GENERALIZED COMPATIBILITY IN PARTIALLY ORDERED METRIC SPACES

Hassen Aydi and Manel Jellali

Abstract

In this paper, we introduce the notion of generalized compatibility of a pair of mappings $F, G: X \times X \rightarrow X$, where (X, d) is a partially ordered metric space. We use this concept to prove a coupled coincidence point theorem for nonlinear contractions in partially ordered metric spaces. Our work extends the paper of Choudhury and Kundu [B.S. Choudhury and A. Kundu, A coupled coincidence point result in partially ordered metric spaces for compatible mappings, Nonlinear Anal. 73 (2010) 2524-2531]. Some examples are also given to illustrate the new concepts and the obtained result.

1 Introduction

Fixed point problems of contractive mappings in metric spaces endowed with a partial order have been studied by many authors (see $[12,1,2,3,4,5,6,7,8,9$, $11,10,13,14]$). In [12], some applications to matrix equations are presented and in $[8,11]$ some applications to ordinary differential equations are given. Bhaskar and Lakshmikantham [4] introduced the concept of a coupled fixed point of a mapping $F: X \times X \rightarrow X$ and studied the problems of the uniqueness of a coupled fixed point in partially ordered metric spaces and applied their theorems to problems of the existence and uniqueness of solution for a periodic boundary value problem. In [9], Lakshmikantham and Ćirić introduced the concept of a coupled coincidence point for mappings $F: X \times X \rightarrow X$ and $g: X \rightarrow X$, and proved some nice coupled coincidence point theorems for nonlinear contractions in partially ordered metric spaces under the hypotheses that g is continuous and commutes with F. In 2011, Choudhury and Kundu [5] introduced the notion of compatibile mappings $F: X \times X \rightarrow X$ and $g: X \rightarrow X$, and obtained coupled coincidence point results under the hypotheses g is continuous and the pair $\{F, g\}$ is compatible.

In this paper, we consider mappings $F, G: X \times X \rightarrow X$, where (X, d) is a partially ordered metric space. We introduce a new concept of generalized compatibility of

[^0]the pair $\{F, G\}$ and we prove a coupled coincidence point theorem for nonlinear contractions in partially ordered metric spaces. The presented theorem extends the recent result of Choudhury and Kundu [5] and some examples are also considered.

2 Mathematical preliminaries

Let (X, \preceq) be a partially ordered set. The concept of a mixed monotone property of the mapping $F: X \times X \rightarrow X$ has been introduced by Bhaskar and Lakshmikantham in [4].
Definition 1. (see Bhaskar and Lakshmikantham [4]). Let (X, \preceq) be a partially ordered set and $F: X \times X \rightarrow X$. Then the map F is said to have mixed monotone property if $F(x, y)$ is monotone non-decreasing in x and is monotone non-increasing in y; that is, for any $x, y \in X$,

$$
x_{1} \preceq x_{2} \text { implies } F\left(x_{1}, y\right) \preceq F\left(x_{2}, y\right)
$$

and

$$
y_{1} \preceq y_{2} \text { implies } F\left(x, y_{2}\right) \preceq F\left(x, y_{1}\right) \text {. }
$$

Lakshmikantham and Ćirić in [9] introduced the concept of a g-mixed monotone mapping.
Definition 2. (see Lakshmikantham and Ćirić [9]). Let (X, \preceq) be a partially ordered set, $F: X \times X \rightarrow X$ and $g: X \rightarrow X$. Then the map F is said to have mixed g monotone property if $F(x, y)$ is monotone g-non-decreasing in x and is monotone g-non-increasing in y; that is, for any $x, y \in X$,

$$
g x_{1} \preceq g x_{2} \text { implies } F\left(x_{1}, y\right) \preceq F\left(x_{2}, y\right)
$$

and

$$
g y_{1} \preceq g y_{2} \text { implies } F\left(x, y_{2}\right) \preceq F\left(x, y_{1}\right) \text {. }
$$

Definition 3. (see Bhaskar and Lakshmikantham [4]). An element $(x, y) \in X \times X$ is called a coupled fixed point of a mapping $F: X \times X \rightarrow X$ if

$$
F(x, y)=x \text { and } F(y, x)=y .
$$

Definition 4. (see Lakshmikantham and Ćirićc [9]). An element $(x, y) \in X \times X$ is called a coupled coincidence point of the mappings $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ if

$$
F(x, y)=g x \text { and } F(y, x)=g y .
$$

Definition 5. (see Lakshmikantham and Ćirić [9]). Let X be a non-empty set. Then we say that the mappings $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ are commutative if

$$
g(F(x, y))=F(g x, g y) .
$$

Lakshmikantham and Ćirić in [9] proved the following nice result.
Theorem 6. (see Lakshmikantham and Ćirić $[9]$). Let (X, \preceq) be a partially ordered set and suppose there is a metric d on X such that (X, d) is a complete metric space. Assume there is a function $\phi:[0,+\infty) \rightarrow[0,+\infty)$ with $\phi(t)<t$ and $\lim _{r \rightarrow t^{+}} \phi(r)<t$ for each $t>0$ and also suppose $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ are such that F has the mixed g-monotone property and

$$
d(F(x, y), F(u, v)) \leq \phi\left(\frac{d(g x, g u)+d(g y, g v)}{2}\right)
$$

for all $x, y, u, v \in X$ with $g x \preceq g u$ and $g v \preceq g y$. Assume that $F(X \times X) \subseteq g(X), g$ is continuous and commutes with F and also suppose either F is continuous or X has the following properties:

1. if a non-decreasing sequence $x_{n} \rightarrow x$, then $x_{n} \preceq x$ for all n,
2. if a non-increasing sequence $x_{n} \rightarrow x$, then $x \preceq x_{n}$ for all n.

If there exist $x_{0}, y_{0} \in X$ such that $g x_{0} \preceq F\left(x_{0}, y_{0}\right)$ and $F\left(y_{0}, x_{0}\right) \preceq g y_{0}$ then there exist $x, y \in X$ such that $g x=F(x, y)$ and $g y=F(y, x)$, that is, F and g have a coupled coincidence point.

