, for all x, y ∈ X,

(a) p(Ax,By) > 0 ⇒ τ+F (p(Ax,By)) ≤ F (max{p(x, y), p(x,Ax), p(y,By), p(x,By)+p(y,Ax)
2 },

where p is partial metric, Shukla and Radenovic [15];

(b) d(Ax,Ay) > 0 ⇒ τ + F (d(Ax,Ay)) ≤ F (m(x, y)),

where m(x, y) = max{d(x, y), d(x,Ax), d(y,Ay), d(x,Ay)+d(y,Ax)
2 },

is the C̀iric̀ type F-contraction [11] and if
m(x, y) = αd(x, y) + βd(x,Ax) + γd(y,Ay) + δd(x,Ay) + Ld(y,Ax),
where α + β + γ + 2δ = 1, γ ̸= 1 and L ≥ 0, is the Hardy-Rogers type F-
contraction [6].

On the other hand, Piri and Kumam [12] introduced Suzuki type F-contraction.
If there exists F ∈ F and τ > 0 such that for all x, y ∈ X,

(c) d(Ax,Ay) > 0, 12d(x,Ax) < d(x, y) ⇒ τ + F (d(Ax,Ay)) ≤ F (d(x, y))

Furthermore Malhotra et al. [10] introduced a F-g-contraction in partially
ordered metric-like spaces and called it ordered F-g weak contraction and Batra
et al. [13] introduced F-g contraction in metric space. If there exists F ∈ F
and τ > 0 such that for all x, y ∈ X,

(d) σ(Ax,Ay) > 0 ⇒ τ+F (σ(Ax,Ay)) ≤ F (max{σ(gx, gy), σ(gx,Ax), σ(gy,Ay)}),
where σ is metric like, is ordered F-g weak contraction (Malhotra et al. [10])
and

(e) τ+F (d(Tx, Ty)) ≤ F (d(gx, gy)) with gx ̸= gy and Tx ̸= Ty, is F-g contraction
(Batra et al. [13]).

Note that every F-contraction is a C̀iric̀ type F-contraction (Ex 2.3 [18]), Hardy-
Rogers type F-contraction [6], Suzuki type F-contraction but the reverse implication
does not hold. On substituting g = I(the identity map of X) in F-g contraction we
get F-contraction.

Definition 4. A pair of self-maps (A, S) on a metric space (X, d) is

(a) compatible [7] if limn→∞d(ASxn, SAxn) = 0 whenever {xn}is a sequence in
X such that limn→∞Axn = limn→∞Sxn = t for some t ∈ X;

(b) non-compatible if there exists a sequence {xn} in X such that limn→∞Axn =
limn→∞Sxn = t for some t ∈ X but either limn→∞d(ASxn, SAxn) ̸= 0 or this
limit does not exist;
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(c) weakly compatible [8] if the pair commute on the set of their coincidence
points i.e. for x ∈ X, Ax = Sx implies ASx = SAx;

(d) satisfy the common limit range property [16] with respect to S denoted by
CLRS if there exists a sequence {xn} in X such that limn→∞Axn = limn→∞Sxn =
t where t ∈ SX.

Definition 5. [4] Two pairs of self maps (A, S) and (B, T) of a metric space
(X, d) satisfy the common limit range property with respect to S and T denoted by
CLRST if there exist two sequences {xn} and {yn} in X such that limn→∞Axn =
limn→∞Sxn = limn→∞Byn = limn→∞Tyn = t where t ∈ SX ∩ TX.

3 Main Results

Definition 6. Two pairs of self maps (A, S) and (B, T) of a metric space (X, d)
are said to satisfy C̀iric̀ type F-contraction condition if there exist F ∈ F and τ > 0
such that for all x, y ∈ X

d(Ax,By) > 0 ⇒ τ + F (d(Ax,By)) ≤ F (max{d(Ax, Sx), d(By, Ty), d(Ty, Sx),

d(Ty,Ax), d(By, Sx)}).
(3.1)

It is interesting to point out here that every C̀iric̀ type contraction condition [3]
is also C̀iric̀ type F-contraction condition. However converse need not be true.

Theorem 7. Let (A, S) and (B, T) be two pairs of self maps of a metric space (X,
d) satisfying CLRST property and C̀iric̀ type F- contraction condition 3.1. Then the
pairs (A, S) and (B, T) have a coincidence point in X if F is continuous. Moreover
A, B, S and T have a unique common fixed point in X provided that both the pairs
(A, S) and (B, T) are weakly compatible.

