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THE LOCAL-GLOBAL PRINCIPLE IN LEAVITT
PATH ALGEBRAS

Songiil Esin

Abstract. This is a short note on how a particular graph construction on a subset of edges
that lead to a subalgebra construction, provided a tool in proving some ring theoretical properties

of Leavitt path algebras.

1 Introduction

This paper is an expository note publicizing how a particular subalgebra construction
which first appeared in the paper [5] by G.Abrams and K.M.Rangaswamy was used
in proving many theorems on Leavitt path algebras. The power of the subalgebra
construction relies on extending a particular property on a Leavitt path algebra
over a “smaller” graph to the Leavitt path algebra of the whole graph. This can be
visualised as from a local view to a global setting, “local-to-global jump”.

We start by recalling the definitions of a path algebra and a Leavitt path algebra,
(see [2] for a more extended study on Leavitt path algebras). A directed graph
E = (EY, E',r, s) consists of two countable sets E°, B! and functions r, s : B! — EC.
The elements E° and E! are called vertices and edges, respectively. For each e € E°,
s(e) is the source of e and r(e) is the range of e. If s(e) = v and r(e) = w, then we
say that v emits e and that w receives e. A vertex which does not receive any edges
is called a source, and a vertex which emits no edges is called a sink. A graph is
called row- finite if s1(v) is a finite set for each vertex v. For a row-finite graph
the edge set E' of F is finite if its set of vertices E” is finite. Thus, a row-finite
graph is finite if £ is a finite set.

A path in a graph E is a sequence of edges . = e; ... e, such that r(e;) = s(e;41)
fori=1,...,n—1. In such a case, s(u) := s(e1) is the source of p and r(p) := r(ey)
is the range of u, and n is the length of u, i.e., (1) = n.

If s(p) = r(p) and s(e;) # s(e;) for every i # j, then p is called a cycle. If E
does not contain any cycles, F is called acyclic. For n > 2, define E™ to be the set
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of paths of length n, and E* = |J E™ the set of all finite paths. Denote by E* the
n>0

set of all infinite paths of E, and by E<* the set E> together with the set of finite
paths in F whose range vertex is a sink. We say that a vertex v € E° is cofinal if
for every v € E<* there is a vertex w in the path + such that v > w. We say that
a graph F is cofinal if every vertex in E is cofinal.

The path K-algebra over E is defined as the free K-algebra K[E®U E'] with the
relations:

(1) viv; = &;jv; for every v;,v; € EP.
(2) e; = e;r(e;) = s(e;)e; for every e; € EL.

This algebra is denoted by K E. Given a graph F, define the extended graph of
E as the new graph E = (E° E' U (EY)*, 7', s') where (E1)* = {e} | e; € E'} and
the functions r" and s’ are defined as

gp=r, §lp=s 1) =s(e) and  §'(ef) =r(e;).

The Leavitt path algebra of E with coefficients in K is defined as the path algebra
over the extended graph F, with relations:

(CK1) efej = d;jr(ej) for every e; € E and ef € (E')*.
(CK2) v; = Z{ejeEl | s(e;)=v:} €5€; for every v; € EY which is not a sink.

This algebra is denoted by Lx(E). The conditions (CK1) and (CK2) are called
the Cuntz-Krieger relations. In particular condition (CK2) is the Cuntz-Krieger
relation at v;. If v; is a sink, we do not have a (CK2) relation at v;. Note that the
condition of row-finiteness is needed in order to define the equation (CK2).

Given a graph, we define a new graph built upon the given one that will be
necessary for the subalgebra construction. The construction is based on an idea
presented by Raeburn and Szymanski in [12, Definition 1.1]. Then, we construct
several examples.

