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WEAKENED GALLAI-RAMSEY NUMBERS

Gabrielle Beam and Mark Budden

Abstract. In the Ramsey theory of graphs, one seeks to determine the value of the Ramsey

number rt(n), defined to be the least natural number p such that every coloring of the edges of Kp

using t colors results in a monochromatic copy of Kn in some color. In this paper, we demonstrate

the standard techniques used for finding bounds for Ramsey numbers by combining two standard

generalizations of rt(n). First, we restrict our attention to Gallai colorings: those that avoid

rainbow triangles. Within this setting, we then focus on finding subgraphs isomorphic to Kn that

are spanned by edges using at most s ≤ t− 1 colors. The resulting generalization of rt(n) is called

a weakened Gallai-Ramsey number, denoted grts(n). As such, we determine several explicit small

values and prove a few general properties of such numbers.

1 Introduction

The focus of Ramsey theory is to demonstrate in a precise manner how quantity
produces structure. In its application to the theory of graphs, Ramsey numbers are
the primary objects of interest, offering necessary and sufficient conditions under
which monochromatic subgraphs exist. In this exposition, we seek to introduce the
reader to the standard techniques used in this area by studying the intersection
of two distinct generalizations of Ramsey numbers. First, we must establish the
notations and definitions needed for our excursion.

For t ≥ 2 and n ≥ 1, we define the t-colored Ramsey number rt(n) to be the
least natural number p such that every coloring of the edges of Kp (a complete graph
on p vertices) using at most t distinct colors results in a monochromatic subgraph
isomorphic to Kn in some color. Such a coloring of the edges in Kn is called a
t-coloring and is not assumed to be proper; that is, we allow adjacent edges to have
the same color. The fact that the numbers rt(n) exist is implied by Frank Ramsey’s
foundational work [16] on the subject.

When n = 1, a K1 consists of a single vertex, so it is trivially contained in any
t-coloring of K1. Of course, at least one vertex is required to have a K1, implying
that rt(1) = 1 for all t. Similarly, at least two vertices are needed in order to have
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132 G. Beam and M. Budden

a K2. When considering a t-coloring of K2, the one edge must receive some color,
producing a monochromatic K2. Hence, rt(2) = 2 for all t. The Ramsey numbers
rt(1) and rt(2) are often referred to as trivial Ramsey numbers since we are able to
determine their values using such simple arguments.

The only other values of t and n for which we currently know the exact values
of rt(n) are the following: r2(3) = 6, r2(4) = 18, and r3(3) = 17. These three
evaluations were all originally proven by Greenwood and Gleason [11] in 1955, and
their paper was among the first to present Ramsey’s ideas in the framework of edge
colorings of graphs. It should be noted, however, that Greenwood and Gleason
were not intentionally developing Ramsey’s results, as they did not cite his work or
rely on it anywhere in their paper. The evaluations of these three Ramsey numbers
established the usual methodology used in the subject in which an optimal t-coloring
of a complete graph that lacks a monochromaticKn provides a lower bound for rt(n).
For the upper bound, a theoretical argument is used. While the upper and lower
bounds agree in these three cases, in general, such methods only provide an interval
of possible values for a given Ramsey number.

Over the past nine decades, many generalizations of the classical Ramsey number
rt(n) have been considered. While a variety of techniques are employed in different
settings, the approach of identifying lower bounds by constructing optimal examples
and using theoretical arguments for the upper bounds is standard. For this reason,
the subject has appealed to both mathematicians and computer scientists, given the
computational and theoretical natures of these techniques. We refer the reader to
Radziszowski’s dynamic survey [15] for the current state of knowledge on rt(n) and
many of its generalizations. In this paper, we demonstrate these standard approaches
to the reader by combining two different generalizations of rt(n).

In Section 2 of this paper, we provide some background on two distinct generali-
zations of rt(n): weakened Ramsey numbers and Gallai-Ramsey numbers. In the
former case, we study the existence of subgraphs spanned by a limited number of
colors, while in the latter case, we restrict ourselves to t-colorings that lack rainbow
triangles. Both of these generalizations have been extensively studied, but at this
time, few results exist involving their conglomeration (e.g., see [7]). As such, in
Section 3, we define the concept of weakened Gallai-Ramsey numbers and prove
some of their initial bounds. Section 4 offers two general constructions using the
lexicographic product of graphs and finally, Section 5 concludes by describing some
open problems for the motivated reader.

