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Abstract. The main purpose of this article is to present a proof of the T(1) Theorem that uses

a continuous version of the Cotlar-Knapp-Stein lemma, due to A. P. Calderón and R. Vaillancourt.

1 Introduction

More than thirty years have passed since the publication of David’s and Journé’s
celebrated T(1) Theorem [38], a central result in Harmonic Analysis, characterizing
the L2 continuity of operators in a certain class. In that time, numerous new proofs,
extensions and generalizations, as well as excellent expositions at different levels,
have appeared. We cite, as examples, [33], [39], [41], [26], [45], [46], [85], [89], [90],
[62], [80], [81], [82], [83], [25], [40], [86], [44], [77]. For a more comprehensive list, we
refer to the bibliography in [25], [77] and [44].

The original proof of David and Journé first reduces the operator to “zero initial
conditions”, thus, introducing some useful cancellation properties. This is done
using a suitable realization of the so called paraproducts (see, for instance, [25], p.
40; [82]), defined by Bony [8]. Then, it uses an “almost orthogonality” principle to
prove the L2 continuity of the reduced operator. We point out that shortly after
David’s and Journé’s proof was announced, Coifman and Meyer came up with a
one-step proof [33] that avoids the “almost orthogonality” argument.

Going back to the original proof, the “almost orthogonality” principle used is the
remarkable Cotlar’s lemma [35], in a version known as Cotlar-Knapp-Stein lemma
(see, for instance, [58]; [77], p. 280).

However, earlier results by Calderón and Vaillancourt on the boundedness of
pseudo-differential operators [20], had relied on their “continuous” version, that
is to say, a version involving integrals instead of sums, of the Cotlar-Knapp-Stein

2010 Mathematics Subject Classification: 42B20; 30H35; 42B30.
Keywords: Singular integral operators; weak boundedness property; BMO functions; Carleson

measures.

******************************************************************************
http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v13/v13.html
http://www.utgjiu.ro/math/sma
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lemma. Thus, it seemed quite natural to write a proof of the T(1) Theorem that
uses the Calderón-Vaillancourt version [20] of the lemma. This is the main purpose
of this article. Although the Calderón-Vaillancourt lemma is cited in the literature
(see, for instance, [77], p. 318, further results 5.5 (ii); [44], p. 283, Exercise 4.5.8; p.
324, historical notes), we do not know of any source that presents or suggests such
a proof.

Our work is organized as follows: It commences with a section devoted to
standard kernels and to the operators associated with them. These notions were
introduced by Coifman and Meyer [30], as a natural formulation encompassing the
singular integrals defined and studied by Calderón and Zygmund (see, for instance,
[21], [22], [23], [15]), as well as other important operators related to pseudo-differential
operators, commutators and Cauchy integrals. We discuss, in detail, the non-trivial
relationship between an operator and its kernel, bringing in results and observations
from various sources that we dutifully acknowledge. In the next section we motivate
and present in some detail several operators of great significance, that fall into the
framework outlined in the previous section. We do not aim for completeness, we just
want to have at hand a sufficiently rich collection of examples to allow us, later, to
discuss the applicability of the theorem. Next, we state the T(1) Theorem, taking
the time to analyze the meaning and independence of its hypotheses. The proof
of the theorem, including a few preliminary definitions and results, is the subject
of the next two sections. In the first one, we explain a reduction step that follows
the original presentation by David and Journé. We include the detailed proof of
all the statements made. It is in the second section where we use the Calderón-
Vaillancourt version of the Cotlar-Knapp-Stein lemma, to prove the L2 continuity
of the reduced operator. In the section that follows, we examine the applicability
of the T(1) Theorem to the particular operators introduced earlier. Lastly, let us
point out that there are various definitions of standard kernel. For this reason, we
think that it is of interest to make precise the relationship between a few of the
most common formulations. Thus, we dedicate a last section to this endeavour. The
article ends with an extensive list of references.

There are many excellent accounts of the background information leading to the
concepts and results used in this article. For instance, we cite [75], [78], [40], [25],
[43], [44], [86] and [77], and some of the references therein.

We use the standard notation in the subject and we work with functions and
distributions that might take real or complex values. Unless otherwise indicated,
the underlying space will be Rn. Typically, we will denote C a positive constant,
only depending on specific parameters and possibly varying at different occurrences.
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T(1) Theorem Revisited 43

2 Standard kernels and the operators associated with
them

Given a distribution k ∈ D′ (Rn × Rn), we can define, uniquely, an operator T :
D → D′, linear and continuous, as

(Tϕ, ψ) = (k, ϕ⊗ ψ) , (2.1)

where ϕ,ψ ∈ D and the duality is understood as (D′,D) on the left and(D′ (Rn × Rn) ,
D (Rn × Rn)) on the right. Conversely, a famous theorem due to L. Schwartz [73],
asserts that given a linear and continuous operator T : D → D′, there exists a
unique distribution k ∈ D′ (Rn × Rn), called the distribution kernel of T , so that
the representation (2.1) holds.

The T(1) Theorem characterizes the continuity on the space L2, of operators T
for which their distribution kernel k satisfies certain size and smoothness conditions.
Definition 1 below provides one of the classical formulations of such conditions. In
the last section, we will analyze how it is related to other versions.

In what follows we will indicate as ∆ the diagonal in Rn × Rn, that is to say,
∆ = {(x, x) ;x ∈ Rn}.

Definition 1. (Standard kernel) Given k ∈ D′ (Rn × Rn), we say that k is a
standard kernel if its restriction to Rn ×Rn \∆ is a continuous function satisfying,
for some C > 0 and for a fixed 0 < δ ≤ 1, the following conditions:

1. |k (x, y)| ≤ C
|x−y|n , when (x, y) ∈ Rn × Rn \∆,

2. |k (x, y)− k (z, y)| ≤ C |x−z|δ

|y−z|n+δ , when |y − z| ≥ c |x− z| for some c > 1,

3. |k (y, x)− k (y, z)| ≤ C |x−z|δ

|y−z|n+δ , when |y − z| ≥ c |x− z| for some c > 1.

Remark 2. Although in conditions 2) and 3) of Definition 1 we only ask for c to
be larger than one, we will see immediately that, in some situations, c needs to be at
least 2.

Lemma 3. If k satisfies 2) and 3) in Definition 1, for some C > 0, c ≥ 2, and
a given 0 < δ ≤ 1, then it will also satisfy the same conditions for any δ′ with
0 < δ′ < δ and the same constants C and c.

The kernel k satisfies 2) with δ = 1, when |y − z| ≥ c |x− z| for some c > 2 and
an appropriate C > 0, if it satisfies the condition

|∇xk (x, y)| ≤
C

|x− y|n+1 ,

which we will indicate as 2’), for some C > 0.
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Finally, the kernel k satisfies 3) with δ = 1, when |y − z| ≥ c |x− z| for some
c > 2 and an appropriate C > 0, if it satisfies the condition

|∇xk (y, x)| ≤
C

|x− y|n+1 ,

indicated 3’), for some C > 0.

Proof. The first assertion follows from the estimate

|x− z|δ

|y − z|n+δ
=

|x− z|δ−δ′

|y − z|δ−δ′
|x− z|δ

′

|y − z|n+δ′
≤
(
1

2

)δ−δ′ |x− z|δ
′

|y − z|n+δ′

≤ |x− z|δ
′

|y − z|n+δ′
.

As for the second assertion, if condition 2’) holds, then, for |x− z| ≤ |y−z|
c we can

write

|k (x, y)− k (z, y)| ≤ |(∇xk) (x+ t (z − x) , y)| |x− z|

≤ C
|x− z|

|x− y + t (z − x)|n+1 ≤ C
|x− z|

(|x− y| − |x− z|)n+1

≤ C
|x− z|

(|y − z| − 2 |x− z|)n+1

≤ C

(
c− 2

c

)n+1 |x− z|
|y − z|n+1 ,

with a similar estimate for |k (y, x)− k (y, z)|, if 3’) holds.
This completes the proof of the lemma.

Remark 4. Given a Lipschitz function ϕ : Rn → R for n ≥ 2, if Ω ⊆ Rn+1 is the
open set defined by t > ϕ (x), the kernel of the double layer potential is defined, on
Rn × Rn \∆, as

kϕ (x, y) =
ϕ (x)− ϕ (y)− (x− y) · (∇ϕ) (y)(
|x− y|2 + (ϕ (x)− ϕ (y))2

)(n+1)/2
.

As Meyer observed in [63], the kernel kϕ (x, y) satisfies 1) and 2) in Definition
1, but not 3). Likewise, the kernel ktϕ (x, y) = kϕ (y, x), satisfies 1) and 3), but not
2). In Example 18 of the section that follows, we consider in some detail the n = 2
version of this example.
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Definition 5. (Operator associated with a kernel) Given a linear and continuous
operator T : D → D′, we say that T is associated with a kernel if the distribution
kernel k of T coincides with a continuous function, also denoted k, on Rn×Rn \∆,
and the following pointwise representation holds:

T (ϕ) (x) =

∫
Rn

k (x, y)ϕ (y) dy,

for ϕ ∈ D and x ∈ Rn\supp (ϕ).

Definition 6. (Operator associated with a standard kernel) Given a linear and
continuous operator T : D → D′, we say that T is associated with a standard kernel
if the following two conditions hold:

i) The distribution kernel of T coincides, away from the diagonal, with a function
that is a standard kernel in the sense of Definition 1.

ii) The following pointwise representation holds:

T (ϕ) (x) =

∫
Rn

k (x, y)ϕ (y) dy, (2.2)

for ϕ ∈ D and x ∈ Rn\supp (ϕ).

Remark 7. Definition 1 and Definition 6 say that the restriction to the complement
of the diagonal of the distribution kernel of T , is a function with prescribed singularities
as |x− y| → 0, that are at the edge of integrability. For more on these definitions,
we refer to ([30], p. 79).

Remark 8. As we said before, there is a bijection between the class of linear and
continuous operators T : D → D′ and D′ (Rn × Rn). Moreover, if T is associated
with a standard kernel k, then k is, pointwise, uniquely determined in Rn ×Rn \∆.
In fact, for (x0, y0) ∈ Rn × Rn \ ∆ fixed, let {ϕj}j≥1 be so that, for all j ≥ 1,

ϕj ∈ D, x0 /∈ supp (ϕj)and ϕj → δy0 in D′ as j → ∞. Here, δy0 denotes the Dirac
distribution supported on {y0}. Then,

T (ϕj) (x0) =

∫
Rn

k (x0, y)ϕj (y) dy = (ϕj , k (x0, y)) →
j→∞

k (x0, y0) .

That is to say, there is limj→∞ T (ϕj) (x0) in C and this limit gives the value
k (x0, y0), independently of the approximation {ϕj}j≥1, provided that this approximation
satisfies the stated conditions. On the other hand, neither the operator T nor its
distribution kernel k are uniquely determined by the restriction of k to Rn × Rn \
∆. In fact, let us consider I, the identity operator, associated with the Dirac-like
distribution kernel δ (x− y), and the zero operator, associated with the identically
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zero distribution kernel. In both cases, the restriction of the kernel to Rn × Rn \∆
is the identically zero function, proving our assertion.

Likewise, given a continuous function k : Rn ×Rn \∆ → C satisfying Definition
1, not always exists a distribution kernel that coincides with k on Rn ×Rn \∆. For
instance, that is the case when k (x, y) = |x− y|−n ([44], p. 212, Example 4.1.3).
Let us remark that the function |x|−n defined on Rn \ {0}, satisfies the estimate⏐⏐⏐⏐∇x

1

|x|n
⏐⏐⏐⏐ ≤ C

|x|n+1 ,

as can be seen by a straightforward application of the Mean Value Theorem. So,
k (x, y) = |x− y|−n does satisfy Definition 1 with δ = 1, when |y − z| ≥ c |x− z| for
some c > 2 and an appropriate C > 0, as shown in Lemma 3.

If the function k satisfying Definition 1 is antisymmetric, that is to say if k (y, x) =
−k (x, y), it extends to a distribution kernel. We will prove this assertion in Section
7.

For more on the relationship between kernels and operators, see ([30], Chapter
IV).

Remark 9. We will assume, from now on, that c = 2 in Definition 1 (see [4]). This
is how conditions 2) and 3) in Definition 1 are typically stated. For more on this,
we refer to the comparison of various pointwise as well as integral conditions on the
kernel, discussed in the last section.

Definition 10. Given a linear and continuous operator T : D → D′, we can define
another operator, T t : D → D′, called the transpose of T , as(

T tϕ,ψ
)
= (Tψ, ϕ) ,

or, in terms of their distribution kernels,

(k, ψ ⊗ ϕ) =
(
kt, ϕ⊗ ψ

)
,

where kt is called the transpose kernel of K.

If k is given by a function k (x, y) on Rn×Rn\∆, then the transpose distribution
kernel kt as given by Definition 10, coincides with the function k (y, x) on Rn×Rn\∆.

Definition 11. (CZO) An operator T associated with a standard kernel k is called
a Calderón-Zygmund operator, in brief CZO, if T extends to a continuous operator
from L2 into itself, with norm denoted ∥T∥L(L2).