Choudhury and Kundu in [5] introduced the notion of compatibility.
Definition 7. (see Choudhury and Kundu [5]). The mappings $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ are said to be compatible if

$$
\left.\lim _{n \rightarrow+\infty} d\left(g\left(F\left(x_{n}, y_{n}\right)\right), F\left(g x_{n}, g y_{n}\right)\right)\right)=0
$$

and

$$
\left.\lim _{n \rightarrow+\infty} d\left(g\left(F\left(y_{n}, x_{n}\right)\right), F\left(g y_{n}, g x_{n}\right)\right)\right)=0,
$$

whenever $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are sequences in X, such that

$$
\lim _{n \rightarrow+\infty} F\left(x_{n}, y_{n}\right)=\lim _{n \rightarrow+\infty} g x_{n}=x
$$

and

$$
\lim _{n \rightarrow+\infty} F\left(y_{n}, x_{n}\right)=\lim _{n \rightarrow+\infty} g y_{n}=y,
$$

for all $x, y \in X$ are satisfied.
Using the concept of compatibility, Choudhury and Kundu proved the following interesting result.

Theorem 8. (see Choudhury and Kundu [5]). Let (X, \preceq) be a partially ordered set and suppose there is a metric d on X such that (X, d) is a complete metric space. Let $\phi:[0,+\infty) \rightarrow[0,+\infty)$ be such that $\phi(t)<t$ and $\lim _{r \rightarrow t^{+}} \phi(r)<t$ for all $t>0$. Suppose $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ be two mappings such that F has the mixed g-monotone property and satisfy

$$
d(F(x, y), F(u, v)) \leq \phi\left(\frac{d(g x, g u)+d(g y, g v)}{2}\right)
$$

for all $x, y, u, v \in X$ with $g x \preceq g u$ and $g v \preceq g y$. Let $F(X \times X) \subseteq g(X), g$ be continuous and monotone increasing and F and g be compatible mappings. Also suppose either F is continuous or X has the following properties:

1. if a non-decreasing sequence $x_{n} \rightarrow x$, then $x_{n} \preceq x$ for all n,
2. if a non-increasing sequence $x_{n} \rightarrow x$, then $x \preceq x_{n}$ for all n.

If there exist $x_{0}, y_{0} \in X$ such that $g x_{0} \preceq F\left(x_{0}, y_{0}\right)$ and $F\left(y_{0}, x_{0}\right) \preceq g y_{0}$ then there exist $x, y \in X$ such that $g x=F(x, y)$ and $g y=F(y, x)$, that is, F and g have a coupled coincidence point.

Now, we introduce the following new concepts.
Let (X, \preceq) be a partially ordered set endowed with a metric d. We consider two mappings $F, G: X \times X \rightarrow X$.

Definition 9. F is said to be G-increasing with respect to \preceq if for all $x, y, u, v \in X$, we have

$$
G(x, y) \preceq G(u, v) \text { implies } F(x, y) \preceq F(u, v) \text {. }
$$

We present three examples illustrating Definition 9 .
Example 10. Let $X=(0,+\infty)$ endowed with the natural ordering of real numbers \leq. Define the mappings $F, G: X \times X \rightarrow X$ by

$$
F(x, y)=\ln (x+y) \quad \text { and } \quad G(x, y)=x+y
$$

for all $(x, y) \in X \times X$. Then F is G-increasing with respect to \leq.
Example 11. Let $X=\mathbb{N}$ endowed with the partial order \preceq defined by

$$
x, y \in X, \quad x \preceq y \quad \text { if and only if } y \text { divides } x .
$$

Define the mappings $F, G: X \times X \rightarrow X$ by

$$
F(x, y)=x^{2} y^{2} \quad \text { and } \quad G(x, y)=x y
$$

for all $(x, y) \in X \times X$. Then F is G-increasing with respect to \preceq.

Example 12. Let X be the set of all subsets of \mathbb{N}. We endow X with the partial order \preceq defined by

$$
A, B \in X, \quad A \preceq B \quad \text { if and only if } \quad A \subseteq B
$$

Define the mappings $F, G: X \times X \rightarrow X$ by

$$
F(A, B)=A \cup B \cup\{0\} \quad \text { and } \quad G(A, B)=A \cup B
$$

for all $A, B \in X$. Then F is G-increasing with respect to \preceq.
Definition 13. An element $(x, y) \in X \times X$ is called a coupled coincidence point of F and G if

$$
F(x, y)=G(x, y) \quad \text { and } \quad F(y, x)=G(y, x)
$$

Example 14. Let $X=\mathbb{R}$ and $F, G: X \times X \rightarrow X$ defined by

$$
F(x, y)=x y \quad \text { and } \quad G(x, y)=\frac{2}{3}(x+y)
$$

for all $x, y \in X$. Then $(0,0),(1,2)$ and $(2,1)$ are coupled coincidence points of F and G.

Definition 15. We say that the pair $\{F, G\}$ satisfies the generalized compatibility if

$$
\left\{\begin{array}{l}
d\left(F\left(G\left(x_{n}, y_{n}\right), G\left(y_{n}, x_{n}\right)\right), G\left(F\left(x_{n}, y_{n}\right), F\left(y_{n}, x_{n}\right)\right)\right) \rightarrow 0 \quad \text { as } n \rightarrow+\infty \\
d\left(F\left(G\left(y_{n}, x_{n}\right), G\left(x_{n}, y_{n}\right)\right), G\left(F\left(y_{n}, x_{n}\right), F\left(x_{n}, y_{n}\right)\right)\right) \rightarrow 0 \quad \text { as } n \rightarrow+\infty
\end{array}\right.
$$

whenever $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are sequences in X such that

The following examples illustrate the concept of generalized compatibility.
Example 16. Let $X=\mathbb{R}$ endowed with the standard metric $d(x, y)=|x-y|$ for all $x, y \in X$. Define $F, G: X \times X \rightarrow X$ by

$$
F(x, y)=x^{2}-y^{2} \quad \text { and } \quad G(x, y)=x^{2}+y^{2}
$$

for all $x, y \in X$. Let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ two sequences in X such that

$$
\left\{\begin{array}{ll}
F\left(x_{n}, y_{n}\right) \rightarrow t_{1} & G\left(x_{n}, y_{n}\right) \rightarrow t_{1}
\end{array} \quad \text { as } n \rightarrow+\infty ;\right.
$$

We can prove easily that $t_{1}=t_{2}=0$ and

$$
\left\{\begin{array}{l}
d\left(F\left(G\left(x_{n}, y_{n}\right), G\left(y_{n}, x_{n}\right)\right), G\left(F\left(x_{n}, y_{n}\right), F\left(y_{n}, x_{n}\right)\right)\right) \rightarrow 0 \quad \text { as } n \rightarrow+\infty \\
d\left(F\left(G\left(y_{n}, x_{n}\right), G\left(x_{n}, y_{n}\right)\right), G\left(F\left(y_{n}, x_{n}\right), F\left(x_{n}, y_{n}\right)\right)\right) \rightarrow 0 \quad \text { as } n \rightarrow+\infty
\end{array}\right.
$$

Then the pair $\{F, G\}$ satisfies the generalized compatibility.