Proof. Let (A, S) and (B, T) be pairs of self maps satisfying CLRST property
then there exist two sequences {xn} and {yn} in X such that limn→∞Axn =
limn→∞Sxn = limn→∞Byn = limn→∞Tyn = t where t ∈ SX ∩ TX. Since t ∈ SX,
there exist v ∈ X such that Sv = t.

If d(Av,Byn) = 0, then as n → ∞, d(Av, t) = 0 which implies Av = t and if
d(Av,Byn) > 0, then using (3.1),

F (d(Av,Byn)) ≤ F (max{d(Av, Sv), d(Byn, Tyn), d(Sv, Tyn),

d(Av, Tyn), d(Byn, Sv)})− τ .

As n → ∞ and since F is continuous,

F (d(Av, t)) ≤ F (max{d(Av, t), d(t, t), d(t, t), d(Av, t), d(t, t)})− τ

= F (d(Av, t))− τ < F (d(Av, t)),
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which is a contradiction. Hence Av = Sv = t, i.e. the pair (A, S) have a coincidence
point in X.

Since t ∈ TX, there exist u ∈ X such that Tu = t. Let d(Bu, t) > 0, then using
(3.1),

F (d(t, Bu)) = F (d(Av,Bu))

≤ F (max{d(Av, Sv), d(Bu, Tu), d(Sv, Tu), d(Av, Tu), d(Bu, Sv)})− τ

= F (d(Bu, t))− τ < F (d(Bu, t)),

which is a contradiction. Hence Bu = Tu = t, the pair (B, T) have a coincidence
point in X.

Since (A, S) and (B, T) are weakly compatible, At = ASv = SAv = St, Bt =
BTu = TBu = Tt.

Let At ̸= t, then using (3.1)

F (d(At, t)) = F (d(At,Bu))

≤ F (max{d(At, St), d(Bu, Tu), d(St, Tu), d(At, Tu), d(Bu, St)})− τ

= F (d(At, t))− τ < F (d(At, t)),

which is a contradiction. Hence At = St = t. Similarly we can show that Bt = Tt
= t. Thus At = St = Bt = Tt = t, i.e. t is the common fixed point of A, B, S and
T.

Let t and w be two fixed points and let d(t, w) > 0. Consider,

F (d(t, w)) = F (d(At,Bw))

≤ F (max{d(At, St), d(Bw, Tw), d(St, Tw), d(At, Tw), d(Bw,St)})− τ

= F (max{d(t, t), d(w,w), d(t, w), d(t, w), d(w, t)})− τ

= F (d(t, w))− τ < F (d(t, w)),

which is a contradiction. Hence t = w. Therefore the common fixed point t is
unique.

We now give an example to illustrate theorem 7.

Example 8. Let X = [3, 15) and d be the usual metric on X.
Define A,B, S, T : X → X as follows:

Ax =

{
3 if x = 3, 8 < x < 15
5 if 3 < x ≤ 8

Bx =

{
3 if x = 3, 8 < x < 15
6 if 3 < x ≤ 8

Sx =

⎧⎨⎩
3 if x = 3
10 if 3 < x ≤ 8
x+1
3 if 8 < x < 15

Tx =

⎧⎨⎩
3 if x = 3
12 if 3 < x ≤ 8
x− 5 if 8 < x < 15
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Let {xn} and {yn} be two sequences in X such that xn = 8 + 1
n and yn = 3 then

limn→∞Axn = limn→∞Sxn = limn→∞Byn = limn→∞Tyn = 3 ∈ SX ∩ TX. Hence
A, B, S and T satisfy the CLRST property. Also A3 = S3 = 3, B3 = T3 = 3, i.e.
pairs (A, S) and (B, T) have coincidence points in X. Also AS3 = SA3 = 3, BT3 =
TB3 = 3, so the pairs (A, S) and (B, T) are weakly compatible. Also A, B, S and
T satisfy Ćirić type F-contraction condition (3.1) for τ = log2 and F (α) = logα.
Hence all the conditions of theorem 7 are satisfied and x = 3 is a unique common
fixed point of A, B, S and T. One may verify that self maps A, B, S and T does
not satisfy Ćirić type contraction condition, for example, for x = 3, 3 < y ≤ 8 and
c = 1

8 .