Remark 12. The notions of standard kernel, operator associated to a standard
kernel and Calderón-Zygmund operator, were introduced by Coifman and Meyer [30],
to bring together many particular situations of great interest. They originated with
the theory of singular integrals due to Calderón and Zygmund.
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Remark 13. The partial derivative operator ∂xj , associated with the Dirac-like
distribution kernel −∂yj (δ (x− y)), is not a CZO. In fact, if it were, setting ϕR (x) =
ϕ (Rx) for ϕ ∈ D, we would have the estimate∂xj (ϕR)


L2 ≤ C ∥ϕR∥L2 ,

for some C > 0 and all R > 0, or

R
∂xj (ϕ)


L2 ≤ C ∥ϕ∥L2 ,

which is not possible.

Every pseudo-differential operator with symbol in the Hörmander class S0
1,δ for

0 ≤ δ < 1, is a CZO (see, for instance, [1]). However, although the pseudo-
differential operators with symbol in the Hörmander class S0

1,1 are associated with
standard kernels (see, for instance, [61]; [1]; [77]), p. 271, Proposition 1), they are
not always CZOs [24]. In Section 4 and Section 7, we consider these assertions in
detail, while in the next section, we take a closer look at pseudo-differential operators
in various forms.

As observed in Remark 4, the kernel of the double layer potential is not standard
in the sense of Definition 1. However, it extends to an operator that is continuous
on L2 [63].

Given two CZOs T1 and T2 such that their kernels are equal on Rn×Rn \∆, the
difference T1 − T2 is the operator given on L2 as multiplication by an L∞ function
([44], p. 218, Proposition 4.1.11 (4)). This assertion fully extends the example
T1 = I, T2 = 0 discussed in Remark 8.

If T is a CZO, then T t is the transpose in the sense of the real inner product
structure of L2. Although we will not insist on it, we could also consider the adjoint
operator T ∗ if we use, instead, the complex inner product structure of L2. In this
case, T will be associated with the standard kernel k (y, x).

3 Examples

We now present, and to certain degree motivate, several operators that fall within
the framework of the previous section. They will prove to be of great significance
when we discuss the applicability of the T(1) Theorem, in Section 7. Each of the
operators we consider will have a specific natural domain, but, for simplicity, we will
work formally or, when appropriate, we will use D as domain. Unless a reference
is given, we refer to the sources cited towards the end of the introduction, for a
comprehensive account.

Example 14. If f (z) = u (z)+iv (z) is holomorphic on the upper half plane Im (z) ≥
0 and zf (z) is bounded, the restrictions to the real axis of the functions u and v are
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related by the formula

v (x) = pv
1

π

∫ ∞

−∞

u (y)

x− y
dy, (3.1)

where, as usual,

pv

∫ ∞

−∞
= lim

ε→0+

∫
|x−y|>ε

.

Now, given u ∈ D (R), the correspondence given by (3.1) is the Hilbert transform
H (u) of u. It is associated with the standard, antisymmetric and translation invariant
kernel, k (x, y) = 1

π
1

x−y . As observed in Remark 8, this kernel has an extension to

a distribution kernel, which is the distribution pv 1
πx acting on test functions by

convolution. Let us point out that given f ∈ D (R), we can write

H (f) (x) = i

∫ ∞

−∞
e−2πixξsgn (ξ) f̂ (ξ) dξ,

where sgn (ξ) = 1 when ξ ≥ 0 and −1 when ξ < 0. Thus, H is a CZO.
In spite of its strong complex analysis flavor, the operator H has very interesting

applications in real analysis. For instance, if we fix again f ∈ D, let us consider,
for N > 0,

SN (f) (x) =

∫ N

−N
e−2πixξ f̂ (ξ) dξ, (3.2)

where we define, as before,

f̂ (ξ) =

∫ ∞

−∞
e2πiyξf (y) dy. (3.3)

Using (3.3) in (3.2), an easy calculation shows that

SN (f) (x) =
e2πiNx

2i
H
(
e−2πiNyf

)
(x)− e−2πiNx

2i
H
(
e2πiNyf

)
(x) .

That is to say, estimates for the operator SN , will follow from continuity results for
the Hilbert transform.

Example 15. The family {Rj}1≤j≤n of Riesz transforms, defined, for each j, as
convolution with the distribution

Cnpv
xj

|x− y|n+1 ,

or, on the Fourier transform side, as

R̂j (f) (ξ) = i
ξj
|ξ|
f̂ (ξ) , (3.4)
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for, say, f ∈ D, is the counterpart of the Hilbert transform, for n > 1. Each
operator Rj is a CZO with L2 norm ≤ 1. The Riesz transforms have many important
applications. As a small illustration, let us observe that, from (3.4), we can deduce
the identity

∂2xjxl
(f) = RjRl∆(f) ,

where ∆ denotes the Laplace operator. Thus,∂2xjxl
(f)

L2

≤ ∥∆(f)∥L2 ,

showing that the Laplace operator controls, in the L2 norm, each second order
derivative.

In the previous section, we mentioned briefly (see Remark 13) the notion of
pseudo-differential operator with symbol in the Hörmander class S0

1,δ. The next
example shows, in particular, how pseudo-differential operators originated.

Example 16. Given a linear partial differential operator L, formally written as

L =
∑

|α|≤m

aα (x) ∂
α, (3.5)

we can use the Fourier transform to give an integral representation for L. Namely,
if, say, f ∈ D,

L (f) (x) =

∫
Rn

e−2πix·ξ

⎡⎣ ∑
|α|≤m

aα (x) (−2πixξ)α

⎤⎦ f̂ (ξ) dξ. (3.6)

An operator L is called pseudo-differential if it is written as in (3.6), with the
function in brackets replaced by a general function a (x, ξ), called symbol of the
operator, that will satisfy various types of conditions. The general idea is that the
function a (x, ξ), although no longer a polynomial in ξ, should satisfy estimates close
to those expected of

∑
|α|≤m aα (x) (−2πixξ)α. The aim is to have an algebra, perhaps

self-adjoint, containing approximate inverses, or parametrices, for certain linear
differential operators. However, if a given class of pseudo-differential operators is
to be closed under composition, it should be possible, as well, to compose freely the
differential operators in the class. As a consequence, the coefficients in (3.5) have
to be in C∞, unless a roundabout technique is used. This technique is due to A.
P. Calderón, who used it to prove very general uniqueness results for certain partial
differential problems (see [10] and [12]). In what follows, we outline the technique’s
main features. This is not an unnecessary digression, since it will provide motivation
for other examples of CZOs.
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Let ϕ ∈ C∞ be so ϕ (ξ) = |ξ| for |ξ| ≥ 1 and ϕ (ξ) > 0 everywhere. Let us call
p (x, ξ) the variable coefficient polynomial that appears in (3.5) and let us write

p (x, ξ) = [q (x, ξ) + r (x, ξ)]ϕ (ξ)m ,

where

q (x, ξ) =
∑

|α|=m

aα (x) (−2πixξ)α ϕ (ξ)−m ,

r (x, ξ) =
∑

|α|<m

aα (x) (−2πixξ)α ϕ (ξ)−m .

Let

K (f) (x) =

∫
Rn

e−2πix·ξq (x, ξ) f̂ (ξ) dξ,

R (f) (x) =

∫
Rn

e−2πix·ξr (x, ξ) f̂ (ξ) dξ.

So,
L (f) = (K +R) Λm (f) ,

where
Λ̂ (f) = ϕf̂ .

The function q (x, ξ) is bounded and coincides, for |ξ| ≥ 1, with a homogeneous
function in ξ of degree zero. On the other hand, R and R∂xj for 1 ≤ j ≤ n, can
be extended to continuous operators on Lp, for 1 < p <∞, if the coefficients aα (x)
are bounded functions. Finally, it is well known how the operator Λ acts on many
functional spaces.

Adding all up, we propose the following definition for the operators in our class:
Let

L (f) (x) =

∫
Rn

e−2πix·ξq (x, ξ) f̂ (ξ) dξ +R (f) (x) , (3.7)

where

i) The function q (x, ξ) is bounded and coincides, for |ξ| ≥ 1, with a homogeneous
function in ξ of degree zero.

ii) The operators R and R∂xj , for 1 ≤ j ≤ n, extend to continuous operators on
Lp, for 1 < p <∞.

So far, we have not said how much regularity we will impose on q (x, ξ), as a
function of x. Certainly, q could not be better, as a function of x, than the coefficients
of the differential operators we want to have in the class. Furthermore, it seems
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not advisable to consider differential operators whose coefficients, for |α| = m, are
not Lipschitz. Indeed, the first order operator ∂x1 + b (x2) ∂x2, where b is a Hölder
function with positive exponent less than 1, is not locally solvable at the origin in
R2, because the associated vector field does not have unique trajectories (see, for
instance, [56]).

iii) Thus, we will assume that the function q (x, ξ) in (3.7) is bounded, belongs to
C∞ as a function of ξ for each x fixed, is Lipschitz as a function of x uniformly
on ξ, and coincides, for |ξ| ≥ 1, with a homogeneous function in ξ of degree
zero.

Under these hypothesis, the first term in (3.7) is a CZO, associated to the
standard kernel k (see Definition 1) given, formally, by the integral

k (x, y) =

∫
Rn

e−2πi(x−y)·ξq (x, ξ) dξ,

which exists in the sense of an oscillatory integral. The class of such operators L
becomes a non self-adjoint algebra, which has been very useful in proving existence
and uniqueness of, and a priori estimates for, solutions of particular linear differential
problems. Besides [10] and [12], we cite here [16], [11], [13] and [23].

Let us mention that in proving that the class of operators L is closed under
composition, it suffices to use, instead of q, the homogeneous function with which it
coincides for |ξ| ≥ 1. In doing so, we introduce an error term that is a very well
behaved operator. Furthermore, it is possible to exploit the very desirable properties
the Fourier transform has on homogeneous functions.

Example 17. To motivate another example of a CZO, we will look at two very
simple operators in the class introduced in the previous discussion. For n = 1, we
consider the operator Ma of multiplication by a bounded Lipschitz function a and
the Hilbert transform H. It should be clear that the composition MaH belongs to the
class. Thus, in order to prove that HMa is also in the class, it would be enough to
show it for the commutator

[H,Ma] = HMa −MaH.

We can write

[H,Ma]
df

dx
= (HMa −MaH)

df

dx

= H

(
Ma

df

dx
− d

dx
Ma (f)

)
+H

d

dx
Ma (f)−MaH

df

dx

= H

[
Ma,

d

dx

]
(f) +

[
H

d

dx
,Ma

]
(f) . (3.8)
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For our purpose, we focus on the second term in (3.8). It can be written,
formally, as [

H
d

dx
,Ma

]
(f) (x) =

∫ ∞

−∞

a (x)− a (y)

x− y

f (y)

x− y
dy. (3.9)

For reasons that will become clear soon, this operator is called the first commutator.
It is associated with an antisymmetric standard kernel and it reduces to H when
a (x) = x.

Example 18. Let D ⊂ R2 be a bounded domain with Lipschitz boundary ∂D. Given
a function f defined on ∂D, the function F formally defined as

F (x) = − 1

2π

∫
∂D

f (y) ∂ny log
1

|x− y|
dσy

for x ∈ D, is harmonic. Moreover, for u ∈ ∂D fixed, we can take formally,

−2π lim
x→u

F (x) =
1

2
f (u) + pv

∫
∂D

f (y) ∂ny log
1

|u− y|
dσy.

Thus, F will be, at least formally, a solution of the Dirichlet problem associated with
the Laplace operator, if given a function g defined on ∂D, it is possible to find f so
that, for u ∈ ∂D,

− 2πg (u) =
1

2
f (u) +

∫
∂D

f (y) ∂ny log
1

|u− y|
dσy. (3.10)

Again, the integral in (3.10) has to be suitably interpreted.
If supp (f) is sufficiently small, we can write, by hypothesis, y = (y, a (y)) and

u = (u, a (u)) for y and u in the support of f , where a is a Lipschitz function.
The Rademacher’s theorem ([47], p. 18), states that the function a is differentiable
almost everywhere. Moreover, as a consequence of the Lipschitz condition, a′ is in
L∞ (R). So, if we recall that ∂ny = ny · ∇y and we use the local parametrization of
∂D, the integral on the right hand side of (3.10) can be written, up to a multiplicative
constant, as ([25], p. 10)∫ ∞

−∞
f (y, a (y))

a (u)− a (y)− (u− y) a′ (y)

(u− y)2 + (a (u)− a (y))2
dy,

or ∫ ∞

−∞

f (y, a (y))

u− y

a(u)−a(y)
u−y

1 +
(
a(u)−a(y)

u−y

)2dy
− pv

∫ ∞

−∞

f (y, a (y))

u− y

a′ (y)

1 +
(
a(u)−a(y)

u−y

)2dy.
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When studying L2 (R) continuity, the factor a′ (y) is irrelevant, so we can write
both terms as ∫ ∞

−∞
G

(
a (u)− a (y)

u− y

)
h (y)

u− y
dy, (3.11)

for suitable functions G.

If we replace G, formally, by its Taylor expansion, (3.11) will be a sum of
integrals of the form

Cm

∫ ∞

−∞

(
a (u)− a (y)

u− y

)m h (y)

u− y
dy. (3.12)

For m = 1, (3.12) is, except for a constant factor, the first commutator (3.9).
In general, (3.12) differs only in a constant factor from the m-th commutator

[Ma, [Ma, [...[Ma, H

(
d

dx

)m

]...]]].