Definition 1. /5, Definition 2] Let E be a graph, and F be a finite set of edges in
E. We define s(F) (resp. r(F)) to be the sets of those vertices in E which appear
as the source (resp. range) vertex of at least one element of F. We define a graph
Er as follows:

Ep = F U (r(F)Ns(F) Ns(E'N\F)) U (r(F)\s(F)),
Ep ={(e.f) € F x Epp | r(e) = s(f)},
and where s((z,y)) = x, r((z,y)) =y for any (z,y) € Ex.
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Example 2. [5, Ezample 1] Let E be the rose with n-petals graph

Yn

)

1 %v <

Y2

Let F = {y1}. Then ES = {y1} U {v}, and Ex = {(y1,31), (y1,v)}. Pictorially,
Er is given by

(y1,91) Coyl M .,

This example indicates that various properties of the graph E need not pass to
the graph Ep. For instance, E is cofinal, while Ep is not. In particular, Li(E) is
a simple algebra, while Ly (EF) is not.

Example 3. Let E be the graph

f3 g3 f2 f1 9

Y TGt an

.’1)2 —_— .1}1
€2 €1

and F ={f1,91}. Then, Er is given by

(91,/1)

(f1,f1) C.fl % oglo (91.91)

In this example E is not cofinal but Ep is cofinal. Also, Li(E) is not purely
infinite simple while L (EF) is.

Example 4. Consider the infinite clock graph E with one source which emits countably
many edges as follows:

[ ] [
o, ——>eo,
() \
v [ ]
Let F ={f} and then Ep is
(fw)

.fﬂ.’w

This is an example which shows that both E and Egr are acyclic graphs where F
is any subset of vertices. Actually, if E is any acyclic graph and F any subset of
vertices then EF is acyclic is proved in [5, Lemma 1].
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2 The Subalgebra Construction

Although in general Er need not be a subgraph of E, the Leavitt path algebras
Lk (Er) and Lg(F) are related via a homomorphism which leads to a subalgebra
construction of Li (FE).
In [5, Proposition 1], for a finite set of edges F' in a graph E, the algebra

homomorphism 6 : Lg(Er) — Lk (E) having the properties

(1) FUF* CIm(h),

(2) If w € r(F), then w € Im(h),

(3) If w € EY has s (w) C F, then w € Im(6),

is defined by using the following subsets G° and G' of Ly (E)

GO={ee’ [ec F}U{v— > ff*lver(F)ns(F)nsE\F)}
feFs(f)=v
U{v [ ver(F)\s(F)}
and

G'={eff le.f e Fs(f)=r(eu{e= Y eff |r(e) € r(F)Ns(F)Ns(E\F)}
fers(f)=r(e)

Wee F|r(E)er(F)\s(F)}

In particular, §(w) € G for all vertices in Er and (w) € G' for all edges in
Er.

Let E be any graph, K any field, and {a;, aq, ..., q;} any finite subset of nonzero
elements of Li (F). For each 1 < r <[ write

¢(r)

r = ke, Vey + keyVey + -+ Ky, Veji,y + Z kr.prar,
i=1

where each k; is a nonzero element of K, and , for each 1 < i < t(r), at least one of py,
or ¢r, has length at least 1. Let F' be denote the (necessarily finite) set of those edges

in F which appear in the representation of some p,, or ¢,,, 1 <r; <t(r), 1 <r <lI.
Now consider the set

S = {UCI,UQ,...,UCJ,(T) |1<r<I}
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of vertices which appear in the displayed description of a, for some 1 < r <[. We
partition S into subsets as follows:

S =5nN ’I”(F),
and, for remaining vertices 7' = S\ S1, we define

Sy = {veT|sz'(v) CF andsg'(v)#0}
S3 = {veT|sz'(v)NF =0}
Sy = {veT|sz'(v)NF#0and sz'(v)N(EN\F) # 0}.

Definition 5. [5, Definition 3] Let E be any graph, K any field, and
{a1,aq,...,a;} any finite subset of nonzero elements of Lk (E). Consider the notation
presented in The Subalgebra Construction. We define B(ay,aq,...,a;) to be the K-
subalgebra of Li(FE) generated by the set Im(6) U Ss U Sy. That is,

B(ay,ag,...,a;) =< Im(0), S5, Sy > .