Definition 9. Two pairs of self maps (A, S) and (B, T) of a metric space (X, d)
are said to satisfy Hardy-Rogers type F-contraction condition if there exist F ∈ F
and τ > 0 such that for all x, y ∈ X,

d(Ax,By) > 0 ⇒ τ + F (d(Ax,By)) ≤ F (αd(Ax, Sx) + βd(By, Ty) + γd(Sx, Ty)+

δd(Ax, Ty) + Ld(By, Sx))

(3.2)

where α+ β + γ + δ + L < 1, α, β, γ, δ, L > 0.

It is interesting to point out here that every Hardy-Rogers type contraction
condition [6] is also Hardy-Rogers type F-contraction condition. However converse
need not be true.

Theorem 10. Let (A, S) and (B, T) be two pairs of self maps of a metric space (X,
d) satisfying CLRST property and Hardy-Roger type F-contraction condition 3.2.
Then the pairs (A, S) and (B, T) have a coincidence point in X if F is continuous.
Moreover A, B, S and T have a unique common fixed point in X provided that both
the pairs (A, S) and (B, T) are weakly compatible.

Proof. Let (A, S) and (B, T) be pairs of self maps satisfying CLRST property
then there exist two sequences {xn} and {yn} in X such that limn→∞Axn =
limn→∞Sxn = limn→∞Byn = limn→∞Tyn = t, where t ∈ SX ∩ TX. Since t ∈ SX
there exist v ∈ X such that Sv = t.
If d(Av,Byn) = 0, then as n → ∞, d(Av, t) = 0 which implies Av = t and if
d(Av,Byn) > 0, then using 3.2,

F (d(Av,Byn)) ≤ F (αd(Av, Sv) + βd(Byn, Tyn) + γd(Sv, Tyn)+

δd(Av, Tyn) + Ld(Byn, Sv))− τ .

As n → ∞ and since F is continuous,

F (d(Av, t)) ≤ F (αd(Av, t) + βd(t, t) + γd(t, t) + δd(Av, t) + Ld(t, Sv))− τ

= F ((α+ δ)(d(Av, t))− τ

< F (d(Av, t)),
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which is a contradiction. Hence Av = Sv = t, i.e. the pair (A, S) have a coincidence
point in X.

Since t ∈ TX there exist u ∈ X such that Tu = t. If possible let d(t, Bu) > 0.
Using (3.2),

F (d(t, Bu)) = F (d(Av,Bu))

≤ F (αd(Av, Sv) + βd(Bu, Tu) + γd(Sv, Tu) + δd(Av, Tu) + Ld(Bu, Sv))− τ

= F ((β + L)d(Bu, t))− τ

< F (d(Bu, t)),

which is a contradiction. Hence Bu = Tu = t, i.e. the pair (B, T) have a coincidence
point in X. Thus Av = Sv = Bu = Tu = t. Since (A, S) and (B, T) are weakly
compatible, At = ASv = SAv = St, Bt = BTu = TBu = Tt.

Let d(At, t) > 0, then using (3.2)

F (d(At, t)) = F (d(At,Bu))

≤ F (αd(At, St) + βd(Bu, Tu) + γd(St, Tu) + δd(At, Tu) + Ld(Bu, St))− τ

= F ((γ + δ + L)d(At, t))− τ < F (d(At, t)).

which is a contradiction. Hence At = St = t. Similarly we can show that Bt = t.
Thus At = St = Bt = Tt = t, i.e. t is the common fixed point of A, B, S and T.
Uniqueness of the common fixed point is easy consequence of (3.2).

The following example illustrates theorem 10.

Example 11. Let X = [2, 16) and d be the usual metric on X.
Define A,B, S, T : X → X as follows:

Ax =

{
2 if x = 2, x ≥ 5
5 if 2 < x < 5

Bx =

{
2 if x = 2, x ≥ 5
6 if 2 < x < 5

Sx =

⎧⎨⎩
2 if x = 2
10 if 2 < x < 5
x−1
2 if x ≥ 5

Tx =

⎧⎨⎩
2 if x = 2
14 if 2 < x < 5
x− 4 if x ≥ 5

Let {xn} and {yn} be two sequences in X such that xn = 5 + 1
n and yn = 2 then

limn→∞Axn = limn→∞Sxn = limn→∞Byn = limn→∞Tyn = 2 ∈ SX ∩ TX. Hence
A, B, S and T satisfy the CLRST property. Also A2 = S2 = 2, B2 = T2 = 2, i.e.
pairs (A, S) and (B, T) have coincidence points in X. Also AS2 = SA2 = 2, BT2 =
TB2 = 2, so the pairs (A, S) and (B, T) are weakly compatible. Also A, B, S and
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T satisfy Hardy-Rogers type F-contraction condition (3.2) for τ = 1
35 , F (x) = − 1√

x
,

α = 1
5 , β = 1

6 , γ = 1
10 , δ = 1

10 and L = 1
5 . Hence all the conditions of theorem 10

are satisfied and x = 2 is a unique common fixed point of A, B, S and T. One may
verify that self maps A, B, S and T does not satisfy Hardy-Rogers type contraction
condition, for example, for x = 2, 2 < y ≤ 5 and α = β = γ = δ = L = 1

10 .