Example 17. Let (X, d) be a metric space, $F: X \times X \rightarrow X$ and $g: X \rightarrow X$. Define the mapping $G: X \times X \rightarrow X$ by

$$
G(x, y)=g x, \forall(x, y) \in X \times X
$$

It is easy to show that if $\{F, g\}$ is compatible, then $\{F, G\}$ satisfies the generalized compatibility.

3 Main result

First, denote by Φ be the set of functions $\varphi:[0,+\infty) \rightarrow[0,+\infty)$ satisfying
(i) φ is non-decreasing,
(ii) $\varphi(t)<t$ for all $t>0$,
(iii) $\lim _{r \rightarrow t^{+}} \varphi(r)<t$ for all $t>0$.

Lemma 18. Let $\varphi \in \Phi$ and $\left(u_{n}\right)$ be a given sequence such that $u_{n} \rightarrow 0^{+}$as $n \rightarrow+\infty$. Then, $\varphi\left(u_{n}\right) \rightarrow 0^{+}$as $n \rightarrow+\infty$.

Proof. Let $\varepsilon>0$. Since $u_{n} \rightarrow 0^{+}$as $n \rightarrow+\infty$, there exists $N \in \mathbb{N}$ such that

$$
0 \leq u_{n}<\varepsilon \text { for all } n \geq N
$$

Using (i) and (ii), we get

$$
\varphi\left(u_{n}\right) \leq \varphi(\varepsilon)<\varepsilon \text { for all } n \geq N
$$

Thus we proved that $\varphi\left(u_{n}\right) \rightarrow 0^{+}$as $n \rightarrow+\infty$.

Theorem 19. Let (X, \preceq) be a partially ordered set and suppose there is a metric d on X such that (X, d) is a complete metric space. Let $F, G: X \times X \rightarrow X$ be two mappings such that F is G-increasing with respect to \preceq, and satisfy

$$
\begin{equation*}
d(F(x, y), F(u, v)) \leq \varphi\left(\frac{d(G(x, y), G(u, v))+d(G(y, x), G(v, u))}{2}\right) \tag{3.1}
\end{equation*}
$$

for all $x, y, u, v \in X$, with $G(x, y) \preceq G(u, v)$ and $G(v, u) \preceq G(y, x)$, where $\varphi \in \Phi$. Suppose that for any $x, y \in X$, there exist $u, v \in X$ such that

$$
\left\{\begin{array}{l}
F(x, y)=G(u, v) \tag{3.2}\\
F(y, x)=G(v, u)
\end{array}\right.
$$

Suppose that G is continuous and has the mixed monotone property, and the pair $\{F, G\}$ satisfies the generalized compatibility. Also suppose either F is continuous or X has the following properties:
(a) if a non-decreasing sequence $x_{n} \rightarrow x$, then $x_{n} \preceq x$ for all n,
(b) if a non-increasing sequence $x_{n} \rightarrow x$, then $x \preceq x_{n}$ for all n.

If there exist $x_{0}, y_{0} \in X$ such that $G\left(x_{0}, y_{0}\right) \preceq F\left(x_{0}, y_{0}\right)$ and $F\left(y_{0}, x_{0}\right) \preceq G\left(y_{0}, x_{0}\right)$, then F and G have a coupled coincidence point.

Proof. Let $x_{0}, y_{0} \in X$ such that $G\left(x_{0}, y_{0}\right) \preceq F\left(x_{0}, y_{0}\right)$ and $F\left(y_{0}, x_{0}\right) \preceq G\left(y_{0}, x_{0}\right)$ (such points exist by hypothesis). Thanks to (3.2), there exists $\left(x_{1}, y_{1}\right) \in X \times X$ such that

$$
F\left(x_{0}, y_{0}\right)=G\left(x_{1}, y_{1}\right) \quad \text { and } \quad F\left(y_{0}, x_{0}\right)=G\left(y_{1}, x_{1}\right)
$$

Continuing this process, we can construct two sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ in X such that

$$
\begin{equation*}
F\left(x_{n}, y_{n}\right)=G\left(x_{n+1}, y_{n+1}\right), \quad F\left(y_{n}, x_{n}\right)=G\left(y_{n+1}, x_{n+1}\right), \text { for all } n \in \mathbb{N} \tag{3.3}
\end{equation*}
$$

We will show that for all $n \in \mathbb{N}$, we have

$$
\begin{equation*}
G\left(x_{n}, y_{n}\right) \preceq G\left(x_{n+1}, y_{n+1}\right) \quad \text { and } \quad G\left(y_{n+1}, x_{n+1}\right) \preceq G\left(y_{n}, x_{n}\right) \tag{3.4}
\end{equation*}
$$

We shall use the mathematical induction. Since $G\left(x_{0}, y_{0}\right) \preceq F\left(x_{0}, y_{0}\right)$ and $F\left(y_{0}, x_{0}\right) \preceq$ $G\left(y_{0}, x_{0}\right)$, and as $G\left(x_{1}, y_{1}\right)=F\left(x_{0}, y_{0}\right)$ and $G\left(y_{1}, x_{1}\right)=F\left(y_{0}, x_{0}\right)$, we have

$$
G\left(x_{0}, y_{0}\right) \preceq G\left(x_{1}, y_{1}\right) \quad \text { and } \quad G\left(y_{1}, x_{1}\right) \preceq G\left(y_{0}, x_{0}\right) .
$$

Thus (3.4) holds for $n=0$. Suppose now that (3.4) holds for some fixed $n \in \mathbb{N}$. Since F is G-increasing with respect to \preceq, we have

$$
G\left(x_{n+1}, y_{n+1}\right)=F\left(x_{n}, y_{n}\right) \preceq F\left(x_{n+1}, y_{n+1}\right)=G\left(x_{n+2}, y_{n+2}\right)
$$

and

$$
F\left(y_{n+1}, x_{n+1}\right)=G\left(y_{n+2}, x_{n+2}\right) \preceq F\left(y_{n}, x_{n}\right)=G\left(y_{n+1}, x_{n+1}\right) .
$$