2 Two Generalizations of rt(n)

The first generalization we consider comes from a restriction on the t-colorings when
t ≥ 3. Specifically, we consider only t-colorings that lack rainbow triangles. A
rainbow triangle consists of three vertices, x, y, and z such that the edges xy, yz,
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Weakened Gallai-Ramsey Numbers 133

and xz receive distinct colors. These restricted colorings are named for Tibor Gallai,
whose 1967 paper [10] provided a result equivalent to the following classification of
such colorings (see Theorem A in [12]).

Theorem 1. For t ≥ 3, every Gallai t-coloring of Kp can be obtained by substituting
complete graphs with Gallai colorings into the vertices of 2-colored complete graphs.

For t ≥ 2, the Gallai-Ramsey number grt(n) is defined to be the least natural
number p such that every Gallai t-coloring (using at most t colors and lacking
rainbow triangles) of Kp results in a monochromatic subgraph isomorphic to Kn

in one of the colors. When t = 2, it is not possible for any t-coloring to contain a
rainbow triangle. So, we define gr2(n) = r2(n) in this case.

To demonstrate how one can obtain a Gallai 3-coloring from known bounds on
rt(n), consider the Ramsey number r2(3) = 6. From this number, it follows that
there exists a 2-coloring of K5 that lacks monochromatic triangles. In Figure 1,
we have constructed two disjoint copies of a 2-colored K5. We then colored all
interconnecting edges using a third color. Within the context of Theorem 1, we
have substituted (Gallai) 2-colorings of K5 into the vertices of K2, and one can
verify that there are no rainbow triangles. From this construction, it is clear that

Figure 1: A Gallai 3-coloring of the edges of K10 that lacks monochromatic triangles.

no monochromatic triangle exists entirely within either copy of K5. Every triangle
formed using vertices from both copies of K5 must have two edges in color 3 and
one edge in either color 1 or 2. Hence, no monochromatic triangle exists in this
3-coloring of K10. Thus, we find that gr3(3) ≥ 11.

In fact, it is known that gr3(3) = 11. This follows from the work of Chung and
Graham [2], in which they proved a result equivalent to the following theorem.
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134 G. Beam and M. Budden

Theorem 2 (Chung and Graham). For t ≥ 2,

grt(3) =

{
5t/2 + 1 if t is even

2 · 5(t−1)/2 + 1 if t is odd.

Since Gallai t-colorings form a proper subset of the set of all t-colorings of a
complete graph, it follows that

grt(n) ≤ rt(n) for all n, t ≥ 3.

Of course, the construction presented above in Figure 1 can be generalized. For
p = grt−1(n), consider n− 1 copies of a Gallai (t− 1)-coloring of Kp−1 that lacks a
monochromatic Kn. Interconnect the copies of Kp−1 with edges in color t. As with
our previous argument, this construction produces a Gallai t-coloring of K(p−1)(n−1)

that lacks a monochromatic Kn. Hence,

(grt−1(n)− 1)(n− 1) ≤ grt(n).

For more specifics on known results concerning Gallai-Ramsey numbers, the reader
should consult [2], [5], [6], [7], [8], [9], and [12].

Now we shift our attention to the second generalization of rt(n). Given a t-
coloring of the edges of a complete graph using t ≥ 3 colors, a different (weakened)
generalization of rt(n) can be obtained by asking how many vertices are necessary
to guarantee that there exists a Kn spanned by edges using at most s of the colors,
where 1 ≤ s ≤ t − 1. We denote this minimum number of vertices by rts(n), and
call it a weakened Ramsey number. Such numbers were first considered by Chung,
Chung, and Liu [3] and Chung and Liu [4] in a slightly more general setting than
that which is presented here.