Similar representations can be obtained when considering other boundary value
problems for the Laplace operator, on bounded domains in Rn. More than the type of
problem, what is crucial for this approach is to consider a domain with a boundary
regular enough, so the resulting integrals can be properly interpreted and will enjoy
certain continuity properties. We will go back to this matter in Section 7.

The commutator operators (3.9) and (3.12), due to Calderón, are CZOs (see [14]
and [18]), when a is a Lipschitz function, possibly unbounded. From our discussion
in Example 16 and Example 18, it should be clear how these operators arise in
connection with the theory of linear partial differential equations.

Example 19. Let Γ be a rectifiable curve in the complex plane, given as the graph
z (t) = t + ia (t), of a Lipschitz function a : R → R. Given a suitable f defined on
Γ, the Cauchy integral

1

2πi

∫
Γ

f (w)

z − w
dw,

defines a holomorphic function F (z) in the complement of Γ. Moreover, the non
tangential limit of F (z), as z approaches Γ, exists and is given by [12]

± 1

2
f (t, a (t)) +

∫ ∞

−∞
f (s, a (s))

1 + ia′ (s)

(s− t) + i (a (s)− a (t))
ds, (3.13)

where the sign depends on whether z approaches Γ from above or from below and the
integral in (3.13), once again, needs to be interpreted in an appropriate way. Except
for the almost everywhere bounded factor 1+ia′ (s), the integral above coincides with
the Hilbert transform when Γ is the real axis, and it is essentially a particular case
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of (3.11). Thus, it is natural to expect, as it is the case, that commutator operators
similar to (3.12) will be relevant when studying the L2 (R) continuity.

It was first proved by Calderón ([18] and [19]) that there exists ε > 0 small, so
that the operator defined by the integral in (3.13) is a CZO, when ∥a′∥L∞(R) < ε.
At the time, it was not known whether ε had a lower bound. The restriction on
∥a′∥L∞(R) was lifted by Coifman, McIntosh and Meyer [28]. David showed in [36]

how to derive the L2 (R) continuity of the operator for ∥a′∥L∞(R) large, from the
small norm case. We will take another look at these ideas in Section 7.

The book by Muskhelishvili [69] has a very interesting historical account of the
Cauchy integral.

Example 20. We conclude this section by taking a second look at pseudo-differential
operators. To be sure, there are many different versions of what a pseudo-differential
operator could be, depending on the conditions imposed on the function that replaces
the bracket in (3.6). For instance, we refer to [17], [48], [59], [87], [88], [60], [74],
[49], [50], [52], [71], [84], [7], [30] and [77].

We will consider here the Hörmander class Lm
ρ,δ, m ∈ R, 0 ≤ ρ, δ ≤ 1, introduced

in [50], [60] and [88], of operators with symbol in Sm
ρ,δ. The case m = 0, ρ = 1,

0 ≤ δ < 1, has already been mentioned in the previous section (see Remark 13).
An operator L is in Lm

ρ,δ when it can be written as

L (f) (x) =

∫
Rn

e−2πix·ξp (x, ξ) f̂ (ξ) dξ (3.14)

for f ∈ D, where p belongs to Sm
ρ,δ. This means that p ∈ C∞ (Rn × Rn) and⏐⏐⏐∂αx ∂βξ p (x, ξ)⏐⏐⏐ ≤ Cαβ (1 + |ξ|)m−ρ|β|+δ|α| ,

for all multi indices α, β. The function p is called the symbol of the operator because
p is uniquely determined by L (see, for instance, [77], p. 261, further results 7.1)

When ρ > 0 and δ < 1, the operator L is pseudo local, which is equivalent to
saying that its distribution kernel k coincides, away from the diagonal, with a C∞

function. Furthermore, each derivative ∂αx ∂
β
y k (x, y) decays rapidly as |x− y| → ∞.

Very precise estimates can be obtained for |x− y| < 1 ([2], [3]). It was already known
([30], p. 87, Proposition 1), that operators in the class L0

1,0 are associated with
distribution kernels k that coincide with standard kernels away from the diagonal.

Chapters VI and VII in [77] have a very insightful discussion of the class Lm
ρ,δ for

different values of the parameters, from which arise the so called classical operators
as well as the exotic operators [30].

The difficulties we have encountered when trying to make sense of certain integrals,
are due to the minimal smoothness conditions assumed ([25], Chapter I). In the
terminology of [30], operators such as the m-th commutator and the Cauchy integral

******************************************************************************
Surveys in Mathematics and its Applications 13 (2018), 41 – 94

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v13/v13.html
http://www.utgjiu.ro/math/sma


T(1) Theorem Revisited 55

on Lipschitz curves, lie beyond (au delà) the classical pseudo-differential operators
with symbols in S0

1,0.

Although our main interest has been on the L2 continuity of the operators
considered in this section, they actually enjoy various continuity properties in different
functional spaces ([18], [50], [29], [84], [42], [7], [30], [19], [66], [31], [32], [27], [57],
[51], [55], [70], [67]). The monograph [86] has an in depth analysis of these matters.

4 The statement of the T(1) Theorem

As we will see shortly, the space of functions with bounded mean oscillation, BMO,
plays a crucial role in the formulation of the T(1) Theorem. So, we begin by recalling
its definition.

Definition 21. Given a locally integrable function f , we say that f belongs to BMO
if

sup
Q

1

|Q|

∫
Q
|f − fQ| dx <∞, (4.1)

where Q denotes any cube in Rn with sides parallel to the coordinate axes, |Q| is the
Lebesgue measure of Q and fQ is the average of f over Q. The left hand side of
(4.1) is zero when f is a constant function. The quantity appearing in (4.1) gives
the seminorm of f in BMO, denoted ∥f∥BMO. Equivalently, we can impose the
condition

sup
Q

(
inf
c∈R

1

|Q|

∫
Q
|f − c| dx

)
<∞. (4.2)

Remark 22. Occasionally, we will find convenient to use in (4.1), balls instead of
cubes. We will do so without any further comment.

It is clear that L∞ ⊆ BMO. The standard example of an unbounded function
in BMO is log |x|. Another example, less often encountered in the literature, is
log |P (x)|, where P (x) is any non zero polynomial ([76], p. 332, Theorem 6; [77],
p. 177, further results 6.1; p. 219, further results 6.5). For more examples, see
([77], p. 178, further results 6.3; p. 218, further results 6.2). We will go back to
some of these examples in Section 7. An examination of any of the examples would
tell us that functions in BMO do not seem to grow wildly at infinity. That this is
the case for any function in BMO, is a consequence of the following property (see,
for instance, [77], p. 141, 1.1.4)

If f ∈ BMO, then ∫
Rn

|f (x)| (1 + |x|)−n−1 dx <∞. (4.3)

However, this property does not characterize BMO. For instance, the function
sgn(x) ln |x| does not belong to BMO ([25], p. 35). That is to say, (4.1) is not just
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a size condition. For a characterization of BMO involving (4.3), see ([25], p. 39,
Theorem 12).

A second ingredient in the statement of the T(1) Theorem, in need of clarification,
will be the so called weak boundedness property, in short WBP, which we now define.

Definition 23. Let T : D → D′ be a linear and continuous operator. Then, we say
that T has the WBP, if for each bounded subset B of D, there exists C > 0 such that⏐⏐⏐(T (ϕx0

t ) , ψx0
t )D′,D

⏐⏐⏐ ≤ C

tn
, (4.4)

for every ϕ,ψ ∈ B, x0 ∈ Rn and t > 0, where

fx0
t (x) =

1

tn
f

(
x− x0
t

)
.

Remark 24. The transpose operator T t has the WBP if T does. Also, any linear
and continuous operator on L2 has it. On the other hand, the operator ∂xj does
not satisfy the property. The verification of these claims is straightforward and it
will be omitted. The WBP is truly weaker that the full L2 continuity. Indeed, any
pseudo-differential operator with symbol in the Hörmander class S0

1,1 has the WBP,

although it might not be bounded on L2. In fact, every pseudo-differential operator
L of the form (3.14) will have the WBP if we just assume that the symbol p is a
bounded function. Let us outline the proof of this claim.

Given a bounded subset B of D we fix, as in Definition 23, ϕ,ψ ∈ B, x0 ∈ Rn

and t > 0. Then,

(L (ϕx0
t ) , ψx0

t )D′,D =

∫
Rn×Rn

e−2πi(x−x0)·ξp (x, ξ) ϕ̂ (tξ)ψt (x− x0) dξdx.

With the change of variables tξ = η and x−x0
t = z, the integral above reduces to

1

tn

∫
Rn×Rn

e−2πiz·ηp
(
tz + x0,

η

t

)
ϕ̂ (η)ψ (z) dηdz.

So, ⏐⏐⏐(L (ϕx0
t ) , ψx0

t )D′,D

⏐⏐⏐ ≤ 1

tn
∥p∥L∞ ∥ϕ̂∥L1 ∥ψ∥L1 ,

from which (4.4) follows, for a constant C > 0 that depends on B.
To see that the WBP is truly weaker that the full L2 continuity, we look at the

pseudo-differential operator in L0
1,1 defined by Ching [24] and already mentioned in

Remark 13. Although the operators in L0
1,1 are all associated with standard kernels

and satisfy the WBP, Ching constructed a type of operator in the class that is not
always bounded on L2. Indeed, he considered the symbol

p (x, ξ) =
∑
k≥0

ake
2πi5k3e1·xψ

(
ξ

5k

)
, (4.5)
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where {ak}k≥0 is a bounded sequence, e1 = (1, 0, ..., 0), ψ ∈ D, supp (ψ) ⊆ {1 ≤ |ξ| ≤ 5}
and ψ (ξ) = 1 when 2 ≤ |ξ| ≤ 4. The symbol p is in S0

1,1, so the operator L with

symbol p has the WBP. However, Ching proved that if L is continuous on L2, the
sequence {ak}k≥0 has to be square summable. We will take a final look at Ching’s
counterexample in Section 7.

We continue our discussion, prior to stating the T(1) Theorem, by proving the
following important result:

Proposition 25. Let T : D → D′ be a linear and continuous operator, associated
with a standard kernel k. Then, the action of T on f ∈ C∞ ∩ L∞ can be defined as
a linear and continuous functional on the closed subspace of D,

D0 =

{
ϕ ∈ D :

∫
Rn

ϕ (x) dx = 0

}
.

Proof. We fix f ∈ C∞⋂L∞ and we fix a bounded subset B of D0. We can assume
that supp (g) ⊆ B (z, r), an open ball centered at z with radius r, for every g ∈ B.
Next, we pick a function θ ∈ D so that, say, θ (x) = 1 for |x− z| < 3r and θ (x) = 0
for |x− z| ≥ 4r.

Then, the action of T (θf) on g ∈ D0 is well defined in the duality (D′,D) and
can also be expressed as

(
T t (g) , θf

)
by reflexivity.

On the other hand, since
∫
Rn g (x) dx = 0, we can write, for x ∈ Rn \ supp (g),

T t (g) (x) =

∫
Rn

k (y, x) g (y) dy =

∫
|y−z|<r

(k (y, x)− k (z, x)) g (y) dy,

so, the iterated integral∫
|x−z|≥3r

|1− θ (x)| |f (x)|

(∫
|y−z|<r

|k (y, x)− k (z, x)| |g (y)| dy

)
dx (4.6)

exists. Let us observe that x ∈ supp ((1− θ) f) and y ∈ supp (g), imply that

|x− z| ≥ 3r > 3 |y − z| > 2 |y − z| .

Thus, (4.6) can be estimated by

C ∥f∥L∞

(∫
Rn

|g (y)| dy
)(∫

|x−z|≥2|y−z|
|k (y, x)− k (z, x)| dx

)
(4.7)

≤ C ∥f∥L∞ ∥g∥L∞

∫
|x−z|≥2|y−z|

|k (y, x)− k (z, x)| dx, (4.8)

where we have used that there is a compact set K ⊂ Rn, so that supp (g) ⊆ K for
all g ∈ B ([6], p. 41).
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Since the kernel k satisfies condition 2) in Definition 1, the integral in (4.8) is
bounded by a fixed constant. In fact,∫

|x−z|≥2|y−z|
|k (y, x)− k (z, x)| dx ≤ C

∫
|x−z|≥2|y−z|

|y − z|δ

|x− z|n+δ
dx

≤ C |y − z|δ
∫ +∞

2|y−z|
rn−1−n−δdr

= C, (4.9)

where the constant C only depends on fixed parameters, such as n and δ.
Finally, we can bound (4.6) with

C ∥f∥L∞ ∥g∥L∞ ,

where the constant C ultimately depends on B, among other fixed parameters.
So, for θ fixed, we can define the action of T (f) on g, as

(
T t (g) , θf

)
+

∫
Rn

(1− θ (x)) f (x)

(∫
Rn

k (y, x) g (y) dy

)
dx, (4.10)

which gives T (f) as a linear and continuous functional on D0. Let us recall, once
again, that (, ) denotes the (D′,D) duality.