Thus we proved that (3.4) holds for all $n \in \mathbb{N}$.
For all $n \in \mathbb{N}$, denote

$$
\begin{equation*}
\delta_{n}=d\left(G\left(x_{n}, y_{n}\right), G\left(x_{n+1}, y_{n+1}\right)\right)+d\left(G\left(y_{n}, x_{n}\right), G\left(y_{n+1}, x_{n+1}\right)\right) \tag{3.5}
\end{equation*}
$$

We can suppose that $\delta_{n}>0$ for all $n \in \mathbb{N}$, if not, $\left(x_{n}, y_{n}\right)$ will be a coincidence point and the proof is finished. We claim that for any $n \in \mathbb{N}$, we have

$$
\begin{equation*}
\delta_{n+1} \leq 2 \varphi\left(\frac{\delta_{n}}{2}\right) \tag{3.6}
\end{equation*}
$$

Since $G\left(x_{n}, y_{n}\right) \preceq G\left(x_{n+1}, y_{n+1}\right)$ and $G\left(y_{n}, x_{n}\right) \succeq G\left(y_{n+1}, x_{n+1}\right)$, letting $x=x_{n}$, $y=y_{n}, u=x_{n+1}$ and $v=y_{n+1}$ in (3.1), and using (3.3), we get

$$
\begin{align*}
d\left(G\left(x_{n+1}, y_{n+1}\right), G\left(x_{n+2}, y_{n+2}\right)\right) & =d\left(F\left(x_{n}, y_{n}\right), F\left(x_{n+1}, y_{n+1}\right)\right) \\
& \leq \varphi\left(\frac{d\left(G\left(x_{n}, y_{n}\right), G\left(x_{n+1}, y_{n+1}\right)\right)+d\left(G\left(y_{n}, x_{n}\right), G\left(y_{n+1}, x_{n+1}\right)\right)}{2}\right) \\
& =\varphi\left(\frac{\delta_{n}}{2}\right) \tag{3.7}
\end{align*}
$$

Similarly, since $G\left(y_{n+1}, x_{n+1}\right) \preceq G\left(y_{n}, x_{n}\right)$ and $G\left(x_{n+1}, y_{n+1}\right) \succeq G\left(x_{n}, y_{n}\right)$, we have

$$
\begin{align*}
d\left(G\left(y_{n+2}, x_{n+2}\right), G\left(y_{n+1}, x_{n+1}\right)\right) & =d\left(F\left(y_{n+1}, x_{n+1}\right), F\left(y_{n}, x_{n}\right)\right) \\
& \leq \varphi\left(\frac{d\left(G\left(y_{n+1}, x_{n+1}\right), G\left(y_{n}, x_{n}\right)\right)+d\left(G\left(x_{n+1}, y_{n+1}\right), G\left(x_{n}, y_{n}\right)\right)}{2}\right) \\
& =\varphi\left(\frac{\delta_{n}}{2}\right) \tag{3.8}
\end{align*}
$$

Summing (3.7) to (3.8) yields (3.6).
From (3.6), since $\varphi(t)<t$ for all $t>0$, it follows that the sequence $\left(\delta_{n}\right)$ is monotone decreasing. Therefore, there is some $\delta \geq 0$ such that

$$
\lim _{n \rightarrow+\infty} \delta_{n}=\delta^{+}
$$

If possible, let $\delta>0$. Taking the limit as $n \rightarrow+\infty$ in (3.6) and using $\lim _{r \rightarrow t^{+}} \varphi(r)<t$ for all $t>0$, we obtain

$$
\delta=\lim _{n \rightarrow+\infty} \delta_{n} \leq 2 \lim _{n \rightarrow+\infty} \varphi\left(\frac{\delta_{n-1}}{2}\right)=2 \lim _{\delta_{n-1} \rightarrow \delta^{+}} \varphi\left(\frac{\delta_{n-1}}{2}\right)<2 \frac{\delta}{2}=\delta
$$

which is a contradiction. Thus $\delta=0$, that is,

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} d\left(G\left(x_{n}, y_{n}\right), G\left(x_{n+1}, y_{n+1}\right)\right)+d\left(G\left(y_{n}, x_{n}\right), G\left(y_{n+1}, x_{n+1}\right)\right)=\lim _{n \rightarrow+\infty} \delta_{n}=0 \tag{3.9}
\end{equation*}
$$

We shall prove that $\left(\left(G\left(x_{n}, y_{n}\right), G\left(y_{n}, x_{n}\right)\right)\right)$ is a Cauchy sequence in $X \times X$ endowed with the metric η defined by

$$
\eta((x, y),(u, v))=d(x, u)+d(y, v)
$$

for all $(x, y),(u, v) \in X \times X$. We argue by contradiction. Suppose that $\left(\left(G\left(x_{n}, y_{n}\right), G\left(y_{n}, x_{n}\right)\right)\right)$ is not a Cauchy sequence in $(X \times X, \eta)$. Then, there exists $\varepsilon>0$ for which we can
find two sequences of positive integers $(m(k))$ and $(n(k))$ such that for all positive integer k with $n(k)>m(k)>k$, we have

$$
\left\{\begin{array}{l}
\eta\left(\left(\left(G x_{m(k)}, G y_{m(k)}\right),\left(G y_{m(k)}, G x_{m(k)}\right)\right),\left(\left(G x_{n(k)}, G y_{n(k)}\right),\left(G y_{n(k)}, G x_{n(k)}\right)\right)\right)>\varepsilon, \tag{3.10}\\
\eta\left(\left(\left(G x_{m(k)}, G y_{m(k)}\right),\left(G y_{m(k)}, G x_{m(k)}\right)\right),\left(\left(G x_{n(k)-1}, G y_{n(k)-1}\right),\left(G y_{n(k)-1}, G x_{n(k)-1}\right)\right)\right) \leq \varepsilon
\end{array}\right.
$$

By definition of the metric η, we have

$$
\begin{equation*}
d_{k}=d\left(\left(G x_{m(k)}, G y_{m(k)}\right),\left(G x_{n(k)}, G y_{n(k)}\right)\right)+d\left(\left(G y_{m(k)}, G x_{m(k)}\right),\left(G y_{n(k)}, G x_{n(k)}\right)\right)>\varepsilon \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
d\left(\left(G x_{m(k)}, G y_{m(k)}\right),\left(G x_{n(k)-1}, G y_{n(k)-1}\right)\right)+d\left(\left(G y_{m(k)}, G x_{m(k)}\right),\left(G y_{n(k)-1}, G x_{n(k)-1}\right)\right) \leq \varepsilon \tag{3.12}
\end{equation*}
$$