As an example, consider the weakened Ramsey number r32(3). Figure 2 provides
a 3-coloring of K4 that lacks a triangle spanned by edges using at most two colors.
In particular, every triangle is a rainbow triangle. Hence, r32(3) ≥ 5. On the other
hand, consider an arbitrary 3-coloring of K5. Any fixed vertex x is incident with
four edges. By the pigeonhole principle, at least two such edges are the same color.
If xa and xb are the same color, then the subgraph induced by {x, a, b} is a triangle
spanned by edges using at most two colors. Hence, r32(3) ≤ 5, and from these two
bounds, it follows that r32(3) = 5.

Since every t-coloring of Kp that contains a Kn spanned by edges using at most
s colors necessarily contains a Kn spanned by edges using at most s′ colors, when
1 ≤ s ≤ s′ ≤ r − 1 we find that,

rts′(n) ≤ rts(n) ≤ rt(n).

It is also worth noting that increasing the number of colors decreases the likelihood
of having a Kn spanned by edges using at most s colors. Hence,

rts ≤ rt
′
s (n) for all t ≤ t′.
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Weakened Gallai-Ramsey Numbers 135

Figure 2: A 3-coloring of the edges of K4 that lacks triangles spanned by edges using
at most two colors.

For more background on the evaluation of weakened Ramsey numbers, the reader is
referred to [1], [13], and [14].

At this point it is worth observing that t-colorings that avoid rainbow triangles
are more likely to have complete subgraphs spanned by s colors, while t-colorings
that avoid complete subgraphs spanned by a limited number of colors are more
likely to contain rainbow triangles. This leads us to consider the more restrictive
generalization of Ramsey numbers introduced in the next section.

3 Combining Generalizations

For 1 ≤ s ≤ t − 1, define the weakened Gallai-Ramsey number grts(n) to be the
least natural number p such that every Gallai t-coloring of Kp contains a subgraph
isomorphic to Kn spanned by edges using at most s colors. This number can be
viewed as a generalization of a Gallai-Ramsey number with grt1(n) = grt(n). As
with weakened Ramsey numbers, for all 1 ≤ s ≤ s′ ≤ t− 1, it follows that

grts′(n) ≤ grts(n) ≤ grt1(n) = grt(n).

Since every Gallai t-coloring of Kp is a t-coloring, it also follows that

grts(n) ≤ rts(n).

The following basic property of Gallai colorings was proved by Erdős, Simonovits,
and Sós [5] in 1973, and it will serve us in evaluating grts(n). For the sake of
completeness, we offer a straightforward inductive proof of their result.

Theorem 3 (Erdős, Simonovits, and Sós). Every Gallai coloring of Kt (t ≥ 2)
contains at most t− 1 colors.
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136 G. Beam and M. Budden

Proof. We proceed by induction on t. As an initial case, note that every coloring
of K2 contains at most one color. Now, assume that every Gallai coloring of Kk

contains at most k − 1 colors and consider a Gallai coloring of Kk+1. Suppose x is
some vertex in the Kk+1 and consider the subgraph induced by the vertex set with x
removed. By the inductive hypothesis, the resulting Gallai coloring of Kk contains
at most k− 1 colors. When reintroducing x, we find that at most one new color can
be included in the edges incident with x. Otherwise, if xy and xz are edges given
colors k and k+1, then the triangle xyz will be rainbow colored. Hence, the original
Gallai coloring of Kk+1 contains at most k colors.

Corollary 4. For all t ≥ 2, grtt−1(t) = t.

Proof. In order to have a subgraph isomorphic toKt, at least t vertices are necessary.
Thus, grtt−1(t) ≥ t. Theorem 3 implies that every Gallai t-coloring of Kt contains
at most t− 1 colors. It follows that grtt−1(t) ≤ t.