Definition (4.10) does not depend on θ, provided that θ satisfies the aforementioned
conditions. In fact, if θ1 and θ2 are two such functions,∫

Rn

(1− θ1 (x)) f (x)

(∫
Rn

k (y, x) g (y) dy

)
dx

−
∫
Rn

(1− θ2 (x)) f (x)

(∫
Rn

k (y, x) g (y) dy

)
dx

=

∫
Rn

(θ2 (x)− θ1 (x)) f (x)

(∫
Rn

k (y, x) g (y) dy

)
dx

= −
(
T t (g) , (θ1 − θ2) f

)
.

Let us observe that if f happens to be in D, both θf and (1− θ) f are in D as
well, and we can write

(T (f) , g) = (T (θf) , g) + (T ((1− θ) f) , g)D′,D

=
(
T t (g) , θf

)
+

∫
Rn

(1− θ (x)) f (x)

(∫
Rn

k (y, x) g (y) dy

)
dx.

So, T (f), defined as a distribution in D′, coincides with the definition given by
(4.10).
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Finally, we point out that in justifying (4.10) it suffices to assume that the
integral in (4.8) is bounded by a fixed constant, instead of using the pointwise
estimate from condition 2) in Definition 1. For another instance where a similar
condition appears, see Remark 31 below. We will revisit this idea in the last section.

The proof of the proposition is now complete.

Remark 26. Given f ∈ C∞⋂L∞, the action of T (f) on g ∈ D0 can be defined,
equivalently, as

(T (f) , g) = lim
j→∞

(T (θjf) , g) , (4.11)

where θ ∈ D, θ (x) = 1 for |x| < 1, θ (x) = 0 for |x| > 2, and θj (x) = θ
(
x
j

)
. This

assertion follows from (4.10), observing that for such a function θj, the second term
in (4.10) will converge to zero as j → ∞.

Remark 27. Proposition 25 and Remark 26 apply as well to the transpose operator
T t, associated with the standard kernel kt (x, y) = k (y, x).

Remark 28. For future reference, we point out that D0 is dense (see [38], p. 372)
in the Hardy space H1, the topological predual of BMO (see [77], Chapter IV, 1.2).

We are now ready to state the T(1) Theorem.

Theorem 29. (T(1) Theorem) Let T be an operator associated with a standard
kernel. Then, T is a CZO if and only if the following three conditions hold:

1. T has the WBP,

2. T (1) ∈ BMO,

3. T t (1) ∈ BMO,

where 1 denotes the function in C∞⋂L∞ that is identically equal to one.

Remark 30. First of all, Proposition 25, tells us how to define T (1) and T t (1).
Moreover, the statement of Theorem 29 is invariant by transposition, which makes
sense, since the definition of standard kernel is transpose invariant and the class
of CZOs is closed under transposition. Furthermore, conditions 1), 2) and 3) in
Theorem 29 are independent. For example, the operator M of multiplication by the
BMO function log |x| is associated with the identically zero kernel and it satisfies
M (1) and M t (1) ∈ BMO, since M (1) = M t (1) = log |x|. However, M does not
have the WBP property. In fact, for any ϕ = ϕ (r) ∈ D radial and t > 0,

(M (ϕt) , ϕt)D′,D =
Cn

t2n

∫ +∞

0
ln r ϕ2

(r
t

)
rn−1dr.
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With the change of variable r → s = r
t , we can write

(M (ϕt) , ϕt)D′,D

=
Cn

tn

[∫ +∞

0
ln r ϕ2 (s) sn−1ds+ ln t

∫ +∞

0
ϕ2 (s) sn−1ds

]
,

where the second term within the brackets is not bounded on t.

As we observed in Remark 24, any pseudo-differential operator L with symbol
p (x, ξ) in S0

1,1 has the WBP. It follows from (4.11) that L (1) = p (x, 0), so L (1) ∈
L∞ ⊂ BMO. However, the condition Lt (1) ∈ BMO cannot always be true,
otherwise, by Theorem 29, operators in L0

1,1 would always be bounded on L2. The
example due to C.-H. Ching [24], briefly considered in Remark 24, shows that this
is not the case. Actually, this very interesting example, can be used to demonstrate
that conditions 1) and 3) do not imply 2) and that condition 1) does not imply either
2) or 3), etc. We will revisit these claims in Section 7.

Remark 31. Let us see that CZOs satisfy the conditions in Theorem 29. We already
know that CZOs have the WBP. We also know that a CZO T will satisfy condition
2) if and only if it satisfies condition 3). To see that T satisfies condition 2), we will
actually show that T can be defined on L∞, in a manner compatible with Proposition
25, and that this definition yields a continuous operator from L∞ to BMO. We
follow Theorem 24 in ([30], p. 117).

Suppose that T is a CZO. Given f ∈ L∞ and given a ball B (z, r), we write
f = fϕ+ f (1− ϕ), where ϕ ∈ D, ϕ is identically one on B (z, 2r) and supp (ϕ) ⊆
B (z, 3r). Let us observe that fϕ ∈ L2, so T (fϕ) is defined, almost everywhere, as
an L2 function. If k denotes a standard kernel for the operator, |k (x, y)− k (z, y)|
is integrable for |y − z| ≥ 2r, as a function of y, when x ∈ B (z, r) and the integral
is estimated by a constant. Thus, the product (k (x, y)− k (z, y)) f (y) (1− ϕ (y)) is
well defined, almost everywhere, and we can write⏐⏐⏐⏐∫

Rn

(k (x, y)− k (z, y)) f (y) (1− ϕ (y)) dy

⏐⏐⏐⏐
≤ C ∥f∥L∞

∫
|y−z|≥2r

|k (x, y)− k (z, y)| dy. (4.12)

We claim that the integral in (4.12) satisfies the estimate

sup
x∈B(z,r)

∫
|y−z|≥2r

|k (x, y)− k (z, y)| dy ≤ C,

where the constant C only depends on fixed parameters. This is proved similarly to
the estimate of the integral in (4.8). In fact, using condition 2) in Definition 1, we
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have, for x ∈ B (z, r) fixed,

∫
|y−z|≥2r

|k (x, y)− k (z, y)| dy ≤ C

∫
|y−z|≥2r

|x− z|δ

|y − z|n+δ
dx

= Crδ
∫ +∞

2r
rn−1−n−δdr = C.

So, we have the estimates

1

|B|

∫
B
|T (fϕ) (x)| dx ≤

(
1

|B|

∫
B
|T (fϕ) (x)|2 dx

)1/2

≤ C ∥f∥L∞

and

1

|B|

∫
B

⏐⏐⏐⏐∫
Rn

(k (x, y)− k (z, y)) f (y) (1− ϕ (y)) dy

⏐⏐⏐⏐ dx
≤ C ∥f∥L∞ .

If we define T (f) (x), modulo additive constants and almost everywhere, as

T (fϕ) (x) +

∫
Rn

(k (x, y)− k (z, y)) f (y) (1− ϕ (y)) dy,

we can see, as in Proposition 25, that this definition does not depend on ϕ satisfying
suitable properties. Furthermore, the estimates above show that T is indeed continuous
from L∞ to BMO. If f ∈ C∞∩L∞, the definition of T (f) we just discussed, agrees
with the definition given in Proposition 25.

Finally, let us observe that the integral in (4.12) being bounded by a fixed constant
for x ∈ B (z, r) and every z and r, is another instance of (4.9).

When T is a pseudo-differential operator in the class L0
1,δ, 0 ≤ δ < 1, its kernel

decays rapidly at infinity (see Example 20), so there are no difficulties associated
with the definition of T on L∞.

We observed in Remark 4 that the kernel of the double layer potential T associated
with an open set with a Lipschitz boundary is not a standard kernel. In the terminology
of the T(1) Theorem, the kernel is not smooth enough in the y variable to define
T t (1). However, T is bounded on L2 [63].

From all we have said, it should be clear that when T is a CZO, conditions 1),
2) and 3) in Theorem 29 hold. The next two sections will be dedicated to prove the
converse, starting with the ...
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5 Reduction to the case T (1) = T t (1) = 0

This is a crucial step in the original proof of the T(1) Theorem, and it is based on
the following lemma:

Lemma 32. Given a ∈ BMO, there exists a CZO, L, such that L (1) = a and
Lt (1) = 0.

There are several ways of building such an operator L (see, for instance, [38];
[44], p. 212, Section 8.4). All of them essentially consist of redefining the pointwise
product by a BMO function. As we saw in Remark 30, this multiplication operator
does not even have, in general, the WBP. The new operation, called generically a
paraproduct ([30], Appendix I; [25], Chapter III (3) and (5)), gives a bilinear action
from L2×BMO into L2. Incidentally, paraproducts are related to a very interesting
subclass of Lm

1,1, the paradifferential operators ([8], [61], [79], [53] and [54]).
The proof of the lemma, given below, is a detailed account of the paraproduct

construction presented in [38].

Remark 33. Assuming that we have proved Lemma 32 and that T is a fixed operator
as in Theorem 29, let L, M be CZOs satisfying

L (1) = T (1) , Lt (1) = 0,

M (1) = T t (1) , M t (1) = 0.

Then, the operator S defined as

S = T − L−M t,

will satisfy
S (1) = St (1) = 0.

The proof of the lemma uses the notion of Carleson measure, which was introduced
by L. Carleson, in order to solve the following problem: Given the Poisson kernel

P (x) = cn

(
1 + |x|2

)−(n+1)/2
for the upper-half space Rn+1

+ , characterize the measures

µ on Rn+1
+ for which ∫

Rn+1
+

|(Pt ∗ f) (x)|p dµ (x, t) ≤ Cp ∥f∥pLp , (5.1)

for 1 < p <∞, where

Pt (x) =
1

tn
P
(x
t

)
. (5.2)

The solution to this problem is as follows: A measure µ on Rn+1
+ satisfies (5.1)

if and only if there is C > 0 such that for every cube Q ⊂ Rn the condition

µ
(
Q
)
≤ C |Q| (5.3)
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holds, where Q denotes the cube in Rn+1
+ with base Q and |Q| is the Lebesgue

measure of Q. A measure µ on Rn+1
+ satisfying (5.3) is called Carleson measure.

The main example of a Carleson measure is provided by the following result:

Proposition 34. ([77], p. 159) Given ψ ∈ S with
∫
Rn ψ (x) dx = 0 and given

a ∈ BMO, the measure |(a ∗ ψt) (x)|2 dxdt
t is a Carleson measure, where the scaling

ψt of ψ is defined as in (5.2). Moreover,(∫
Rn+1
+

|(Pt ∗ f) (x)|2 |(ψt ∗ a) (x)|2
dxdt

t

)1/2

≤ C ∥a∥BMO ∥f∥L2 . (5.4)

Remark 35. Proposition 34 has the following extension: Let ϕ ∈ L1 be bounded
by a radial function Φ (|x|) where Φ is decreasing and integrable, and let µ be any
Carleson measure. Then,(∫

Rn+1
+

|(ϕt ∗ f) (x)|2 dµ

)1/2

≤ C ∥f∥L2 ,

for some C > 0 depending on Φ and µ.
In particular, if µ = |(ψt ∗ a) (x)|2 dxdt

t as in Proposition 34,(∫
Rn+1
+

|(ϕt ∗ f) (x)|2 |(ψt ∗ a) (x)|2
dxdt

t

)1/2

≤ C ∥a∥BMO ∥f∥L2 ,

with C depending on Φ.
Let us point out that, in the proof of Lemma 32, Pt will be the operator defined

on D as the convolution with the function ϕt. Since we will no longer refer to the
Poisson kernel, this notation should not cause any confusion.

We now prove Lemma 32.

Proof. We give here a detailed account of the construction presented in [38]. We fix
a radial function as in Remark 35, such that ϕ ∈ D, supp (ϕ) ⊆ {x : |x| ≤ 1} and∫
Rn ϕ (x) dx = 1. Let ϕt (x) =

1
tnϕ

(
x
t

)
and let Pt be the operator acting on D as the

convolution with ϕt. Likewise, let Qt the operator acting on D as the convolution
with ψt, where

ψ (x) =
n∑

j=1

∂xj (xjϕ (x)) .

Let us observe that still ψ is a radial function in D and supp (ψ) ⊆ {x : |x| ≤ 1},
but

∫
Rn ψ (x) dx = 0. Moreover, in the sense of convolution operators defined on D,

Qt = −t d
dt
Pt,
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for t > 0. Indeed,

−t d
dt

(ϕt (x)) = −t d
dt

(
1

tn
ϕ
(x
t

))
= nt

1

tn+1
ϕ
(x
t

)
− 1

tn−1

d

dt

(
ϕ
(x
t

))
=

1

tn

n∑
j=1

ϕ
(x
t

)
− 1

tn−1

n∑
j=1

(
−xj
t2

) (
∂xj (ϕ)

) (x
t

)
=

1

tn

n∑
j=1

(
ϕ
(x
t

)
+
(xj
t

) (
∂xj (ϕ)

) (x
t

))

=

⎛⎝ n∑
j=1

∂xj (xjϕ (x))

⎞⎠
t

= ψt (x) .

Our goal is to prove that
∫∞
0 Qt (Qt (a))Pt

dt
t can be defined, in a weak sense, as

a CZO, satisfying, up to a normalizing factor, the conditions stated in the lemma.
More specifically, if

(Lm (f) , g) =

∫ m

1
m

((Qt (Qt (a))Pt) (f) , g)
dt

t
(5.5)

for m ≥ 1, we will show that Lm is a CZO uniformly with respect to m and that for
f, g ∈ D there exists

lim
m→∞

(Lm (f) , g) = (L (f) , g) , (5.6)

where L is a CZO satisfying, with an appropriate normalization, L (1) = a and
Lt (1) = 0.