Further from (3.11) and (3.12), for all $k \geq 0$, we have

$$
\begin{aligned}
\varepsilon<d_{k} & \leq d\left(\left(G x_{m(k)}, G y_{m(k)}\right),\left(G x_{n(k)-1}, G y_{n(k)-1}\right)\right)+d\left(\left(G x_{n(k)-1}, G y_{n(k)-1}\right),\left(G x_{n(k)}, G y_{n(k)}\right)\right) \\
& +d\left(\left(G y_{m(k)}, G x_{m(k)}\right),\left(G y_{n(k)-1}, G x_{n(k)-1}\right)\right)+d\left(\left(G y_{n(k)-1}, G x_{n(k)-1}\right),\left(G y_{n(k)}, G x_{n(k)}\right)\right) \\
& \leq \varepsilon+\delta_{n(k)-1} .
\end{aligned}
$$

Taking the limit as $k \rightarrow+\infty$ in the above inequality, we have by (3.9),

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} d_{k}=\varepsilon^{+} . \tag{3.13}
\end{equation*}
$$

Again, for all $k \geq 0$, we have

$$
\begin{aligned}
d_{k} & =d\left(\left(G x_{m(k)}, G y_{m(k)}\right),\left(G x_{n(k)}, G y_{n(k)}\right)\right)+d\left(\left(G y_{m(k)}, G x_{m(k)}\right),\left(G y_{n(k)}, G x_{n(k)}\right)\right) \\
& \leq d\left(\left(G x_{m(k)}, G y_{m(k)}\right),\left(G x_{m(k)+1}, G y_{m(k)+1}\right)\right)+d\left(\left(G x_{m(k)+1}, G y_{m(k)+1}\right),\left(G x_{n(k)+1}, G y_{n(k)+1}\right)\right) \\
& +d\left(\left(G x_{n(k)+1}, G y_{n(k)+1}\right),\left(G x_{n(k)}, G y_{n(k)}\right)\right)+d\left(\left(G y_{m(k)}, G x_{m(k)}\right),\left(G y_{m(k)+1}, G x_{m(k)+1}\right)\right) \\
& +d\left(\left(G y_{m(k)+1}, G x_{m(k)+1}\right),\left(G y_{n(k)+1}, G x_{n(k)+1}\right)\right)+d\left(\left(G y_{n(k)+1}, G x_{n(k)+1}\right),\left(G y_{n(k)}, G x_{n(k)}\right)\right) \\
& =d\left(\left(G x_{m(k)}, G y_{m(k)}\right),\left(G x_{m(k)+1}, G y_{m(k)+1}\right)\right)+d\left(\left(G y_{m(k)}, G x_{m(k)}\right),\left(G y_{m(k)+1}, G x_{m(k)+1}\right)\right) \\
& +d\left(\left(G x_{n(k)+1}, G y_{n(k)+1}\right),\left(G x_{n(k)}, G y_{n(k)}\right)\right)+d\left(\left(G y_{n(k)+1}, G x_{n(k)+1}\right),\left(G y_{n(k)}, G x_{n(k)}\right)\right) \\
& +d\left(\left(G x_{m(k)+1}, G y_{m(k)+1}\right),\left(G x_{n(k)+1}, G y_{n(k)+1}\right)\right)+d\left(\left(G y_{m(k)+1}, G x_{m(k)+1}\right),\left(G y_{n(k)+1}, G x_{n(k)+1}\right)\right) .
\end{aligned}
$$

Hence, for all $k \geq 0$,

$$
\begin{align*}
d_{k} & \leq \delta_{m(k)}+\delta_{n(k)} \\
& +d\left(\left(G x_{m(k)+1}, G y_{m(k)+1}\right),\left(G x_{n(k)+1}, G y_{n(k)+1}\right)\right)+d\left(\left(G y_{m(k)+1}, G x_{m(k)+1}\right),\left(G y_{n(k)+1}, G x_{n(k)+1}\right)\right) . \tag{3.14}
\end{align*}
$$

From (3.1), (3.4) and (3.11), for all $k \geq 0$, we have

$$
\begin{align*}
& d\left(\left(G x_{m(k)+1}, G y_{m(k)+1}\right),\left(G x_{n(k)+1}, G y_{n(k)+1}\right)\right)=d\left(\left(F x_{m(k)}, F y_{m(k)}\right),\left(F x_{n(k)}, F y_{n(k)}\right)\right) \\
& \leq \varphi\left(\frac{d\left(G\left(x_{m(k)}, y_{m(k)}\right), G\left(x_{n(k)}, y_{n(k)}\right)\right)+d\left(G\left(y_{m(k)}, x_{m(k)}\right), G\left(y_{n(k)}, x_{n(k)}\right)\right)}{2}\right) \\
& =\varphi\left(\frac{d_{k}}{2}\right) \tag{3.15}
\end{align*}
$$

Also, from (3.1), (3.4) and (3.11), for all $k \geq 0$, we have

$$
\begin{align*}
& d\left(\left(G y_{m(k)+1}, G x_{m(k)+1}\right),\left(G y_{n(k)+1}, G x_{n(k)+1}\right)\right)=d\left(\left(F y_{m(k)}, F x_{m(k)}\right),\left(F y_{n(k)}, F x_{n(k)}\right)\right) \\
& \leq \varphi\left(\frac{d\left(G\left(y_{m(k)}, x_{m(k)}\right), G\left(y_{n(k)}, x_{n(k)}\right)\right)+d\left(G\left(x_{m(k)}, y_{m(k)}\right), G\left(x_{n(k)}, y_{n(k)}\right)\right)}{2}\right) \\
& =\varphi\left(\frac{d_{k}}{2}\right) . \tag{3.16}
\end{align*}
$$

Putting (3.15) and (3.16) in (3.14), we get

$$
d_{k} \leq \delta_{m(k)}+\delta_{n(k)}+2 \varphi\left(\frac{d_{k}}{2}\right)
$$

Letting $k \rightarrow+\infty$ in the above inequality and using (3.9) and (3.13), we obtain

$$
\begin{equation*}
\varepsilon \leq 2 \lim _{k \rightarrow+\infty} \varphi\left(\frac{d_{k}}{2}\right)=2 \lim _{d_{k} \rightarrow \varepsilon^{+}} \varphi\left(\frac{d_{k}}{2}\right)<2 \frac{\varepsilon}{2}=\varepsilon, \tag{3.17}
\end{equation*}
$$

which is a contradiction. Thus we proved that $\left(\left(G\left(x_{n}, y_{n}\right), G\left(y_{n}, x_{n}\right)\right)\right)$ is a Cauchy sequence in $(X \times X, \eta)$, which implies that $\left(\left(G\left(x_{n}, y_{n}\right)\right)\right.$ and $\left(G\left(y_{n}, x_{n}\right)\right)$ are Cauchy sequences in (X, d).