It is also worth noting that for every t ≥ 2, there exists a Gallai (t− 1)-coloring
of Kt. Consider first a K2, which can be trivially 1-colored. Denote the vertices of
this K2 by x1 and x2. When adding in a third vertex, x3, to form a triangle, give
both new edges color 2, preventing the construction of a rainbow triangle. Then add
in vertex x4, again giving all new edges color 3. The previous K3 lacked rainbow
triangles. Additionally, no triangle that includes vertex x4 is rainbow since all edges
incident with x4 have the same color. In general, given a Gallai (i − 1)-coloring of
Ki, where 2 ≤ i ≤ t−1, we construct a Gallai i-coloring of Ki+1 by adding in vertex
xi+1 and giving all edges incident with this vertex color i. This process produces a
Gallai (t−1)-colored Kt. Figure 3 shows a Gallai 3-colored K4 and a Gallai 4-colored
K5 constructed in this way. This general construction provides us with the lower
bounds

grtt−2(t) ≥ t+ 2, for all t ≥ 3. (3.1)

General lower bounds for grts(n) appear in [7].
Next, we turn our attention to the evaluation of grtt−1(t+ 1). In the case where

t = 3, the first graph in Figure 3 shows that gr32(4) ≥ 5. The following lemma will
serve as a key element in proving that gr32(4) = 5, as well as the more general result
grtt−1(t + 1) = t + 2, when t ≥ 3. It provides a “step size” for how grts(n) grows
when n and s increase according to a fixed relationship.

Lemma 5. Let t ≥ 3, 1 ≤ s ≤ n, n′ ≤ n, and n− s = n′ − s′. Then

grts(n) ≤ grts′(n
′) + n− n′.

Proof. Let m′ = grts′(n
′) and consider a Gallai t-coloring of Km, where m = m′ +

n − n′. Since m ≥ m′, there exists an s′-colored Kn′ and we denote its vertex set
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Figure 3: A Gallai 3-coloring of K4 that lacks monochromatic triangles and a Gallai
4-coloring of K5 that lacks a K4 spanned by edges using at most 2 colors.

by X = {x1, x2, . . . , xn′}. Let y1 be some other vertex from the Km that is not in
X. As observed in the proof of Theorem 3, the edges joining y1 to the vertices in
X use at most one additional color beyond those used in the subgraph induced by
X. This is due to the fact that if y1xi and y1xj (i ̸= j) are distinct colors different
from those in X, then the subgraph induced by {y1, xi, xj} forms a rainbow triangle.
Hence, the subgraph induced by {y1} ∪X is an (s′ + 1)-colored Kn′+1. In general,
we add in vertex yi, for 2 ≤ i ≤ n−n′, with at most one new color added for each i.
The resulting subgraph induced by {y1, y2, . . . , yn−n′}∪X is a rainbow triangle-free
complete graph of order m, spanned by edges using at most s′ + n− n′ = s colors.
Thus, grts(n) ≤ m, resulting in the statement given in the lemma.

The strength of this lemma becomes apparent in the proof of the following
theorem. We will show that every Gallai t-coloring of Kt+2 contains a (t−1)-colored
Kt+1.

Theorem 6. For all t ≥ 3, grtt−1(t+ 1) = t+ 2.

Proof. From the construction derived from the examples in Figure 3, there exists a
Gallai t-colored Kt+1. Thus,

grtt−1(t+ 1) ≥ t+ 2.

To obtain the reverse inequality, consider a Gallai t-coloring of Kt+2. Let x be some
vertex in this Kt+2. If removing x produces a (t−1)-colored Kt+1, then we are done.
Otherwise, we have a t-colored Kt+1. Since a Gallai colored Kt has at most t − 1
colors, the removal of any vertex in this Kt+1 must also remove some color. There
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138 G. Beam and M. Budden