Definition 12. A pair of self maps (A, S) of a metric space (X, d) is said to satisfy
C̀iric̀ type F-contraction condition if there exist F ∈ F and τ > 0 such that for all
x, y ∈ X,

d(Ax,Ay) > 0 ⇒ τ + F (d(Ax,Ay)) ≤ F (max{d(Ax, Sx), d(Ay, Sy), d(Sy, Sx),
d(Sy,Ax), d(Ay, Sx)}).

(3.3)

Theorem 13. Let (A, S) be a pair of self maps of a metric space (X, d) satisfying
CLRS property and C̀iric̀ type contraction condition 3.3. Then the pair (A, S) has a
coincidence point in X if F is continuous. Moreover A and S have a unique common
fixed point in X provided that the pair (A, S) is weakly compatible.

Proof. Proof is an easy consequence of Theorem 7 taking A=B and S=T.

Definition 14. A pair of self maps (A, S) of a metric space (X, d) is said to satisfy
Hardy-Rogers type F-contraction condition if F ∈ F and τ > 0 such that for all
x, y ∈ X,

d(Ax,Ay) > 0 ⇒ τ + F (d(Ax,Ay)) ≤ F (αd(Ax, Sx) + βd(Ay, Sy) + γd(Sx, Sy)

+ δd(Ax, Sy) + Ld(Ay, Sx)),

(3.4)

where α+ β + γ + δ + L < 1 and α, β, γ, δ, L > 0.

Theorem 15. Let (A, S) be a pair of self maps of a metric space (X, d) satisfying
CLRS property and Hardy-Roger type F-contraction condition(3.4). Then the pair
(A, S) has a coincidence point in X if F is continuous. Moreover A and S have a
unique common fixed point in X provided that the pair (A, S) is weakly compatible.

Proof. Proof is an easy consequence of Theorem 10 taking A=B and S=T.

Remark 16. Taking B=A, S=T=I(the identity map of X) in Theorem 10 and

(i) γ < 1, α = β = δ = L = 0, we obtain Theorem 2.1 of Wardowski [17].

(ii) γ = δ = L = 0, α + β < 1, β ̸= 0,we obtain the following version of Kannan’s
[9] contractive condition: τ + F (d(Ax,Ay)) ≤ F (αd(Ax, x) + βd(Ay, y)), for
all x, y in X and Ax ̸= Ay where α+ β < 1.
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(iii) α = β = γ = 0, δ = 1/2, we obtain the following version of Chatterjee’s [2]
contractive condition: τ + F (d(Ax,Ay)) ≤ F (1/2(d(Ax, y)) + Ld(Ay, x)), for
all x, y in X and Ax ̸= Ay, L < 1/2.

(iv) δ = L = 0, we obtain the following version of Reich’s [14] contractive condition:
τ + F (d(Ax,Ay)) ≤ F (αd(Ax, x) + βd(Ay, y) + γd(x, y)) for all x, y in X and
Ax ̸= Ay where α+ β + γ < 1.

Remark 17. Batra et al. [13] proved unique coincidence point for a pair of self map
satisfying F-g contraction by taking containment of range space of involved maps,
completeness of space along with continuity and commutativity of both the maps. We
have established existence and uniqueness of coincidence and common fixed point for
two pairs of discontinuous self maps without containment of range space of involved
maps and completeness of underlying space. Moreover both the pairs are weakly
compatible, which is weaker than commutativity of a pair of maps.

Remark 18. Since F-contraction is proper generalization of ordinary contraction,
our results generalize, extend and improve the results of Wardowski [17] and others
existing in literature (for instance Minak et al. [11], Wardowski and Dung [18],
Cosentino and Vetro [5], C̀iric̀ [3], Hardy-Rogers [6], Kannan [9], Chatterjee [2],
Reich [14]) without using completeness of space/subspace, containment requirement
of range space and continuity of involved maps.

Acknowledgement Authors are very grateful to the reviewer for the useful remarks
and interesting comments to improve the paper.
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