Proposition 6. [5, Proposition 1] Let E be any graph, K any field, and {a1, a9, ...,a;}
any finite subset of mnonzero elements of Li(E). Let F denote the subset of E*
presented in The Subalgebra Construction. For w € Sy let u,, denote the element

w— >,  ff*of Lx(FE). Then
fEFs(f)=w

(1) {a1,a9,...,a;} C B(ay,aq9,...,a).
(2) B((Il, az, . .. ,CL[) = ‘[m(e) ¥ (@’UiGSyKUi) S (@wj€S4Kij)-

(3) The collection {B(S) | S C Lk(FE), S finite} is an upward directed set of
subalgebras of Ly (F).

(4) Lx(E) =linyscr(p),s finite} B(S)-

Proposition 6, can be modified to include some more properties of the subalgebra
construction in [5]. For instance, the morphism 6 in the construction is actually a
graded morphism whose image is a graded submodule of Ly (FE) and it also reveals
some properties of cycles.

The stronger version of Proposition 6 is given in [10] as Theorem 4.1

Theorem 7. [10, Theorem 4.1] For an arbitrary graph E, the Leavitt path algebra
Lk (E) is a directed union of graded subalgebras B = A ® Ke; @ --- @ Ke, where
A is the image of a graded homomorphism 0 from a Leavitt path algebra Ly (Fpg) to
Lk (E) where Fg a finite graph which depends on B, the elements €; are homogeneous
mutually orthogonal idempotents and & is a ring direct sum. Moreover, if E is
acyclic, so is each graph Fg and in this case 0 is a graded monomorphism.
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Moreover, any cycle ¢ in the graph Fg gives rise to a cycle ¢ in E such that if
c has an exit in Fg then ¢ has an exit in E. In particular, a cycle in Fg is of the

form (f1, f2)(f2, f3) ... (fn, f1) and this case fifs... fn is a cycle in E.

Throughout recent literature this subalgebra construction has been a powerful
tool. The first theorem that appears in the literature is the following:

Theorem 8. [5, Theorem 1] Li(E) is von Neumann regular if and only if E is
acyclic. If E is acyclic, then Li(E) is locally K-matricial; that is, Li(E) is the
direct union of subrings, each of which is isomorphic to a finite matriz rings over
K.

Now, we give one implication of the statement to demonstrate how the subalgebra
construction is used in the proof:

Proof. We assume FE is acyclic. Let {B(S) | S C Lg(F), S finite} be the collection
of subalgebras of Lk (F) indicated in Proposition 6(3). By Proposition 6(4), it
suffices to show that each such B(S) is of the indicated form. But by Proposition 6
(2), B(S) = Blay,az,...,a) = Im(0) ® (By;es5Kvi) © (Bw;es, Ky, ). Since terms
appearing in the second and third summands are clearly isomorphic as algebras to
K = M;(K), it suffices to show that Im(#) is isomorphic to a finite direct sum of
finite matrix rings over K. Since E is acyclic, by Lemma 1 in [5] we have that Ep
is acyclic. But Ep is always finite by definition, so we have by [3, Proposition 3.5],
that Ly (Er) = ®l_,M,,,(K) for some my,...,m; in N. Since each M,,,(K) is a
simple ring, we have that any homomorphic image of L (Er) must have this same
form. So we get that Im(6) = &!_, M,,,(K) for some my,...,m; in N, and we are
done. (As remarked previously, since 6 is in fact an isomorphism we have t =1.) [

We list the following theorems which are using the same Subalgebra Construction
in their proofs. In particular, we only quote the parts that uses the Subalgebra
Construction.

Theorem 9. [10, Theorem 5.1] Let E be an arbitrary graph. Then for the Leavitt
path algebra L (E) the following are equivalent:

(1) Every left/right ideal of Lk (E) is graded;

(2) The class of all simple left/right L (E)-modules coincides with the class of all
graded-simple left/right Ly (E)-modules;

(8) The graph E is acyclic.
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Proof. (3) = (1) For the sake of simplicity of the notation, let L := L (E). Suppose
FE is acyclic. Now, by Theorem 7, L is a direct union of graded subalgebras B)
where A € I, an index set and where each B) is a finite direct sum of copies of
K and a graded homomorphic image of a Leavitt path algebra of a finite acyclic
graph. By [8, Theorem 4.14], Leavitt path algebras of finite acyclic graphs are semi-
simple algebras which have elementary gradings, that is, all the matrix units are

homogeneous. Consequently, every ideal of each B, is graded. Let L = @ L,
nez
be the Z-graded decomposition of L. Since the B) are graded subalgebras, each