exists t+ 1 vertices and only t colors. By the pigeonhole principle, there exists two
distinct vertices (say y and z) whose removal deletes the same color (say red). This
can only occur if all red edges are incident with both y and z (ie., yz is the only red
edge in the Kt+1). Now returning to the original Kt+2, the vertex x may have also
been incident with red edges. We must consider several cases.
Case 1 Suppose that x is not incident with any red edges. Then removing y results
in a (t− 1)-colored Kt+1.
Case 2 Suppose that x is adjacent to some other vertex w (distinct from y and
z) via a red edge, but is not adjacent to y or z. Then the subgraph induced by
{w, x, y, z} is a 2-colored K4. By Lemma 5, there exists a (t− 1)-colored Kt+1.
Case 3 Suppose that x is adjacent to some other vertex w and exactly one of y and
z via red edges. Then the subgraph induced by {w, x, y, z} is a 2-colored K4, which
by Lemma 5, results in a (t− 1)-colored Kt+1.
Case 4 Suppose that x is adjacent to exactly one of y and z via a red edge (assume
y), and is not incident with any other red edges. Then the removal of y removes all
red edges and we have a (t− 1)-colored Kt+1.
Case 5 Suppose that x is adjacent to both y and z via red edges. Then the subgraph
induced by {x, y, z} is a monochromatic triangle. By Lemma 5, there exists a (t−1)-
colored Kt+1.
Thus, we have shown that every Gallai t-coloring of Kt+2 contains a (t− 1)-colored
Kt+1. So,

grtt−1(t+ 1) ≤ t+ 2,

completing the proof of the theorem.

Plugging in t = 4 into inequality (3.1) gives gr42(4) ≥ 6. This observation leads
us to the following theorem, giving a lower bound for grt2(4).

Theorem 7. For all t ≥ 3,
grt2(4) ≥ t+ 2.

Proof. We proceed by induction on t ≥ 3. The first two cases being

gr32(4) ≥ 5 and gr42(4) ≥ 6

follow from Theorem 6 and Inequality (3.1), respectively. Now suppose that

grt−1
2 (4) ≥ t+ 1

and consider a rainbow triangle-free (t− 1)-coloring of Kt that lacks a K4 spanned
by edges using at most two colors. Add in a vertex x and color all edges joining x
with the Kt using color t. No new triangles formed that include x can be rainbow
since all edges incident with x use color t. Any new K4 must include vertex x
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Weakened Gallai-Ramsey Numbers 139

and three vertices, say a, b, and c, from the Kt. By the inductive hypothesis, abc
is not a rainbow triangle, and by Lemma 5, abc is not monochromatic. Hence,
the K4 induced by {x, a, b, c} is spanned by edges using exactly three colors. This
construction results a rainbow triangle-free t-coloring ofKt+1 that lacks aK4 spanned
by edges using at most two colors. Hence, the statement of the theorem follows.

Theorem 8. If t ≥ 4 and grt−1
2 (4) ≤ p, then grt2(4) ≤ t(p− 1) + 2.

Proof. Assume that grt−1
2 (4) ≤ p and consider a Gallai t-coloring of Kt(p−1)+2. We

will prove that such a coloring contains a K4-subgraph spanned by edges using at
most 2 colors. We assume this to be false. Then by Lemma 5, this coloring lacks
monochromatic triangles. A fixed vertex x is incident with t(p − 1) + 1 edges,
from which it follows that at least p edges have the same color. Without loss
of generality, assume that xx1, xx2, . . . , xxp are all red. Since the coloring lacks
monochromatic triangles, the subgraph induced by {x1, x2, . . . , xp} does not contain
any red edges, and as such, is a Gallai (t − 1)-coloring of Kp. Our assumption
grt−1

2 (4) ≤ p implies that this coloring contains a K4 spanned by edges using at
most 2 colors, contradicting the assumption that no such subgraph exists. Thus,
the original Gallai t-coloring of Kt(p−1)+2 must have a K4-subgraph spanned by
edges using at most 2 colors.

Combining Theorems 7 and 8 gives the following range for grt2(4):

t+ 2 ≤ grt2(4) ≤ t(grt−1
2 (4)− 1) + 2 for all t ≥ 4.

It follows that
6 ≤ g42(4) ≤ 18,

but these bounds prove to be somewhat weak for larger values of t. In the next
section, we turn to general constructions of lower bounds.

4 Some General Constructions for grts(n)

In this section, we demonstrate some general constructions that imply lower bound
for weakened Gallai-Ramsey numbers. As an initial example, consider the number
gr32(5). Figure 4 shows a Gallai 3-colored K8 that lacks a K5 spanned by edges
using at most two colors. This K8 was formed by using two copies of a 2-colored
K4 that lacks monochromatic triangles (which exists since gr21(3) = r2(3) = 6 > 4),
interconnected with edges in a third color. Note that this construction does not
produce any rainbow triangles since every triangle formed using three vertices from
the same copy of K4 has at most two colors and every triangle that spans vertices
from both copies of K4 necessarily contains two edges in the third color.