Let us recall that (, ) still signifies the (D′,D) duality. Any other duality will be
specifically noted.

We begin by proving that Lm is associated with a standard kernel. For t > 0
fixed, we write

(Qt (Qt (a))Pt (f) , g) = ((Qt (a))Pt (f) , Qt (g))

=

∫
R3n

(Qt (a)) (u)ϕt(u− y)ψt (u− x) f (y) g (x) dxdydu.

So, Lm : D → D′ is an integral operator with kernel Lm defined as

Lm (x, y) =

∫ m

1
m

∫
Rn

(Qt (a)) (u)ϕt(u− y)ψt (u− x) du
dt

t
.

Taking into account that
∫
Rn ψ (x) dx = 0, we have

|(Qt (a)) (u)| =

⏐⏐⏐⏐⏐ 1tn
∫
B(u,t)

ψ

(
u− v

t

)(
a (v)− aB(u,t)

)
dv

⏐⏐⏐⏐⏐ ,
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where aB(u,t) is the average of a on the ball B (u, t). Thus,

|(Qt (a)) (u)| ≤ C ∥a∥BMO , (5.7)

for some C > 0 independent of t. We observe now that
∫
Rn (Qt (a)) (u)ϕt(u −

y)ψt (u− x) du is supported on
{
(x, y) ∈ R2n : |x− y| ≤ 2t

}
, where we can write

1 ≤ 1 +
|x− y|
t

≤ 3.

Thus, for any N ≥ 1 and an appropriate constant C > 0, again not depending of t,⏐⏐⏐⏐∫
Rn

(Qt (a)) (u)ϕt(u− y)ψt (u− x) du

⏐⏐⏐⏐
≤ C

tn
∥a∥BMO

1(
1 + |x−y|

t

)N . (5.8)

If we choose, for instance, N = n+ 1,

|Lm (x, y)| ≤ C ∥a∥BMO

∫ ∞

0

1

tn
1(

1 + |x−y|
t

)n+1

dt

t

= C ∥a∥BMO

1

|x− y|n
. (5.9)

Similar calculations with N at least equal to n+ 2, will show that

|∇x,yLm (x, y)| ≤ C ∥a∥BMO

1

|x− y|n+1 , (5.10)

for some C > 0 not depending on m. So, according to Lemma 3, the function
Lm (x, y) is a standard kernel in the sense of Definition 1, uniformly on m.

We will now prove that the sequence of kernels {Lm}m≥1, as well as the sequence
{∇x,yLm}m≥1, converges uniformly on each compact subset of Rn × Rn \ ∆, to a
function L that, according to (5.9) and (5.10), will then be a standard kernel, with
δ = 1 and constant C proportional to ∥a∥BMO. In fact, according to (5.8), we can
write

|Lm+p (x, y)− Lm (x, y)| ≤ C ∥a∥BMO

(∫ 1
m

1
m+p

+

∫ m+p

m

)
1

tn
1(

1 + |x−y|
t

)n+1

dt

t

≤ C ∥a∥BMO

(∫ 1
m

0
+

∫ ∞

m

)
1

tn
1(

1 + |x−y|
t

)n+1

dt

t
. (5.11)
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Thus, there exists
lim

m→∞
Lm+p (x, y)− Lm (x, y) = 0,

for every p ≥ 1, uniformly on each compact subset of Rn × Rn \ ∆. A similar
reasoning will prove that the sequence {∇x,yLm}m≥1 is Cauchy, uniformly on each
compact subset of Rn × Rn \∆.

We claim that the operator Lm is bounded on L2, with norm bounded independently
of m. In fact, given f, g ∈ D,

|(Lmf, g)|2 =

⏐⏐⏐⏐⏐
∫ m

1
m

((Qt (a))Pt (f) , Qt (g))
dt

t

⏐⏐⏐⏐⏐
2

=

⏐⏐⏐⏐⏐
∫ m

1
m

∫
Rn

(Qt (a)) (x) (Pt (f)) (x) (Qt (g)) (x)
dxdt

t

⏐⏐⏐⏐⏐
2

≤
∫ ∞

0

∫
Rn

|(Qt (a)) (x) (Pt (f)) (x)|2
dxdt

t
(5.12)

×
∫ ∞

0

∫
Rn

|(Qt (g)) (x)|2
dxdt

t
. (5.13)

Now, for t > 0 fixed,∫
Rn

|(Qt (g)) (x)|2 dx =

∫
Rn

⏐⏐⏐ψ̂ (tξ)
⏐⏐⏐2 |ĝ (ξ)|2 dξ.

Since ψ̂ (0) = 0, we have the estimate⏐⏐⏐ψ̂ (ξ)
⏐⏐⏐ ≤ { C |ξ| for |ξ| ≤ 1

C |ξ|−1 for |ξ| ≥ 1
.

So, (5.13) can be bounded by

C

∫
Rn

(∫ 1
|ξ|

0
|ξ|2 t2dt

t
+

∫ ∞

1
|ξ|

1

|ξ|2 t2
dt

t

)
|ĝ (ξ)|2 dξ

= C ∥g∥2L2 .

As for (5.12), Proposition 34 shows that |(Qt (a)) (x)|2 dxdt
t is a Carleson measure,

so it satisfies (5.3). More specifically, there exists C > 0 such that for every cube
B ⊂ Rn, if B denotes the cube in Rn+1

+ with base B,∫
B
|(Qt (a)) (x)|2

dxdt

t
≤ C ∥a∥2BMO |B| .

According to Remark 35,∫ ∞

0

∫
Rn

|(Pt (f)) (x)|2 |(Qt (a)) (x)|2
dxdt

t
≤ C ∥a∥2BMO ∥f∥2L2 .
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So,
|(Lmf, g)| ≤ C ∥a∥BMO ∥f∥L2 ∥g∥L2 . (5.14)

Next, we claim that the sequence {Lm}m≥1 of operators from D to D′, converges.
Given f, g ∈ D,

|(Lm+p (f)− Lm (f) , g)|2

=

⏐⏐⏐⏐⏐
(∫ 1

m

1
m+p

+

∫ m+p

m

)∫
Rn

(Qt (a)) (x) (Pt (f)) (x) (Qt (g)) (x)
dxdt

t

⏐⏐⏐⏐⏐
2

≤
∫ 1

m

0

∫
Rn

|(Qt (a)) (x) (Pt (f)) (x)|2
dxdt

t

+

∫ ∞

m

∫
Rn

|(Qt (g)) (x)|2
dxdt

t
.

Then, each term converges to zero, as m → ∞. According to (5.14), if L is the
operator limit,

|(L (f) , g)| ≤ C ∥a∥BMO ∥f∥L2 ∥g∥L2 .

According to Definition 5, given f, g ∈ D with disjoint supports,

(Lm (f) , g) =

∫
R2n

Lm (x, y) f (y) g (x) dxdy.

So, taking limm→∞, we get

(L (f) , g) =

∫
R2n

L (x, y) f (y) g (x) dxdy.

Thus, L is a CZO and ∥L∥L(L2) ≤ C ∥a∥BMO.
We are left to prove that, with an appropriate normalization, L (1) = a and

Lt (1) = 0. From (4.10), if g ∈ D0,(
Lt
m (1) , g

)
= (Lm (g) , θ) +

∫
Rn

(1− θ (x))

(∫
Rn

Lm (x, y) g (y) dy

)
dx.

Since the sequence {Lm}m≥1 of operators from D to D′ converges to L, there is

lim
m→∞

(Lm (g) , θ) = (L (g) , θ) .

According to (5.11), we can say that the sequence of kernels {Lm}m≥1 converges
uniformly to L on supp (1− θ)× supp (g) ⊂ Rn × Rn \∆. So, there is

lim
m→∞

∫
Rn

(1− θ (x))

(∫
Rn

Lm (x, y) g (y) dy

)
dx

=

∫
Rn

(1− θ (x))

(∫
Rn

L (x, y) g (y) dy

)
dx.
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That is to say, (
Lt (1) , g

)
= lim

m→∞

(
Lt
m (1) , g

)
. (5.15)

Next, we observe that, in the weak sense,

Lt
m =

∫ m

1
m

Pt (Qt (a))Qt
dt

t
.

In fact, according to (5.5), for f, g ∈ D,

(Lm (f) , g) =
(
f, Lt

m (g)
)
=

∫ m

1
m

(
f, (Qt (Qt (a))Pt)

t (g)
) dt
t

=

∫ m

1
m

(f, Pt (Qt (a)Qt) (g))
dt

t
,

where we have used the continuity of the transposition operation and the fact that Pt

and Qt are defined by convolution with the radial functions ϕt and ψt, respectively.
Let us point out that the upper index t always indicates the transpose,

According to Remark 26, is(
Lt
m (1) , g

)
= lim

j→∞

(
Lt
m (θj) , g

)
.

Since (
Lt
m (θj) , g

)
=

∫ m

1
m

(Pt (Qt (a))Qt (θj) , g)
dt

t

and
lim
j→∞

Qt (θj) = Qt (1) = 0,

we conclude that Lt (1) = 0.
Let us see that a suitable normalization will give us L (1) = a. In fact, similarly

to (5.15), we can prove that there is

lim
m→∞

(Lm (1) , g) = (L (1) , g) .

Now, for m ≥ 1 fixed, using that Pt (1) = 1, we have

(Lm (1) , g) =

∫ m

1
m

(Qt (Qt (a))Pt (1) , g)
dt

t

=

∫ m

1
m

(
Qt (a) , Q

t
t (g)

) dt
t
, (5.16)

where the upper index t, as always, denotes the transpose and should not be confused
with the integration variable.
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From (5.7),

∥Qt (a)∥L∞ ≤ C ∥a∥BMO .

Moreover, we claim that

Qt
t (g)


L1 ≤

{
Ct for 0 < t ≤ 1,
C
t for t ≥ 1.

In fact, let K be a compact subset of Rn containing the support of ψ1 ∗ g. Then, if
0 < t ≤ 1, we can write, using that

∫
Rn ψ (x) dx = 0,

∫
Rn

⏐⏐Qt
t (g) (x)

⏐⏐ dx ≤
∫
K

(∫
|z|≤t

|ψt (z)| |g (x+ z)− g (x)| dz

)
dx

≤ ∥∇g∥L∞

∫
K

(∫
|z|≤t

|ψt (z)| |z| dz

)
dx

≤ Ct.

Now, if χ indicates the characteristic function of the ball B (0, 1), we have∫
Rn

⏐⏐Qt
t (g) (x)

⏐⏐ dx ≤
∫
Rn

⏐⏐⏐⏐∫
Rn

|ψt (y − x)− ψt (x)| |g (y)|χ
(
y − x

t

)
dy

⏐⏐⏐⏐ dx
≤ 1

tn+1

∫
Rn(∫

Rn

χ

(
y − x

t

) ⏐⏐⏐⏐(∇ψ)((1− λ)
x

t
− λ

y − x

t

)
· y
⏐⏐⏐⏐ |g (y)| dy) dx

≤ 1

tn+1
∥∇ψ∥L∞

∫
Rn

|y| |g (y)|
(∫

Rn

χ

(
y − x

t

)
dx

)
dy

=
C

t
.

All in all, we have proved that (5.16) converges to
∫∞
0

(
Qt (a) , Q

t
t (g)

)
L∞,L1

dt
t as

m→ ∞. So, we arrive at the identity

(L (1) , g) =

∫ ∞

0

(
Qt (a) , Q

t
t (g)

)
L∞,L1

dt

t
,

or

(L (1) , g) =

∫ ∞

0

(
Q2

t (a) , g
)
L∞,L1

dt

t

=

(∫ ∞

0
Q2

t (a)
dt

t
, g

)
L∞,L1

. (5.17)
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If we could say that
∫∞
0 Q2

t (a)
dt
t = a, we would be done. So, all that is left is

to find an appropriate normalization factor. Via Fourier transform, we observe that∫ ∞

0

(
ψ̂ (tξ)

)2 dt
t

=

∫ ∞

0
(F (t |ξ|))2 dt

t
=

∫ ∞

0
(F (s))2

ds

s
,

which is a positive number for ξ ̸= 0, since ψ radial implies that ψ̂ is radial also. On
the other hand, from (5.17),∫

Rn

(ψt ∗ ψt ∗ a) (x) g (x) dx =

∫
Rn

∫
Rn

a (y) (ψt ∗ ψt) (x− y) g (x) dydx

=

(
â,
(
ψ̂t

)2
ĝ

)
=

(
â,
(
ψ̂ (t·)

)2
ĝ

)
, (5.18)

where the parentheses in (5.18) indicate, for each t > 0, the duality between S′, the
space of tempered distributions and S, the Schwartz space. Indeed, using (4.3) in
Remark 22, we can see that a ∈ S′, or equivalently, â ∈ S′.

If we set (∫ ∞

0
(F (s))2

ds

s

)−1

= A,

and integrate both sides of the equality∫
Rn

(ψt ∗ ψt ∗ a) (x) g (x) dx =

(
â,
(
ψ̂ (t·)

)2
ĝ

)
with respect to t, the function Aψ will satisfy(∫ ∞

0
Q2

t (a)
dt

t
, g

)
= (a, g) ,

for all g ∈ D0, or
L (1) = a,

according to Remark 28.
This completes the proof of the lemma.