By = @ (BN Ly,). Let M be a left ideal of L. To show that M is graded, we need
neZ
only to show that M = @ (M N L,). Let a € M. Then, for some A, a € M N By.
ne”Z
Note that M N By = B, or a left ideal of B). Since every left ideal of By and in

particular M N B), is graded, we can write a = ap, + - - - + an, where
an,; C (M ﬂB)\) N (B)\ ani) CMnNLy,

for i = 1,...,k. This show that M = @@ (M N L,) and hence M is a graded left
nez
ideal of L. O

The next result is about graded von Neumann regular Leavitt path algebras.
A ring R is von Neumann regular if for every x € R there exists y € R such
that x = xyx. Moreover, a graded ring R is graded von Neumann regular if each
homogeneous element is von Neumann regular.

Theorem 10. [10, Theorem 4.2]; [9, Theorem 10] Every Leavitt path algebra Ly (E)
of an arbitrary graph E is a graded von Neumann reqular ring.

Proof. [10, Proof of Theorem 4.2] Suppose E is an arbitrary graph. By [10, Theorem
4.1], Lg(E) is a directed union of graded subalgebras B = A @ Ke; @ --- @ Ke,
where A is the image of a graded homomorphism 6 from a Leavitt path algebra
Lk (Fp) to Lg(F) with Fp a finite graph (depending on B), the elements ¢; are
homogeneous mutually orthogonal idempotents and & is a ring direct sum. Since
Fp is a finite graph, Lx(Fp) and hence B is graded von Neumann regular by [9].
It is then clear from the definition that the direct union Lx(FE) is also graded von
Neumann regular. O

Recall that a ring R is called left Bézout in case every finitely generated left
ideal of R is principal. If the graph E is finite, then Lx (F) is Bézout [4, Theorem
15]. The proof of this statement is given via a nice induction argument which we do
not quote here. The generalization of this result to arbitrary graphs, which again
appears in [4], uses the subalgebra construction.
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Theorem 11. [/, Corollary 16] Let E be an arbitrary graph and K any field. Then
Lk (E) is Bézout.

Proof. By Theorem 7, L (F) is the direct limit of unital subalgebras, each of which
is isomorphic to the Leavitt path K-algebra of a finite graph. By [4, Theorem 15],
each of these unital subalgebras is a Bézout subring of L (FE).

Now, we are going to prove that for any ring R, if every finite subset of R is
contained in a unital Bézout subring of R, then R is Bézout. Let us consider a
finitely generated left ideal of R with generators x1,x2,...,x, € R. Then there is
a unital Bézout subring S of R that contains {x1,z9,...,2,}. Hence, there exists
x € S such that the left S-ideal Sx1 + Sxo + -+ 4+ Sx, = Sz.

Since 1gx; = x; for all 1 < i < n, and each z; is in Sx1 + Sxo + -+ + Sz, = Sx
which implies that for each ¢ there exists s; € S with z; = s;x.

Hence Rxy + Rzy + --- + Rx,, = Rsix + Rsox + -+ + Rspx € Rxz. Also,
x = lgxr € Sx implies x € Sx; + Sxo + --- + Sz, € Rxy + Rxo + --- + Rxy,.
Therefore, Rx1 + Rxs + - - + Rx, = Rx and R is a Bézout ring.

Hence, if R is taken to be Lg (E), the result follows. O

Recall that a ring with local units R is said to be directly finite if for every
x,y € R and an idempotent element v € R such that zu = ux = z and yu = uy =y,
we have that ry = u implies yr = u.

Theorem 12. [13, Proposition 4.3] Lk (E) is directly finite if and only if no cycle
i E has an exit.

The converse of Theorem 12 for Leavitt path algebras of finite graphs has been
proven in [7, Theorem 3.3]. To get the infinite graphs, Lia Vas proved the theorem
by using Cohn-Leavitt approach. In particular, the localization of the graph is used
by considering a finite subgraph generated by the vertices and edges of just those
paths that appear in representations of x, y and w in Li(F) where xzy = u for
some local unit u. However, the subgraph F' defined in this way may not produce a
subalgebra L (F') of L (E). This problem is avoided by considering an appropriate
finite subgraph F' such that the Cohn-Leavitt algebra of F' is a subalgebra of L (FE)
and then adapts [7, Theorem 3.3] to Cohn-Leavitt algebras of finite graphs.