In Figure 4, observe that every subgraph induced by a set of five distinct vertices
necessarily includes vertices from both K4-subgraphs and at least three vertices from
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...
Figure 4: A Gallai 3-coloring of K8 that lacks a K5-subgraph spanned by edges
using at most 2 colors.

one of the two copies of K4. Thus, the three vertices includes in only one K4 are
two colored and the third color gets included with the interconnecting edges. Hence,
every K5-subgraph is 3-colored:

gr32(5) ≥ 9.

The following theorem generalizes this construction.

Theorem 9. For all t ≥ 3 and 1 ≤ s ≤ t− 1,

grts(n) ≥ p =⇒ grt+1
s+1(k(n− 1) + 1) ≥ k(p− 1) + 1,

for all k ≥ 2 that satisfies k(n− 1) + 1 > p− 1.

Proof. Assuming grts(n) = p, there exists a Gallai t-coloring ofKp−1 that lacks aKn-
subgraph spanned by edges using at most s colors. Consider k copies of this coloring
of Kp−1 interconnected with edges using a (t+1)st color. No rainbow triangles exist
in this coloring since every subgraph induced by three vertices coming from the
same Kp−1 are not rainbow and any triangle that includes vertices from at least
two distinct copies of Kp−1 contains at least two edges in the (t+ 1)st color. When
considering a subgraph induced by any collection of k(n − 1) + 1 vertices, by the
pigeonhole principle, there exists some copy of Kp−1 that contains at least n of the
vertices. Since grts(n) = p, the subgraph spanned by these n vertices is spanned by
edges using at least s+ 1 colors. From the assumption that k(n− 1) + 1 > p− 1, it
follows that the subgraph induced by any collection of k(n− 1)+1 vertices includes
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Weakened Gallai-Ramsey Numbers 141

vertices from at least two distinct copies of Kp−1, and hence, is spanned by edges
using at least s + 1 colors. Thus, we have constructed a Gallai (t + 1)-coloring of
Kk(p−1) that lacks a Kk(n−1)+1 spanned by edges using at most s + 1 colors, from
which the theorem follows.

Now, we consider how a certain graph product can be used to obtain lower bounds
for weakened Gallai-Ramsey numbers, applying the ideas introduced in Section 2 of
[7]. Recall that the lexicographic product of graphs G1 and G2, denoted G1[G2], is
defined to have vertex set V (G1[G2]) = V (G1)× V (G2) and edge set

E(G1[G2]) = {(a1, b1)(a2, b2) | a1a2 ∈ E(G1) or (a1 = a2 and b1b2 ∈ E(G2))}.

Notice that the lexicographic product is not commutative.
Given a graph G, an independent set I ⊆ V (G) is a subset of vertices in which

no two elements in I are adjacent. The cardinality of a maximal independent set in
G is called the independence number, and is denoted by β(G). In 1975, Geller and
Stahl [12] proved that

β(G1[G2]) = β(G1)β(G2).

The order of a maximal complete subgraph of a graph G is called the clique number
of G and is denoted by ω(G). It is a simple exercise to check that

G1[G2] = G1[G2], (4.1)

from which it follows that

ω(G1[G2]) = ω(G1)ω(G2). (4.2)

This property of lexicographic products makes them useful in the construction of
lower bounds in Ramsey theory. We now show how this can be applied to grts(n).

Theorem 10. If grts(m) ≥ n, then

grts((m− 1)2 + 1) ≥ (n− 1)2 + 1.