Remark 36. The proof of L (1) = a, borrows from ([25], pp. 17 and 43).

6 A continuous proof of the T(1) Theorem for the modified
operator

Here is the version of the T(1) Theorem that we are left to prove:

Theorem 37. Let T be an operator associated with a standard kernel. Assume that
T satisfies the following three conditions:
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1. T has the WBP,

2. T (1) = 0,

3. T t (1) = 0.

Then, T is a CZO.

In the original proof of this theorem [38], the main tool is the Cottlar-Knapp-
Stein lemma. Instead, we will use here the continuous version of the lemma, due to
A. P. Calderón and R. Vaillancourt [20], that we state now:

Lemma 38. ([20]) Let (T ,Σ, µ) be a measure space and let {At}t∈T be a family
of operators in L (H), the space of linear and continuous operators from a Hilbert
space H into itself. Suppose that the map

T ↦−→ L (H)

t ↦→ At

is µ weakly-measurable, that is, for f, g ∈ H, the map ⟨Atf, g⟩H is µ measurable.
Moreover, suppose that the following conditions hold:

a) There exist µ× µ measurable functions h1 (t, s) and h2 (t, s), defined on T × T ,
satisfying the estimates At

tAs


L(H)

≤ h21 (t, s) , (6.1)AtA
t
s


L(H)

≤ h22 (t, s) . (6.2)

where, as always, the upper index denotes the transpose.

b) The integral
∫
T h1 (t, r)h2 (r, s) dµ (r) is a µ×µ measurable function h (t, s) and∫

T h (t, s) f (s) dµ (s) defines a linear and continuous operator B from L2 (T , µ)
into itself. Furthermore, for some C > 0,

∥B∥L(L2(T ,µ)) ≤ C2.

Then, for each J ∈ Σ with finite µ measure, the operator valued integral
∫
J Atdµ (t)

belongs to L (H) and ∫
J
Atdµ (t)


L(H)

≤ C. (6.3)

With this powerful tool in hand, we are ready to prove Theorem 37.
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Proof. First of all, according to the first part of Lemma 3, we can assume that
the kernel of the operator T satisfies Definition 1 with δ < 1. The purpose of this
assumption is to simplify some of the estimates needed later on.

Let ϕ ∈ D be a radial function such that supp (ϕ) ⊆ {|x| ≤ 2}, ϕ (x) = 1
when |x| ≤ 1, 0 ≤ ϕ (x) ≤ 1 for all x ∈ Rn and

∫
Rn ϕ (x) dx = 1. As before, let

ϕt (x) =
1
tnϕ

(
x
t

)
and let Pt be the operator acting on D as the convolution with ϕt.

Given m ≥ 1, f, g ∈ D, we define the operator

(Tm (f) , g) =

∫ m

1
m

(
d

dt
(PtTPt) (f) , g

)
dt (6.4)

= ((PmTPm) (f) , g)−
((
P1/mTP1/m

)
(f) , g

)
. (6.5)

We recall that, unless otherwise noted, (, ) still indicates the (D′,D) duality.
Let us consider each term in (6.5) separately. Since

{
P1/m

}
m≥1

is an approximation

of the identity and T is continuous from D into D′, there is

lim
m→∞

((
P1/mTP1/m

)
(f) , g

)
= lim

m→∞

(
TP1/m (f) , P1/mg

)
= (T (f) , g) .

Next, we use theWBP to show that (PmTPm (f) , g) = (TPm (f) , Pm (g)) converges
to zero as m→ ∞. In fact,

(T (Pm (f)) , Pm (g)) =

(
Tv

(∫
Rn

ϕm (v − y) f (y) dy

)
,

∫
Rn

ϕm (u− x) g (x) dx

)
=

∫
R2n

(Tv (ϕm (v − y)) , ϕm (u− x)) f (y) g (x) dydx,

where Tv indicates that the operator T is acting on the variable v. For x, y fixed,
we can write

(Tv (ϕm (v − y)) , ϕm (u− x)) =

(
Tv

(
1

mn
ϕ

(
v − y

m

))
,

1

mn
ϕ

(
y − x

m
+
u− y

m

))
.

We observe that, when x ∈ supp (g), y ∈ supp (f), and m ≥ 1, the family of
functions

{
ϕ
(y−x

m + ·
)}

x,y,m
is a bounded subset of D. Thus, since the operator T

has the WBP,

|(Tv (ϕm (v − y)) , ϕm (u− x))| ≤ C

mn
,

uniformly with respect to x ∈ supp (g) and y ∈ supp (f). That is to say, there exists

lim
m→∞

(TPm (f) , Pm (g)) = 0.

Let us take a closer look at the integral in (6.4). In the weak sense,

d

dt
(PtTPt) =

(
d

dt
ϕt ∗ ·

)
TPt + PtT

(
d

dt
ϕt ∗ ·

)
.
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As it was indicated in the proof of Lemma 32,

dϕt

dt
(x) = −1

t

⎛⎝ n∑
j=1

∂xj (xjϕ)

⎞⎠
t

= −1

t
ψt (x) ,

where
∫
Rn ψ (x) dx = 0.

So, if Qt is the operator of convolution with ψt, we have proved that, in the weak
sense,

T =

∫ ∞

0
(QtTPt + PtTQt)

dt

t
. (6.6)

We will show that the two families of operators, {QtTPt}t>0 and {PtTQt}t>0,

satisfy the hypotheses of Lemma 38, with H = L2, T = (0,∞), and dµ = dt
t .

Actually, we will only consider {QtTPt}t>0, since PtTQt =
(
QtT

tPt

)t
and both

operators, T and T t, satisfy the same conditions. Once again, the upper index t
indicates, as always, the transpose.

For t > 0 fixed, QtTPt is certainly a linear and continuous operator from
D into D′. Moreover, it is an integral operator whose kernel K (x, y, t) is the
C∞ (Rn × Rn × R+) function given by

K (x, y, t) = (Tv (ϕt (v − y)) , ψt (u− x)) . (6.7)

We claim that K (x, y, t) satisfies the following Poisson like conditions:

i)

|K (x, y, t)| ≤ C
tδ

(|x− y|+ t)n+δ
,

ii)

|K (x, y, t)−K (z, y, t)|+ |K (y, x, t)−K (y, z, t)| ≤ C
|x− z|
t

tδ

(|y − z|+ t)n+δ
,

if 2 |x− z| ≤ |y − z|+t, where 0 < δ ≤ 1 is the same parameter as in Definition
1.

as well as the cancellation conditions

iii) ∫
Rn

K (x, y, t) dx =

∫
Rn

K (x, y, t) dy = 0.
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To prove i) we will consider two cases, |x− y| ≤ at and |x− y| ≥ at, for some
a > 0 to be chosen. We begin with the case |x− y| ≤ at. As before, we can write

ψt (u− x) =
1

tn
ψ

(
w +

u− y

t

)
,

where w = y−x
t . Thus, the family {ϕ,ψ (w + ·)}|w|≤a is a bounded subset of D.

Since T has the WBP, we conclude from (6.7) that

|K (x, y, t)| ≤ C

tn
≤ C

tδ

(|x− y|+ t)n+δ
.

Now let us assume that |x− y| ≥ at. Since supp (ϕt (v − y)) ⊆ {|v − y| ≤ 2t},
and supp (ψt (u− x)) ⊆ {|u− x| ≤ 2t}, they will be disjoint if a ≥ 5. Thus, we can
write

K (x, y, t) =

∫
R2n

k (u, v)ϕt (v − y)ψt (u− x) dvdu

where k (x, y) is the standard kernel of T , uniquely determined by T according to
Remark 8.

Since
∫
Rn ψ (x) dx = 0, we can also write

K (x, y, t) =

∫
R2n

(k (u, v)− k (x, v))ϕt (v − y)ψt (u− x) dvdu.

Our assumptions imply that

|x− v| ≥ |x− y| − |y − v| ≥ (a− 2) t.

So, (a− 2) t ≥ 2 |x− u| if a ≥ 6. We settle on a = 6. Hence, |x− v| ≥ 2 |x− u|.
Thus, by condition 2) in Definition.1,

|k (u, v)− k (x, v)| ≤ C
|u− x|δ

|v − x|n+δ
.

Moreover,

|v − x| ≥ |x− y| − |v − y| ≥ |x− y| − 2t ≥ 2

3
|x− y| .

Then,

|k (u, v)− k (x, v)| ≤ C
|x− u|δ

|x− y|n+δ
,

from which we can write,

|K (x, y, t)| ≤ C

|x− y|n+δ

∫
R2n

|u− x|δ ϕt (v − y) |ψt (u− x)| dvdu. (6.8)
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Since |u− x| ≤ 2t on supp (ψt (u− x)) and we are assuming |x− y| ≥ 6t, we
have

|x− y| = 1

2
|x− y|+ 1

2
|x− y|

≥ 1

2
|x− y|+ 3t ≥ 1

2
(|x− y|+ t) .

Substituting in (6.8) we get i). Let us prove ii).
We write

K (x, y, t)−K (z, y, t) =

∫ 1

0
(∇xK) (z + s (x− z) , y, t) · (x− z) ds

=

∫ 1

0
(Tv (ϕt (v − y)) ,− (∇x (ψt)) (u− z − s (x− z))) · (x− z) ds,

and we observe that the proof of estimate i) still holds if we replace in (6.7) the
function ψ with any other function ψ̃ in D0. So, we apply estimate i) to the kernel(
Tv (ϕt (v − y)) ,−1

t

(
∂xjψ

)
t
(u− z − s (x− z))

)
for each 1 ≤ j ≤ n, with ψ̃ = ∂xjψ,

to get

|K (x, y, t)−K (z, y, t)| ≤ C
|x− z|
t

∫ 1

0

tδ

(|z + s (x− z)− y|+ t)n+δ
ds.

Since we are assuming that 2 |x− z| < |y − z|+ t, we have

|z + s (x− z)− y|+ t ≥ |y − z| − |x− z|+ t

≥ 1

2
(|y − z|+ t) ,

giving us the first half of ii). The proof of the other half follows the same idea, so
we will omit it.

Finally, we prove iii).
Since the operator T is linear and continuous fromD intoD′ and

∫
Rn ψ (x) dx = 0,

we get ∫
Rn

K (x, y, t) dx =

∫
Rn

(Tv (ϕt (v − y)) , ψt (u− x)) dx

=

(
Tv (ϕt (v − y)) ,

∫
Rn

ψt (u− x) dx

)
= 0

and∫
Rn

K (x, y, t) dy =

∫
Rn

(Tv (ϕt (v − y)) , ψt (u− x)) dy =

(
Tv

(∫
Rn

ϕt (v − y) dy

)
, ψt (u− x)

)
= (T (1) , ψt (u− x)) = 0.
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This completes the proof of the estimates for the kernel of the operator QtTPt.
As we said before, the estimates for the kernel of PtTQt follow, since T and T t have
the same properties.

LetAt = QtTPt. To prove that (6.1) and (6.2) hold, we will estimate
At

tAs


L(L2)

for t ≤ s, since the other estimates are proved in a similar fashion. As always, the
upper index t denotes the transpose of the operator. The condition t ≤ s refers to
the subindexes.

Let A (x, y, t, s) be the kernel of the operator At
tAs. If we obtain estimates for

sup
x∈Rn

∫
Rn

|A (x, y, t, s)| dy

and

sup
y∈Rn

∫
Rn

|A (x, y, t, s)| dx,

these estimates will also serve as bounds for the norm of At
tAs as a linear and

continuous operator from L∞ to itself and from L1 to itself, respectively. Thus, by
Marcinkiewicz interpolation, we will have an estimate for

At
tAs


L(L2)

.

Now,

∫
Rn

|A (x, y, t, s)| dy =

∫
Rn

⏐⏐⏐⏐∫
Rn

Kt (x, z, t)K (z, y, s) dz

⏐⏐⏐⏐ dy,
and, since

∫
Rn Kt (x, z, t) dz = 0, we can write the integral above as

∫
Rn

⏐⏐⏐⏐∫
Rn

Kt (x, z, t) (K (z, y, s)−K (x, y, s)) dz

⏐⏐⏐⏐ dy
≤
∫
Rn

∫
2|x−z|≤s

⏐⏐Kt (x, z, t)
⏐⏐ |(K (z, y, s)−K (x, y, s))| dzdy (6.9)

+

∫
Rn

∫
2|x−z|≥s

⏐⏐Kt (x, z, t)
⏐⏐ (|K (z, y, s)|+ |K (x, y, s)|) dzdy. (6.10)

We estimate (6.9) and (6.10), separately, assuming t ≤ s. For (6.9), we use
i) in the first factor and ii) in the second, observing that 2 |x− z| ≤ s implies
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2 |x− z| ≤ |y − z|+ s. Thus, (6.9) is bounded by

C

∫
Rn

∫
2|x−z|≤s

tδ

(|x− z|+ t)n+δ

|x− z|
s

sδ

(|y − z|+ s)n+δ
dzdy

= C

∫
2|x−z|≤s

tδ

(|x− z|+ t)n+δ

|x− z|
s

(∫
Rn

sδ

(|y − z|+ s)n+δ
dy

)
dz

=
C

s

∫
2|x−z|≤s

tδ |x− z|
(|x− z|+ t)n+δ

dz =
C

s

∫ s
2

0

tδrn

(r + t)n+δ
dr

= C
t

s

∫ s
2t

0

rn

(1 + r)n+δ
dr ≤ C

t

s
≤ C

(
t

s

)δ

,

where we recall that 0 < δ < 1.
Now, we use i) to estimate (6.10), obtaining the following bound:

C

∫
Rn

∫
2|x−z|≥s

tδ

(|x− z|+ t)n+δ

(
sδ

(|y − z|+ s)n+δ
+

sδ

(|x− y|+ s)n+δ

)
dzdy.