Now, since (X, d) is complete, there exist $x, y \in X$ such that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} G\left(x_{n}, y_{n}\right)=\lim _{n \rightarrow+\infty} F\left(x_{n}, y_{n}\right)=x \text { and } \lim _{n \rightarrow+\infty} G\left(y_{n}, x_{n}\right)=\lim _{n \rightarrow+\infty} F\left(y_{n}, x_{n}\right)=y . \tag{3.18}
\end{equation*}
$$

Since the pair $\{F, G\}$ satisfies the generalized compatibility, from (3.18), we get

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} d\left(F\left(G\left(x_{n}, y_{n}\right), G\left(y_{n}, x_{n}\right)\right), G\left(F\left(x_{n}, y_{n}\right), F\left(y_{n}, x_{n}\right)\right)\right)=0 \tag{3.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} d\left(F\left(G\left(y_{n}, x_{n}\right), G\left(x_{n}, y_{n}\right)\right), G\left(F\left(y_{n}, x_{n}\right), F\left(x_{n}, y_{n}\right)\right)\right)=0 . \tag{3.20}
\end{equation*}
$$

Suppose that F is continuous.
For all $n \geq 0$, we have

$$
\begin{aligned}
d\left(G(x, y), F\left(G\left(x_{n}, y_{n}\right), G\left(y_{n}, x_{n}\right)\right)\right) \leq & d\left(G(x, y), G\left(F\left(x_{n}, y_{n}\right), F\left(y_{n}, x_{n}\right)\right)\right) \\
& +d\left(G\left(F\left(x_{n}, y_{n}\right), F\left(y_{n}, x_{n}\right)\right), F\left(G\left(x_{n}, y_{n}\right), G\left(y_{n}, x_{n}\right)\right)\right) .
\end{aligned}
$$

Taking the limit as $n \rightarrow+\infty$, using (3.18), (3.19) and the fact that F and G are continuous, we have

$$
\begin{equation*}
G(x, y)=F(x, y) \tag{3.21}
\end{equation*}
$$

Similarly, using (3.18), (3.20) and the fact that F and G are continuous, we have

$$
\begin{equation*}
G(y, x)=F(y, x) \tag{3.22}
\end{equation*}
$$

Thus, we proved that (x, y) is a coupled coincidence point of F and G.
Now, suppose that (a) and (b) hold.
By (3.4) and (3.18), we have $\left(G\left(x_{n}, y_{n}\right)\right)$ is non-decreasing sequence, $G\left(x_{n}, y_{n}\right) \rightarrow x$ and $\left(G\left(y_{n}, x_{n}\right)\right)$ is non-increasing sequence, $G\left(y_{n}, x_{n}\right) \rightarrow y$ as $n \rightarrow+\infty$. Then by (a) and (b), for all $n \in \mathbb{N}$, we have

$$
\begin{equation*}
G\left(x_{n}, y_{n}\right) \preceq x \quad \text { and } \quad G\left(y_{n}, x_{n}\right) \succeq y \tag{3.23}
\end{equation*}
$$

Since the pair $\{F, G\}$ satisfies the generalized compatibility and G is continuous, by (3.19) and (3.20), we have

$$
\begin{align*}
\lim _{n \rightarrow+\infty} G\left(G\left(x_{n}, y_{n}\right), G\left(y_{n}, x_{n}\right)\right) & =G(x, y) \\
& =\lim _{n \rightarrow+\infty} G\left(F\left(x_{n}, y_{n}\right), F\left(y_{n}, x_{n}\right)\right) \tag{3.24}\\
& =\lim _{n \rightarrow+\infty} F\left(G\left(x_{n}, y_{n}\right), G\left(y_{n}, x_{n}\right)\right)
\end{align*}
$$

and

$$
\begin{align*}
\lim _{n \rightarrow+\infty} G\left(G\left(y_{n}, x_{n}\right), G\left(x_{n}, y_{n}\right)\right) & =G(y, x) \\
& =\lim _{n \rightarrow+\infty} G\left(F\left(y_{n}, x_{n}\right), F\left(x_{n}, y_{n}\right)\right) \tag{3.25}\\
& =\lim _{n \rightarrow+\infty} F\left(G\left(y_{n}, x_{n}\right), G\left(x_{n}, y_{n}\right)\right)
\end{align*}
$$

Now, we have

$$
\begin{aligned}
d(G(x, y), F(x, y)) \leq & d\left(G(x, y), G\left(G\left(x_{n+1}, y_{n+1}\right), G\left(y_{n+1}, x_{n+1}\right)\right)\right) \\
& +d\left(G\left(F\left(x_{n}, y_{n}\right), F\left(y_{n}, x_{n}\right)\right), F(x, y)\right)
\end{aligned}
$$

Letting $n \rightarrow+\infty$ in the above inequality and using (3.24), we get

$$
\begin{aligned}
d(G(x, y), F(x, y)) & \leq \lim _{n \rightarrow+\infty} d\left(G\left(F\left(x_{n}, y_{n}\right), F\left(y_{n}, x_{n}\right)\right), F(x, y)\right) \\
& =\lim _{n \rightarrow+\infty} d\left(F\left(G\left(x_{n}, y_{n}\right), G\left(y_{n}, x_{n}\right)\right), F(x, y)\right)
\end{aligned}
$$

Since G has the mixed monotone property, it follows from (3.23) that

$$
G\left(G\left(x_{n}, y_{n}\right), G\left(y_{n}, x_{n}\right)\right) \preceq G(x, y) \quad \text { and } \quad G\left(G\left(y_{n}, x_{n}\right), G\left(x_{n}, y_{n}\right)\right) \succeq G(y, x) .
$$

Then, using (3.1), (3.24), (3.25) and Lemma 18, we get

$$
\begin{aligned}
& d(G(x, y), F(x, y)) \\
& \leq \lim _{n \rightarrow+\infty} \varphi\left(\frac{d\left(G\left(G\left(x_{n}, y_{n}\right), G\left(y_{n}, x_{n}\right)\right), G(x, y)\right)+d\left(G\left(G\left(y_{n}, x_{n}\right), G\left(x_{n}, y_{n}\right)\right), G(y, x)\right)}{2}\right)=0 .
\end{aligned}
$$

Then we get

$$
G(x, y)=F(x, y) .
$$

Similarly, we can show that

$$
G(y, x)=F(y, x) .
$$

Thus we proved that (x, y) is a coupled coincidence point of F and G.
This completes the proof of the Theorem 19.
Now, we deduce an analogous result to Theorem 8 of Choudhury and Kundu [5]. At first, we introduce the following definition.