Proof. Assuming that grts(m) ≥ n, there exists an optimal Gallai t-coloring of Kn−1

that lacks a Km spanned by edges using at most s colors. So, the largest order of
an s-colored complete subgraph is m− 1. Consider the t-coloring of K(n−1)2 formed
by taking an optimal coloring of Kn−1 and replacing each of the vertices with an
optimal coloring of Kn−1. More precisely, if we label the vertices in an optimal
coloring of Kn−1 by x1, x2, . . . , xn−1, then the vertices in the K(n−1)2 are identified
with the set

{(ai, bj) | i, j ∈ {1, 2, . . . , n− 1}}.
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The edge (ai, bj)(ak, bℓ) is given the same color as xixk when i ̸= k, and the same
color as xjxℓ when i = k. For example, see Figure 5. By (4.1), it follows that the
largest complete subgraph spanned by edges using at most s colors is isomorphic to
the lexicographic product of the corresponding complete subgraphs of those given
colors in the original optimal coloring of Kn−1. By (4.2), the largest complete
subgraph of our Gallai t-colored K(n−1)2 spanned by edges using at most s colors
has order (m − 1)2. Thus, we have constructed a Gallai coloring of K(n−1)2 that
lacks a K(m−1)2+1 spanned by edges using at most s colors.

For example, Figure 5 shows the construction in Theorem 10 applied to the first
graph from Figure 3. Specifically, we use a Gallai 3-colored K4 that is not 2-colored
(gr32(4) ≥ 5) to produce a 3-colored K16 that lacks a K10 spanned by edges using at
most 2 colors. It follows that gr32(10) ≥ 17. The next theorem considers a similar
construction to that of Theorem 10, while allowing for the addition of more colors.

......

...

...

...
...

Figure 5: Applying Theorem 10 to a Gallai 3-colored K4 that is not 2-colored.

Theorem 11. If grtt−1(m) ≥ n, then

gr2t2t−1((m− 1)(n− 1) + 1) ≥ (n− 1)2 + 1.
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Proof. The construction here is similar to that of Theorem 10, except that a new
collection of colors is utilized for the edges interconnecting the different copies of of
the optimal Gallai t-colored Kn−1 subgraphs. We leave the details of the proof to
the reader to fill in since the proof mirrors that of Theorem 10.

Returning to Figure 5, if the edges interconnecting the K4 subgraphs use 3 new
colors, then we obtain a Gallai 6-colored K16 that lacks a K13 spanned by edges
using at most 5 colors. Hence, gr65(13) ≥ 17. In fact, if we apply Theorems 10 and
11 to the weakened Gallai-Ramsey number in Theorem 6, we obtain the following
general inequalities:

grtt−1(t
2 + 1) ≥ (t+ 1)2 + 1 and gr2t2t−1(t(t+ 1) + 1) ≥ (t+ 1)2 + 1.

5 Some Open Problems

Finally, we conclude by describing a few directions for future study. We have laid
down the basics for studying grts(n), but surely our efforts can be further advanced
by others. Besides the Ramsey numbers we have extended in this paper, we offer
three other generalizations that warrant inquiry.

1. Consider subgraphs other than complete subgraphs. If G is any graph, then
one can define grts(G) to be the least natural number p such that every Gallai t-
coloring of Kp results in a subgraph isomorphic to G that is spanned by edges
using at most s colors. More generally, one can consider weakened Gallai-
Ramsey numbers that are not diagonal (similar to [3] and [4]). For example,
define gr32(G1, G2, G3) to be the least natural number p such that every Gallai
3-coloring of Kp contains a copy of G1 spanned by edges using only colors 1
and 2, a copy G2 spanned by edges using only colors 2 and 3, or a copy of
G3 using only colors 1 and 3. This concept can be generalized to any t and s

using

(
t
s

)
subgraphs.

2. Instead of just avoiding rainbow triangles, consider only t-colorings that avoid
rainbow Kr-subgraphs. Denote by grts(Kr : Kn) the least natural number p
such that every t-coloring of Kp that lacks rainbow Kr-subgraphs contains a
Kn-subgraph spanned by edges using at most s colors.

3. Consider weakened Gallai-Ramsey numbers in the setting of r-uniform hypergraphs.
An r-uniform hypergraph H consists of a set V (H) of vertices and a set
of hyperedges E(H) that consists of different unordered r-tuples of distinct

vertices. We denote the complete r-uniform hypergraph on n vertices by K
(r)
n .
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Define grts(K
(r)
n ) to be the least natural number p such that every t-coloring

of the hyperedges of K
(r)
p that lacks rainbow K

(r)
r+1-subhypergraphs results in

a K
(r)
n -subhypergraph spanned by hyperedges using at most s colors.