(6.11)
By a change of variables, we have∫

Rn

(
sδ

(|y − z|+ s)n+δ
+

sδ

(|x− y|+ s)n+δ

)
dy = C,

so, (6.11) reduces to

C

∫
2|x−z|≥s

tδ

(|x− z|+ t)n+δ
dz ≤ C

∫ ∞

s
2t

ξ−1−δdξ

= C

(
t

s

)δ

.

Since the estimates in all the other cases will be the same, we finally obtain

h21 (t, s) = h22 (t, s) =

{
C
(
t
s

)δ
for t ≤ s,

C
(
s
t

)δ
for t ≥ s,

(6.12)

which proves a) in the hypotheses of Lemma 38.
To show that b) holds, we need to consider

h (t, s) =

∫ ∞

0
h1 (t, r)h2 (r, s)

dr

r
.

We want to show that h (t, s) defines, by integration, an operatorB that is continuous
from L2

(
(0,∞) , dtt

)
into itself. As before, it suffices to estimate

sup
t>0

∫ ∞

0
|h (t, s)| ds

s
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and

sup
s>0

∫ ∞

0
|h (t, s)| dt

t
,

using interpolation afterwards.

Let us first estimate h (t, s). According to (6.12), if t ≤ s,

h (t, s) = C

∫ t

0

(r
t

) δ
2
(r
s

) δ
2 dr

r

+ C

∫ s

t

(
t

r

) δ
2 (r

s

) δ
2 dr

r
+ C

∫ ∞

s

(
t

r

) δ
2 (s

r

) δ
2 dr

r

≤ C

(
t

s

) δ
2

ln
(s
t
+ 1
)
.

On the other hand, if t ≥ s,

h (t, s) = C

∫ s

0

(r
t

) δ
2
(r
s

) δ
2 dr

r
+ C

∫ t

s

(r
t

) δ
2
(s
r

) δ
2 dr

r

+ C

∫ ∞

t

(
t

r

) δ
2 (s

r

) δ
2 dr

r

≤ C
(s
t

) δ
2
ln

(
t

s
+ 1

)
.

Thus,

∫ ∞

0
|h (t, s)| dt

t
≤ C

∫ s

0

(
t

s

) δ
2

ln
(s
t
+ 1
) dt
t
+ C

∫ ∞

s

(s
t

) δ
2
ln

(
t

s
+ 1

)
dt

t
≤ C.

and, likewise, ∫ ∞

0
|h (t, s)| ds

s
≤ C,

where the positive constant C only depends on specific parameters such as n, δ, etc.
So, we have proved b).

Then, Lemma 38 tells us that, for each m ≥ 1, the operator Tm =
∫m

1
m
QtTPt

dt
t

is continuous on L2 and ∥Tm∥L(L2) ≤
√
C, independently of m.

Since we have proved already (see (6.6)) that the sequence {Tm}m≥1 converges

in the weak sense to T , we conclude that T is also continuous on L2. That is to say,
T is a CZO.

Thus, we have completed the proof of the T(1) Theorem.
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7 The applicability of the T(1) Theorem

For the examples discussed in Section 3, the proof of the L2 continuity relies, for
the most part, on ad-hoc techniques. Thus, one main interest of the T(1) Theorem
lies on its role as a unifier of many particular cases. Let us look at some of them, in
the context of this theorem.

We begin with the case of pseudo-differential operators in L0
1,1. Taking δ = 1,

makes this, so called “wrong” class, quite special ([9], [53] and [54]).
Summing up what we have said in previous sections, an operator L in L0

1,1 will

be continuous on L2 if and only if Lt (1) ∈ BMO (see Remark 30). In particular,
if we look once again at the symbol (4.5) of the operator due to Ching, we have
L (1) = p (x, 0) = 0. As for the condition Lt (1) ∈ BMO, we will first calculate
Lt (1) using Remark 26. According to (4.11), if we fix g ∈ D0,(

Lt (1) , g
)
= lim

j→∞
(θj , L (g)) ,

where we assume that θ ∈ D is a radial function, θ (x) = 1 for |x| < 1, θ (x) = 0

for |x| > 2, and θj (x) = θ
(
x
j

)
. Observe that for some j0, the function θ will be

identically one on a neighborhood of supp (g). In order to drop the factor e1 from
the exponent in (4.5), we will work in R. For j ≥ j0 fixed, we write

(θj , T (g)) =

∫ ∞

−∞

∫ ∞

−∞
e−2πixξ

⎡⎣∑
k≥0

ake
2πi5k3xψ

(
ξ

5k

)⎤⎦ ĝ (ξ) θ(x
j

)
dξdx. (7.1)

The series (4.5) converges, for instance, in the sense of OM , the space of functions
slowly increasing at infinity ([6], p. 128). So, (7.1) is equal to∑

k≥0

ak

∫ ∞

−∞
jθ̂ (jη)ψ

( η
5k

+ 3
)
ĝ
(
η + 5k3

)
dη. (7.2)

Since ∑
l≥0

1(
1 + |η − l|2

)s ≤ C

for η ∈ R and s > n
2 , we can write (7.2) as∫ ∞

−∞
jθ̂ (jη)

⎛⎝∑
k≥0

akψ
( η
5k

+ 3
)
ĝ
(
η + 5k3

)⎞⎠ dη,

where the series, uniformly convergent on compact subsets of R, defines a continuous
function of η. Thus, the integral above converges, as j → ∞, to∑

k≥0

akĝ
(
5k3
)
=
∑
k≥0

ak

∫ ∞

−∞
e2πix5

k3g (x) dx.
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So, at least in the sense of D′,

Lt (1) =
∑
k≥0

ake
2πix5k3, (7.3)

where the series converges in the sense of D′. It is a trigonometric lacunary series.
That is to say, is a series of the form∑

k≥0

ake
2πixmk ,

where
mk+1

mk
≥ 1 + ε, for k ≥ k0 and some ε > 0. For a brief account on lacunary

series, or functions, we refer to [91], p. 98, 5.501). Going back to (7.3), it defines
a function in BMO if and only if the sequence {ak}k≥0 is square summable (see

[77], p. 178, further results 6.3). As a consequence, if
∑
k≥0

|ak|2 = ∞, the operator L

satisfies conditions 1) and 2) but not 3), while Lt satisfies conditions 1) and 3) but
not 2) and, finally, L + Lt neither satisfies 2) nor 3), in the statement of Theorem
29.

Many of the particular operators known in the late seventies to be continuous
on L2, are associated with antisymmetric standard kernels (see Section 3). At
that time, Calderón asked under what conditions, an operator associated with an
antisymmetric standard kernel, is continuous on L2. We will look at this question
from the point of view of the T(1) Theorem.

To begin, an antisymmetric standard kernel, extends to the distribution kernel
of the operator, as a principal value integral. Indeed, if we fix ϕ,ψ ∈ D, we can
write, for ε > 0 fixed,∫

|x−y|>ε
k (x, y)ϕ (y)ψ (x) dydx

=
1

2

∫
|x−y|>ε

k (x, y) (ϕ (y)ψ (x)− ϕ (x)ψ (y)) dydx. (7.4)

We have the estimate

|k (x, y) (ϕ (y)ψ (x)− ϕ (x)ψ (y))| ≤ C
|x− y|
|x− y|n

∥∇ϕ∥L∞ ∥∇ψ∥L∞ χ (x, y) ,

where χ denotes the characteristic function of the support of ϕ (y)ψ (x)−ϕ (x)ψ (y)
in Rn×Rn. This shows that (7.4) has limit as ε→ 0. In a similar manner, we could
prove that the operator thus defined, has the WBP. Since T t is essentially the same
as T , the T(1) Theorem will then say that T is a CZO if and only if T (1) ∈ BMO.

Not for every operator T associated with an antisymmetric kernel is true that
T (1) ∈ BMO. For example, we can consider an operator closely related to the
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operator L defined by (5.6) in Section 5. We take a equal, for instance, to the series
in (7.3), which does not define a locally integrable function, so it cannot belong to
BMO. For the details, we refer to ([25], p. 50).

Most of the examples considered in Section 3, fall into the category of operators
associated with antisymmetric kernels. For instance, let us consider the m-th
commutator (3.12)

Cm (h) (x) = pv

∫ ∞

−∞

(
a (x)− a (y)

x− y

)m h (y)

x− y
xdy,

where, to avoid confusion, we have ignored the factor Cm. The principal value is
interpreted in the sense explained above. We will show by induction that Cm is a
CZO, for every m = 0, 1, 2, ...

First of all, C0 differs in a multiplicative constant from the Hilbert transform H
and H (1) = 0. In fact, we proceed as above.

(θj , H (g)) = i

∫ ∞

−∞
θj (x)

∫ ∞

−∞
e−2πixξsgn (ξ) ĝ (ξ) dξ

= i

∫ ∞

−∞
jθ̂ (jξ) sgn (ξ) ĝ (ξ) dξ,

which converges, for j → ∞, to iĝ (0) = 0.
Similarly, we could show that

C1 (1) = C0
(
a′
)
.

Since a′ ∈ L∞ (R) and C0 is CZO, Remark 31 shows that C0 (a′) is well defined,
in the appropriate sense, and it belongs to BMO. So, C1 is a CZO.

In general, if m ≥ 2, it is true ([38], p. 381) that

Cm (1) = Cm−1

(
a′
)
.

So, assuming that Cm−1 is a CZO, we conclude that Cm (1) ∈ BMO, so Cm is a CZO
as well. Furthermore ([25], p. 56, Theorem 7), there exists C > 0 so that

∥Cm∥L(L2(R)) ≤ Cm
a′m

L∞(R) . (7.5)

We showed in Section 3 how several of the examples could be reduced to combinations
of commutators. However, this approach does not always yield the best results on
L2 continuity. Let us consider, for instance, the Cauchy integral on a Lipschitz curve

C (f) (x) = pv

∫ ∞

−∞

f (y)

y − x

dy

1 + ia(y)−a(x)
y−x

,

where, once again, the principal value is interpreted in the sense explained above.
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Formally,

C (f) (x) = −im
∑
m≥0

Cm (f) (x) .

We just proved that each term is a CZO. However, (7.5) will not yield a convergent
series, unless ∥a′∥L∞(R) is sufficiently small. From there, a localization argument
will give the general result [36].

David, Journé and Semmes [39] have proved a version of the T(1) Theorem, in
which the operator and its transpose are tested on a para-accretive function b. This
is the so called T(b) Theorem (see also [25], Chapter IV (5)). In the case of the
Cauchy integral, the previously neglected factor 1 + ia′ plays a central role as the
para-accretive function. For more on the Cauchy integral, we refer to [68], [34] and
[37].

This ends the section on the applicability of the T(1) Theorem. We dedicate a
last section to ...

8 The conditions on the kernel

As we mentioned in the introduction, the conditions on the kernel k given in
Definition 1 are one of the possible classical versions (see, for instance, [4], [72]).
However, other formulations have been used in the literature (see, for instance, [38],
[64], [65], [44]), not only to prove variations and extensions of the T(1) Theorem, but
for other purposes as well. We believe that it would be of interest to make precise
the relationship between a few of the most common formulations, so we dedicate this
last section to that purpose. We begin with a definition that gathers three pointwise
versions.

Definition 39. 1. A continuous function k : Rn×Rn\∆ → C satisfies condition
(R) if ([72])

|k (x, y)− k (x, z)| ≤ C1
|y − z|δ

|x− z|n+δ
,

for a fixed 0 < δ ≤ 1 and for |x− z| ≥ c1 |y − z|, with C1 > 0, c1 > 1.

2. A continuous function k : Rn × Rn \∆ → C satisfies condition (D) if ([38])

⏐⏐k (x, y)− k
(
x, y′

)⏐⏐ ≤ C2
|y − y′|δ

|x− y|n+δ
,

for a fixed 0 < δ ≤ 1 and for |x− y| ≥ c2 |y − y′|, with C2 > 0, c2 > 1.

3. A continuous function k : Rn × Rn \∆ → C, satisfies condition (G) if ([44])

⏐⏐k (x, y)− k
(
x, y′

)⏐⏐ ≤ C3
|y − y′|δ

(|x− y|+ |x− y′|)n+δ
,

******************************************************************************
Surveys in Mathematics and its Applications 13 (2018), 41 – 94

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v13/v13.html
http://www.utgjiu.ro/math/sma


T(1) Theorem Revisited 83

for a fixed 0 < δ ≤ 1 and for max (|x− y| , |x− y′|) ≥ c3 |y − y′|, with C3 >
0, c3 > 1.