Definition 20. Let (X, \preceq) be a partially ordered set, $F: X \times X \rightarrow X$ and $g: X \rightarrow$ X. We say that F is g-increasing with respect to \preceq if for any $x, y \in X$,

$$
g x_{1} \preceq g x_{2} \text { implies } F\left(x_{1}, y\right) \preceq F\left(x_{2}, y\right)
$$

and

$$
g y_{1} \preceq g y_{2} \text { implies } F\left(x, y_{1}\right) \preceq F\left(x, y_{2}\right) .
$$

Corollary 21. Let (X, \preceq) be a partially ordered set and suppose there is a metric d on X such that (X, d) is a complete metric space. Let $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ be two mappings such that F is g-increasing with respect to \preceq, and satisfy

$$
d(F(x, y), F(u, v)) \leq \varphi\left(\frac{d(g x, g u)+d(g y, g v)}{2}\right),
$$

for all $x, y, u, v \in X$, with $g x \preceq g u$ and $g v \preceq g y$, where $\varphi \in \Phi$. Suppose that $F(X \times X) \subseteq g(X), g$ is continuous and monotone increasing with respect to \preceq, and the pair $\{F, g\}$ is compatible. Also suppose either F is continuous or X has the following properties:
(a) if a non-decreasing sequence $x_{n} \rightarrow x$, then $x_{n} \preceq x$ for all n,
(b) if a non-increasing sequence $x_{n} \rightarrow x$, then $x \preceq x_{n}$ for all n.

If there exist $x_{0}, y_{0} \in X$ such that $g x_{0} \preceq F\left(x_{0}, y_{0}\right)$ and $F\left(y_{0}, x_{0}\right) \preceq g y_{0}$, then F and g have a coupled coincidence point, that is, there exists $(x, y) \in X \times X$ such that $g x=F(x, y)$ and $g y=F(y, x)$.

Proof. Taking $G: X \times X \rightarrow X,(x, y) \mapsto G(x, y)=g x$ in Theorem 19, we obtain Corollary 21.

Now, we present an example to illustrate our obtained result given by Theorem 19.

Example 22. Let $X=[0,1]$ endowed with the natural ordering of real numbers. We endow X with the standard metric $d(x, y)=|x-y|$ for all $x, y \in X$. Then (X, d) is a complete metric space. Define the mappings $G, F: X \times X \rightarrow X$ by

$$
G(x, y)=\left\{\begin{array}{ll}
x-y & \text { if } x \geq y \\
0 & \text { if } x<y
\end{array} \text { and } \quad F(x, y)=\left\{\begin{array}{ll}
\frac{x-y}{3} & \text { if } x \geq y \\
0 & \text { if } x<y
\end{array} .\right.\right.
$$

Let us prove that F is G-increasing.
Let $(x, y),(u, v) \in X \times X$ with $G(x, y) \leq G(u, v)$. We consider the following cases. Case-1: $x<y$.
In this case, we have $F(x, y)=0 \leq F(u, v)$.
Case-2: $x \geq y$.
If $u \geq v$, we get

$$
G(x, y) \leq G(u, v) \Rightarrow x-y \leq u-v \Rightarrow \frac{x-y}{3} \leq \frac{u-v}{3} \Rightarrow F(x, y) \leq F(u, v) .
$$

If $u<v$, we get

$$
G(x, y) \leq G(u, v) \Rightarrow 0 \leq x-y \leq 0 \Rightarrow x=y \Rightarrow F(x, y)=0 \leq F(u, v) .
$$

Thus we proved that F is G-increasing.
Let us prove that for any $x, y \in X$, there exist $u, v \in X$ such that

$$
\left\{\begin{array}{l}
F(x, y)=G(u, v) \\
F(y, x)=G(v, u)
\end{array} .\right.
$$

Let $(x, y) \in X \times X$ be fixed. We consider the following cases:
Case-1: $x=y$.
In this case, $F(x, y)=0=G(x, y)$ and $F(y, x)=0=G(y, x)$.
Case-2: $x>y$.
In this case, we have

$$
F(x, y)=\frac{x-y}{3}=G(x / 3, y / 3) \quad \text { and } \quad F(y, x)=0=G(y / 3, x / 3) .
$$

Case-3: $x<y$.
In this case, we have

$$
F(x, y)=0=G(x / 3, y / 3) \quad \text { and } \quad F(y, x)=\frac{y-x}{3}=G(y / 3, x / 3)
$$

G is continuous and has the mixed monotone property.
Clearly G is continuous. Let $(x, y) \in X \times X$ be fixed. Suppose that $x_{1}, x_{2} \in X$ are such that $x_{1}<x_{2}$. We distinguish the following cases.
Case-1: $x_{1}<y$.
In this case, we have $G\left(x_{1}, y\right)=0 \leq G\left(x_{2}, y\right)$.
Case-2: $x_{2}>x_{1} \geq y$.
In this case, we have

$$
G\left(x_{1}, y\right)=x_{1}-y \leq x_{2}-y=G\left(x_{2}, y\right)
$$

Similarly, we can show that if $y_{1}, y_{2} \in X$ are such that $y_{1}<y_{2}$, then $G\left(x, y_{1}\right) \geq$ $G\left(x, y_{2}\right)$.
Now, we prove that the pair $\{F, G\}$ satisfies the generalized compatibility hypothesis. Let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be two sequences in X such that

$$
t_{1}=\lim _{n \rightarrow+\infty} G\left(x_{n}, y_{n}\right)=\lim _{n \rightarrow+\infty} F\left(x_{n}, y_{n}\right)
$$

and

$$
t_{2}=\lim _{n \rightarrow+\infty} G\left(y_{n}, x_{n}\right)=\lim _{n \rightarrow+\infty} F\left(y_{n}, x_{n}\right)
$$