Of course, beyond studying the bounds of any of the above generalizations of
grts(n), one can also combine these ideas in in a similar fashion to the primary
concepts introduced in this paper. It is our hope that we have provided enough
encouragement and background to entice the reader to further advance our understanding
of the many generalizations of Ramsey numbers.

References

[1] M. Budden, M. Stender, and Y. Zhang, Weakened Ramsey numbers and their
hypergraph analogues, INTEGERS 17 (2017), #A23. MR3667572.

[2] F. Chung and R. Graham, Edge-colored complete graphs with precisely colored
subgraphs, Combinatorica 3 (1983), 315-324. MR0729784(85g:05107). Zbl
0529.05041.

[3] K. Chung, M. Chung, and C. Liu, A generalization of Ramsey theory for graphs -
with stars and complete graphs as forbidden subgraphs, Congr. Numer. 19 (1977),
155-161. MR0485535(58 #5365). Zbl 0435.05046.

[4] K. Chung and C. Liu, A generalization of Ramsey theory for graphs, Discrete
Math. 21 (1978), 117-127. MR0523059(80c:05100).

[5] P. Erdős, M. Simonovits, and V. T. Sós, Anti-Ramsey theorems, Coll. Math. Soc.
J. Bolyai 10 (1973), 633-643. MR0379258(52 #164).

[6] R. Faudree, R. Gould, M. Jacobson, and C. Magnant, Ramsey numbers in
rainbow triangle free colorings, Australas. J. Combin. 46 (2010), 269-284.
MR2598711(2011d:05239). Zbl 1196.05052.

[7] J. Fox, A. Grinshpun, and J. Pach, The Erdős-Hajnal conjecture for rainbow
triangles, J. Combin. Theory Ser. B 111 (2015), 75-125. MR3315601. Zbl
1307.05069.

[8] S. Fujita, C. Magnant, and K. Ozeki, Rainbow generalizations of Ramsey theory
- a dynamic survey, Theory and Applications of Graphs 0(1). (2014), Article 1.
MR2606615(2011i:05148). Zbl 1231.05178.

[9] S. Fujita, B. Ning, C. Xu, and S. Zhang, On sufficient conditions for rainbow
cycles in edge-colored graphs, preprint.

******************************************************************************
Surveys in Mathematics and its Applications 13 (2018), 131 – 145

http://www.utgjiu.ro/math/sma

http://www.ams.org/mathscinet-getitem?mr=3667572
http://www.ams.org/mathscinet-getitem?mr=0729784
https://zbmath.org/?q=an:0529.05041
https://zbmath.org/?q=an:0529.05041
http://www.ams.org/mathscinet-getitem?mr=0485535
https://zbmath.org/?q=an:0435.05046
http://www.ams.org/mathscinet-getitem?mr=0523059
http://www.ams.org/mathscinet-getitem?mr=0379258
http://www.ams.org/mathscinet-getitem?mr=2598711
https://zbmath.org/?q=an:1196.05052
http://www.ams.org/mathscinet-getitem?mr=3315601
https://zbmath.org/?q=an:1307.05069
https://zbmath.org/?q=an:1307.05069
http://www.ams.org/mathscinet-getitem?mr=2606615
https://zbmath.org/?q=an:1231.05178
http://www.utgjiu.ro/math/sma/v13/v13.html
http://www.utgjiu.ro/math/sma


Weakened Gallai-Ramsey Numbers 145

[10] T. Gallai, Transitiv orientierbare graphen, Acta Math. Acad. Sci. Hungar. 18
(1967), 25-66. MR0221974(36 #5026). Zbl 0153.26002.

[11] R. Greenwood and A. Gleason, Combinatorial relations and chromatic graphs,
Canadian Journ. Math. 7 (1955), 1-7. MR0067467(16,733g). Zbl 0064.17901.
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