As indicated in Definition 39, the original proof of the T(1) Theorem uses
condition (D) on k and kt. The proposition that follows makes precise the relationship
between these conditions. The proof involves quite a few elementary calculations,
that we present in some detail.

Proposition 40. Any of the conditions (R), (D) or (G) implies any other of these
conditions, for a fixed 0 < δ ≤ 1 and appropriate constants Ci > 0, ci > 1, i = 1, 2, 3.

Proof. Let us assume that k satisfies condition (R) and, for a constant c2 > 1 to be
chosen, let us fix x, y, y′ with |x− y| ≥ c2 |y − y′|. Then, if we pick z = y′,

|x− z| =
⏐⏐x− y′

⏐⏐ ≥ |x− y| −
⏐⏐y − y′

⏐⏐ ≥ (1− 1

c2

)
|x− y|

≥ c2

(
1− 1

c2

) ⏐⏐y − y′
⏐⏐ = (c2 − 1) |y − z|

≥ c1 |y − z| ,

provided that c2 ≥ c1 + 1. So, we can use condition (R) to write

⏐⏐k (x, y)− k
(
x, y′

)⏐⏐ ≤ C1
|y − y′|δ

|x− y′|n+δ
.

Since we showed that |x− y′| ≥
(
1− 1

c2

)
|x− y|, we can write

⏐⏐k (x, y)− k
(
x, y′

)⏐⏐ ≤ c2C1

c2 − 1

|y − y′|δ

|x− y|n+δ
,

which is condition (D), with C2 ≥ c2C1
c2−1 .

Next, we assume that k satisfies condition (D) and, for a constant c3 > 1 to
be chosen, we fix x, y, y′ so max (|x− y| , |x− y′|) ≥ c3 |y − y′|. If |x− y| ≥ |x− y′|,
then |x− y| ≥ c3 |y − y′|, so using condition (D),

⏐⏐k (x, y)− k
(
x, y′

)⏐⏐ ≤ C2
|y − y′|δ

|x− y|n+δ
.

Now,

|x− y| ≥ 1

2

(
|x− y|+

⏐⏐x− y′
⏐⏐) ,

so, ⏐⏐k (x, y)− k
(
x, y′

)⏐⏐ ≤ 2n+δC2
|y − y′|δ

(|x− y|+ |x− y′|)n+δ
.
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If |x− y′| ≥ |x− y|, then, |x− y′| ≥ c3 |y − y′|. Consequently,

|x− y| ≥
⏐⏐x− y′

⏐⏐− |y − y|′ ≥ (c3 − 1)
⏐⏐y − y′

⏐⏐ .
If c3 ≥ c2 + 1, we can use condition (D),

⏐⏐k (x, y)− k
(
x, y′

)⏐⏐ ≤ C2
|y − y′|δ

|x− y|n+δ
.

But,

|x− y| ≥
⏐⏐x− y′

⏐⏐− ⏐⏐y − y′
⏐⏐ ≥ (1− 1

c3

) ⏐⏐x− y′
⏐⏐ ,

so we can write,

⏐⏐k (x, y)− k
(
x, y′

)⏐⏐ ≤ C2
c3

c3 − 1

|y − y′|δ

|x− y′|n+δ

≤ 2n+δC2
c3

c3 − 1

|y − y′|δ

(|x− y|+ |x− y′|)n+δ
,

So, condition (G) holds, with C3 ≥ 2n+δC2
c3

c3−1 .
Finally, let us assume that condition (G) hold and, for a constant c1 > 1 to be

chosen, let us fix x, y, z with |x− z| ≥ c1 |y − z|. Then,

|x− y| ≥ |x− z| − |y − z| ≥ (c1 − 1) |y − z| .

So, if we pick y′ = z and we assume that |x− y| ≥ |x− y′|, we have max (|x− y| , |x− y′|) ≥
c3 |y − y′|, provided that c1 ≥ c3 + 1. So,

⏐⏐k (x, y)− k
(
x, y′

)⏐⏐ ≤ C3
|y − y′|δ

(|x− y|+ |x− y′|)n+δ

≤ C3
|y − y′|δ

|x− y′|n+δ
.

If |x− y′| ≥ |x− y|, then by hypothesis, max (|x− y| , |x− y′|) = |x− y′| ≥
c1 |y − y′| ≥ c3 |y − y′|, under the previous assumption, c1 ≥ c3 + 1. So, again,

⏐⏐k (x, y)− k
(
x, y′

)⏐⏐ ≤ C3
|y − y′|δ

(|x− y|+ |x− y′|)n+δ

≤ C3
|y − y′|δ

|x− y′|n+δ
.

That is to say, condition (R) holds for any constant C1 ≥ C3.
This completes the proof of Proposition 40
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Remark 41. If we consider kt (x, y) = k (y, x), then Proposition 40 applies to the
function kt (x, y).

As we mentioned earlier, there are other versions and extensions of the T(1)
Theorem (see, for instance, [64], [65], [90]), that do not use pointwise conditions on
the kernel, replacing them, instead, with one of several integral conditions. Some
of these integral conditions resemble those formulated in [72], which we now define.
For comparison purposes, we will still assume that the function k : Rn×Rn \∆ → C
is continuous, although local integrability suffices for this definition.

In what follows, l1 will denote the space of sequences {aj}j≥1 for which
∑

j≥1 |aj | <
∞.

Definition 42. [72] Given 1 ≤ r ≤ ∞, a continuous function k : Rn ×Rn \∆ → C
satisfies the condition (Dr), in short it satisfies (Dr), if there exists a sequence
{Cj}j≥1 in l1 such that

{∫
x∈Sj(x,z)

|k (x, y)− k (x, z)|r dx

}1/r

≤ Cj |Sj (y, z)|−1/r′ ,

for each j ≥ 1 and y, z ∈ Rn, where

Sj (y, z) =
{
x ∈ Rn; 2j |y − z| ≤ |x− z| ≤ 2j+1 |y − z|

}
and |Sj (y, z)| indicates the Lebesgue measure of Sj (y, z).

The function k satisfies condition (D′
r), in short it satisfies (D′

r), if k
t (x, y) =

k (y, x) satisfies (Dr).

Lemma 43. Given 1 ≤ q ≤ p ≤ ∞, if the function k satisfies (Dp), then it satisfies
(Dq).

1. If k satisfies condition (R) (see Definition 39), then k satisfies (D∞).

Proof. The proof of 1) relies on a straightforward use of Hölder’s inequality and it
will be omitted. As for the proof of 2), let us observe that x ∈ Sj (y, z) implies
|x− z| ≥ 2j |y − z| ≥ 2 |y − z| for k ≥ 1. So, if the function k satisfies condition
(R), we can write, for x ∈ Sj (y, z),

|k (x, y)− k (x, z)| ≤ C
|y − z|δ

|x− z|n+δ
.

Now, for x ∈ Sj (y, z),

|x− z|−n−δ ≤ 2−j(n+δ) |y − z|−n−δ ,
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86 Josefina Álvarez, Martha Guzmán-Partida

so,

C
|y − z|δ

|x− z|n+δ
≤ C2−j(n+δ) |y − z|δ |y − z|−n−δ

= C2−j(n+δ) |y − z|−n .

Finally,

|Sj (y, z)| = Cn

[(
2j+1 |y − z|

)n −
(
2j |y − z|

)n]
= Cn2

nj (2n − 1) |y − z|n ,

or
|y − z|−n = Cn2

nj |Sj (y, z)|−1 .

Thus,
C2−j(n+δ) |y − z|−n = CCn2

−jδ |Sj (y, z)|−1 .

That is to say, k satisfies (D∞).
This completes the proof of the lemma.

This lemma shows, in particular, that (D1) is the weakest of the (Dr) conditions,
while (D∞) is the strongest.

Remark 44. The converse of 2) in Lemma 43 holds as well, for some 0 < δ ≤ 1
such that

{
2jδCj

}
j≥1

∈ l1. The proof is similar to the proof of 2) in Lemma 43.

The following result can be seen as a dual version of Lemma 43. The proof is
straightforward and it will be omitted.

Lemma 45. If k satisfies (D1), meaning∫
x∈Sj(x,z)

|k (x, y)− k (x, z)| dx ≤ Cj

with {Cj}j≥1 ∈ l1, then k satisfies the so called Hörmander’s condition,∫
|x−z|≥2|y−z|

|k (x, y)− k (x, z)| dx ≤ C, (8.1)

for some C > 0.

Remark 46. The interest of the Hörmander’s condition in our context rests on
several observations. Firstly, while it is the weakest of all the conditions we have
examined, T t (1) still makes sense as a distribution acting on D0. Indeed, as we
mentioned already in the proof of Proposition 25, applied to T t, to estimate (4.6) it
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suffices to use the Hörmander’s condition (8.1) for the transpose kernel. The same
is true in the proof of the continuity from L∞ to BMO, as shown in Remark 31.
Finally, it is not known whether operators that satisfy the WBP and are associated
with kernels k for which k and kt satisfy such condition, are continuous on L2

provided that T (1) and T t (1) belong to BMO. The Hörmander’s condition is of
interest, as well, to proving other classical continuity properties (see, for instance,
[5]).

Acknowledgement: We are grateful to the anonymous referee for comments
that cleared up several errors and also made the presentation more accessible.
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[73] L. Schwartz, Théorie des noyaux, Proc. of the ICM (Cambridge, Mass. 1950)
Vol. 1, Providence, R. I. Amer. Math. Soc. (1952), 220-230. MR0045307. Zbl
0048.35102.

[74] R. Seeley, Refinement of the functional calculus of Calderón and Zygmund,
Proc. Dutch Acad. Ser. A 68 (1965), 521-531. MR0226450. Zbl 0141.13302.

[75] E. M. Stein, Singular Integrals and Differentiability Properties of Functions,
Princeton University Press, 1970. MR0290095. Zbl 0207.13501.

[76] —————, Oscillatory integrals in Fourier analysis, Beijing Lectures in
Harmonic Analysis, 307-355, 1986. Annals of Mathematics Studies, Princeton
University Press. MR0864375. Zbl 0618.42006.

[77] —————, Harmonic Analysis. Real-Variable Methods, Orthogonality, and
Oscillatory Integrals, Princeton University Press 1993. MR12322192. Zbl
0821.42001.

[78] E. M. Stein and G. Weiss, Introduction to Fourier Analysis in Euclidean Spaces.
Princeton University Press 1971. MR0304972. Zbl 0232.42007.

[79] R. S. Strichartz, Paradifferential operators: Another step forward for the method
of Fourier, Notices AMS 29 (1982), 401-406.

[80] T. Tao, The T(b) Theorem and its variants, Proc. Centre Mathematics and
Its Applications 41, 2003. 143-160, Mathematical Sciences Institute, The
Australian National University, Camberra. MR1994522.

******************************************************************************
Surveys in Mathematics and its Applications 13 (2018), 41 – 94

http://www.utgjiu.ro/math/sma

http://www.ams.org/mathscinet-getitem?mr=0944308
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0645.30016&format=complete
http://www.ams.org/mathscinet-getitem?mr=MR0355494
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0488.45002&format=complete
http://www.ams.org/mathscinet-getitem?mr=0470758
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0397.35071&format=complete
http://www.ams.org/mathscinet-getitem?mr=0549321
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0415.47025&format=complete
http://www.ams.org/mathscinet-getitem?mr=0859252
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0627.42008&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0627.42008&format=complete
http://www.ams.org/mathscinet-getitem?mr=0045307
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0048.35102&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0048.35102&format=complete
http://www.ams.org/mathscinet-getitem?mr=0226450
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0960.43003&format=complete
http://www.ams.org/mathscinet-getitem?mr=0290095
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0960.43003&format=complete
http://www.ams.org/mathscinet-getitem?mr=0864375
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0618.42006&format=complete
http://www.ams.org/mathscinet-getitem?mr=12322192
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0821.42001&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0821.42001&format=complete
http://www.ams.org/mathscinet-getitem?mr=0304972
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0232.42007&format=complete
http://www.ams.org/mathscinet-getitem?mr=1994522
http://www.utgjiu.ro/math/sma/v13/v13.html
http://www.utgjiu.ro/math/sma


T(1) Theorem Revisited 93

[81] ———, Distinguished Lecture Series II: Elias Stein, “The Cauchy Integral in
Cn”,

https://terrytao.wordpress.com/2008/10/23/distinguished-lecture-series-ii-
elias-stein-the-cauchy-integral.

[82] ———, Lecture Notes 6 for 247B (Paraproducts)

www.math.ucla.edu/˜tao/247b.1.07w/notes6.pdf.

[83] ———, Lecture Notes 7 for 247B (The T(1) Thm.)

www.math.ucla.edu/˜tao/247b.1.07w/notes7.pdf.

[84] M. Taylor, Pseudo-Differential Operators, Princeton University Press 1981.
MR0618463. Zbl 0289.35001.

[85] X. Tolsa, Littlewood-Paley theory and the T(1) Theorem with non-doubling
measures, Adv. in Math. 164 Issue 1 (2001) 57-116. MR1870513. Zbl
1015.42010.

[86] R. H. Torres, Boundedness Results for Operators with Singular Kernels
on Distribution Spaces, Memoirs of the Amer. Math. Soc. no. 442, 1992.
MR1048075.

[87] A. Unterberger and J. Bokobza, Les opératéurs de Calderón-Zygmund precisés,
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