An alternative proof using the subalgebra construction is pointed out in [11,
Theorem 3.7] using the grading on matrices. We outline the proof below (without
considering the grading to refer to Theorem 12).

Theorem 13. ([11, Theorem 3.7] rephrased) For an arbitrary graph E, the following
properties are equivalent for L (E):
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(a) No cycle in E has an exit;

(b) Lk (E) is a directed union of graded semisimple Leavitt path algebras; specifically,
Lg(FE) is a directed union of direct sums of matrices of finite order over K or
Klz,z~ 1.

(¢) Lx(E) is directly-finite.

Proof. (a) implies (b) Assume (a). By Theorem 7, Lx(F) is a directed union of
graded subalgebras B = A @ Ke; @ -+ @ Ke,, where A is the image of a graded
homomorphism 6 from a Leavitt path algebra Lx(Fpg) to Lx(E) with Fp a finite
graph depending on B. Moreover, any cycle with an exit in Fg gives rise to a cycle
with an exit in E. Since no cycle in E has an exit, no cycle in the finite graph Fp
has an exit. So by using [2, Theorem 2.7.3],

Li(Fp) = @ My, (K) & @ M, (K[z,271),

iel jeJ

where n; and m; are positive integers I, J are index sets. Since the matrix rings
M, (K) and M, (K[z,2~']) are simple rings, A and hence B is a direct sum of
finitely many matrix rings of finite order over K and/or K[z, z~!]. This proves (b).

(b) implies (c) follows from the known fact that matrix rings M, (K) and
My, (K[z,27']) are directly-finite and finite ring direct sums of such matrix rings
are directly-finite. Hence, by condition (b), Lx (F) is directly-finite. O

We want to finish the survey with another application of the Subalgebra Construction.
In [6], the authors do not use the exact results, however they carry the same
techniques and proofs to another subgraph (dual graph) construction.

The authors present the notion of a dual of a subgraph in a graph, which is the
generalization of the usual notion of dual graph found in the literature that we quote
here:

Usual dual: Let E be an arbitrary graph. The usual dual of E; D(FE), is the
graph formed from E by taking

D(E) = {e|ecE'}
D(B)! {ef | ef € B*}
spe)(ef) e, rpmlef)=f foralefe€ E2.

The interest on the usual dual graph notion in the context of Leavitt path algebras
lies on the fact that, if F is a row-finite graph without sinks, then there is an algebra
isomorphism Lk (F) = Lg(D(E)) ([1, Proposition 2.11]). These statement is untrue
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for usual dual of a graph with sinks. The authors propose a new definition of dual
graph which generalizes this important property to row-finite graphs with sinks.

Dual of F in E: Let E be a graph and let F be a subgraph of E. Denote FY =
{ve FO|spl(v) =0}, F! = (FY) and FY = s(F) ns(EN\FY), F} =rz'(FY).
The graph Dg(F), the dual of F in E is defined by

Dp(F)° = DF)PUFRUF)
Dgp(F)' = DF)'UFR UF;

SDE(F)’D(F) = SD(F); TDE(F)’D(F) = TD(F)

For all e € F! with i € {1,2}, Spu(F) =€ € D(F)°, Tpu(F)(e) =TFr(e) € FY.

Dual graph: Given a graph F, they define d(E) = Dg(F) and call it the dual
graph of FE.

Then they prove the graded algebra isomorphism Ly (d(F)) = Lg(F) when E
is a row-finite graph ([6, Proposition 3.6]). In this paper the authors also prove
that for a graph E and a row-finite subgraph of F there is a graded monomorphism
0 : Lig(Dgp(F)) — Lig(E). In addition, F° U F! C (Lk(Dg(E))). This result is
stated as [6, Proposition 3.8] and the proof is basically rephrasing [5, Proposition
1,2].
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