Then obviously, $t_{1}=t_{2}=0$. It follows easily that

$$
\lim _{n \rightarrow+\infty} d\left(F\left(G\left(x_{n}, y_{n}\right), G\left(y_{n}, x_{n}\right)\right), G\left(F\left(x_{n}, y_{n}\right), F\left(y_{n}, x_{n}\right)\right)\right)=0
$$

and

$$
\lim _{n \rightarrow+\infty} d\left(F\left(G\left(y_{n}, x_{n}\right), G\left(x_{n}, y_{n}\right)\right), G\left(F\left(y_{n}, x_{n}\right), F\left(x_{n}, y_{n}\right)\right)\right)=0
$$

There exists $\left(x_{0}, y_{0}\right) \in X \times X$ such that $G\left(x_{0}, y_{0}\right) \leq F\left(x_{0}, y_{0}\right)$ and $G\left(y_{0}, x_{0}\right) \geq$ $F\left(y_{0}, x_{0}\right)$.
We have

$$
G(0,1 / 2)=0=F(0,1 / 2) \quad \text { and } \quad G(1 / 2,0)=1 / 2 \geq 1 / 6=F(1 / 2,0)
$$

Now, let $\varphi:[0,+\infty) \rightarrow[0,+\infty)$ be defined as

$$
\varphi(t)=\frac{2 t}{3} \text { for all } t \geq 0
$$

Clearly $\varphi \in \Phi$. Let us prove that inequality (3.1) is satisfied for all $x, y, u, v \in X$, with $G(x, y) \preceq G(u, v)$ and $G(v, u) \preceq G(y, x)$.

Let $x, y, u, v \in X$, with $G(x, y) \preceq G(u, v)$ and $G(v, u) \preceq G(y, x)$. We have

$$
\begin{aligned}
d(F(x, y), F(u, v)) & =|F(x, y)-F(u, v)| \\
& =\frac{1}{3}|G(x, y)-G(u, v)| \\
& =\frac{2}{3}\left(\frac{|G(x, y)-G(u, v)|}{2}\right) \\
& \leq \frac{2}{3}\left(\frac{|G(x, y)-G(u, v)|+|G(y, x)-G(v, u)|}{2}\right) \\
& =\varphi\left(\frac{d(G(x, y), G(u, v))+d(G(y, x), G(v, u))}{2}\right) .
\end{aligned}
$$

Then, inequality (3.1) is satisfied.
Now, all the required hypotheses of Theorem 19 are satisfied. Thus we deduce the existence of a coupled coincidence point of F and G. Here, $(0,0)$ is a coupled coincidence point of F and G.

References

[1] R.P. Agarwal, M.A. El-Gebeily and D. O'Regan, Generalized contractions in partially ordered metric spaces, Applicable Anal. 87(1)(2008), 109-116. MR2381749. Zbl 1140.47042.
[2] I. Altun and H. Simsek, Some fixed point theorems on ordered metric spaces and application, Fixed Point Theory Appl. Volume 2010, Article ID 621469, 17 pages, 2010. MR2591832. Zbl 1197.54053.
[3] I. Beg and A.R. Butt, Fixed point for set-valued mappings satisfying an implicit relation in partially ordered metric spaces, Nonlinear Anal. 71 (9) (2009), 36993704. MR2536280. Zbl 1176.54028.
[4] T.G. Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006), 1379-1393. 2245511. Zbl 1106.47047.
[5] B.S. Choudhury and A. Kundu, A coupled coincidence point result in partially ordered metric spaces for compatible mappings, Nonlinear Anal. 73(8) (2010), 2524-2531. MR2674088. Zbl 1229.54051.
[6] Lj. Ćirić, M. Abbas, R. Saadati and N. Hussain Common fixed points of almost generalized contractive mappings in ordered metric spaces, Appl. Math. Comput. 217 (2011), 5784-5789. MR2770196. Zbl 1206.54040.
[7] Lj. Ćirić, N. Cakić, M. Rajović and J.S. Ume, Monotone generalized nonlinear contractions in partially ordered metric spaces, Fixed Point Theory Appl. Volume 2008, Article ID 131294, 11 pages, 2008. MR2481377. Zbl 1158.54019.
[8] J. Harjani and K. Sadarangani, Generalized contractions in partially ordered metric spaces and applications to ordinary differential equations, Nonlinear Anal. 72 (2010), 1188-1197. MR2577519. Zbl 1220.54025.
[9] V. Lakshmikantham and Lj. Ćirić, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal. 70 (2009) ,43414349. MR2514765. Zbl 1176.54032.
[10] H.K. Nashine and B. Samet, Fixed point results for mappings satisfying (ψ, φ) weakly contractive condition in partially ordered metric spaces, Nonlinear Anal. 74 (2011), 2201-2209. MR2781749. Zbl 1208.41014.
[11] J.J. Nieto and R.R. López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order. 22 (3) (2005), 223-239. MR2212687. Zbl 1095.47013.
[12] A.C.M. Ran and M.C.B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proceedings of the American Mathematical Society. 132 (5) (2004), 1435-1443. MR2053350. Zbl 1060.47056.
[13] B. Samet, Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces, Nonlinear Anal. 72 (2010), 45084517. MR2639199. Zbl 1264.54068.
[14] B. Samet and C. Vetro, Coupled fixed point, F-invariant set and fixed point of N-order, Ann. Funct. Anal. 1 (2) (2010), 46-56. MR2772037. Zbl 1214.54041.

Hassen Aydi
University of Dammam, Department of Mathematics.
College of Education of Jubail, P.O: 12020, Industrial Jubail 31961, Saudi Arabia.
e-mail: hmaydi@uod.edu.sa
Manel Jellali
University of Dammam, Department of Mathematics.
College of Education of Jubail, P.O: 12020, Industrial Jubail 31961, Saudi Arabia.
e-mail: majellali@uod.edu.sa

License

This work is licensed under a Creative Commons Attribution 4.0 International License. @ ©

[^0]: 2010 Mathematics Subject Classification: 54 H 25 ; 47H10
 Keywords: Coupled coincidence point; generalized compatibility; mixed monotone property; ordered set; complete metric space

