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THE LOCAL-GLOBAL PRINCIPLE IN LEAVITT
PATH ALGEBRAS
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Abstract. This is a short note on how a particular graph construction on a subset of edges

that lead to a subalgebra construction, provided a tool in proving some ring theoretical properties

of Leavitt path algebras.

1 Introduction

This paper is an expository note publicizing how a particular subalgebra construction
which first appeared in the paper [5] by G.Abrams and K.M.Rangaswamy was used
in proving many theorems on Leavitt path algebras. The power of the subalgebra
construction relies on extending a particular property on a Leavitt path algebra
over a “smaller” graph to the Leavitt path algebra of the whole graph. This can be
visualised as from a local view to a global setting, “local-to-global jump”.

We start by recalling the definitions of a path algebra and a Leavitt path algebra,
(see [2] for a more extended study on Leavitt path algebras). A directed graph
E = (E0, E1, r, s) consists of two countable sets E0, E1 and functions r, s : E1 → E0.
The elements E0 and E1 are called vertices and edges, respectively. For each e ∈ E0,
s(e) is the source of e and r(e) is the range of e. If s(e) = v and r(e) = w, then we
say that v emits e and that w receives e. A vertex which does not receive any edges
is called a source, and a vertex which emits no edges is called a sink. A graph is
called row- finite if s−1(v) is a finite set for each vertex v. For a row-finite graph
the edge set E1 of E is finite if its set of vertices E0 is finite. Thus, a row-finite
graph is finite if E0 is a finite set.

A path in a graph E is a sequence of edges µ = e1 . . . en such that r(ei) = s(ei+1)
for i = 1, . . . , n−1. In such a case, s(µ) := s(e1) is the source of µ and r(µ) := r(en)
is the range of µ, and n is the length of µ, i.e., l(µ) = n.

If s(µ) = r(µ) and s(ei) ̸= s(ej) for every i ̸= j, then µ is called a cycle. If E
does not contain any cycles, E is called acyclic. For n ≥ 2, define En to be the set
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148 S. Esin

of paths of length n, and E∗ =
⋃
n≥0

En the set of all finite paths. Denote by E∞ the

set of all infinite paths of E, and by E≤∞ the set E∞ together with the set of finite
paths in E whose range vertex is a sink. We say that a vertex v ∈ E0 is cofinal if
for every γ ∈ E≤∞ there is a vertex w in the path γ such that v ≥ w. We say that
a graph E is cofinal if every vertex in E is cofinal.

The path K-algebra over E is defined as the free K-algebra K[E0∪E1] with the
relations:

(1) vivj = δijvi for every vi, vj ∈ E0.

(2) ei = eir(ei) = s(ei)ei for every ei ∈ E1.

This algebra is denoted by KE. Given a graph E, define the extended graph of
E as the new graph Ê = (E0, E1 ∪ (E1)∗, r′, s′) where (E1)∗ = {e∗i | ei ∈ E1} and
the functions r′ and s′ are defined as

r′|E1 = r, s′|E1 = s, r′(e∗i ) = s(ei) and s′(e∗i ) = r(ei).

The Leavitt path algebra of E with coefficients in K is defined as the path algebra
over the extended graph Ê, with relations:

(CK1) e∗i ej = δijr(ej) for every ej ∈ E1 and e∗i ∈ (E1)∗.

(CK2) vi =
∑

{ej∈E1 | s(ej)=vi} eje
∗
j for every vi ∈ E0 which is not a sink.

This algebra is denoted by LK(E). The conditions (CK1) and (CK2) are called
the Cuntz-Krieger relations. In particular condition (CK2) is the Cuntz-Krieger
relation at vi. If vi is a sink, we do not have a (CK2) relation at vi. Note that the
condition of row-finiteness is needed in order to define the equation (CK2).

Given a graph, we define a new graph built upon the given one that will be
necessary for the subalgebra construction. The construction is based on an idea
presented by Raeburn and Szymański in [12, Definition 1.1]. Then, we construct
several examples.

Definition 1. [5, Definition 2] Let E be a graph, and F be a finite set of edges in
E. We define s(F ) (resp. r(F )) to be the sets of those vertices in E which appear
as the source (resp. range) vertex of at least one element of F. We define a graph
EF as follows:

E0
F = F ∪ (r(F ) ∩ s(F ) ∩ s(E1\F )) ∪ (r(F )\s(F )),

E1
F = {(e, f) ∈ F × E0

F | r(e) = s(f)},

and where s((x, y)) = x, r((x, y)) = y for any (x, y) ∈ E1
F .
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The local-global principle in Leavitt path algebras 149

Example 2. [5, Example 1] Let E be the rose with n-petals graph

•vy1 →→

y2

↑↑
←←

yn

↘↘

Let F = {y1}. Then E0
F = {y1} ∪ {v}, and E1

F = {(y1, y1), (y1, v)}. Pictorially,
EF is given by

•y1(y1,y1) →→
(y1,v) →→ •v

This example indicates that various properties of the graph E need not pass to
the graph EF . For instance, E is cofinal, while EF is not. In particular, LK(E) is
a simple algebra, while LK(EF ) is not.

Example 3. Let E be the graph

→→ •v3

f3

→→

g3

←←
e2

→→ •v2

f2

→→

g2

←←
e1

→→ •v1

f1

→→

g1

←←

and F = {f1, g1}. Then, EF is given by

•f1(f1,f1) →→
(f1,g1)

→→ •g1 (g1,g1)←←

(g1,f1)
←←

In this example E is not cofinal but EF is cofinal. Also, LK(E) is not purely
infinite simple while LK(EF ) is.

Example 4. Consider the infinite clock graph E with one source which emits countably
many edges as follows:

• •

•v

↘↘

f →→

↗↗↑↑↖↖

↓↓

(ℵ)
•w

•
Let F = {f} and then EF is

•f
(f,w) →→ •w

This is an example which shows that both E and EF are acyclic graphs where F
is any subset of vertices. Actually, if E is any acyclic graph and F any subset of
vertices then EF is acyclic is proved in [5, Lemma 1].
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150 S. Esin

2 The Subalgebra Construction

Although in general EF need not be a subgraph of E, the Leavitt path algebras
LK(EF ) and LK(E) are related via a homomorphism which leads to a subalgebra
construction of LK(E).

In [5, Proposition 1], for a finite set of edges F in a graph E, the algebra
homomorphism θ : LK(EF ) → LK(E) having the properties

(1) F ∪ F ∗ ⊆ Im(θ),

(2) If w ∈ r(F ), then w ∈ Im(θ),

(3) If w ∈ E0 has s−1
E (w) ⊆ F, then w ∈ Im(θ),

is defined by using the following subsets G0 and G1 of LK(E)

G0 = {ee∗ | e ∈ F} ∪ {v −
∑

f∈F,s(f)=v

ff∗ | v ∈ r(F ) ∩ s(F ) ∩ s(E1\F )}

∪{v | v ∈ r(F )\s(F )}

and

G1 = {eff∗ | e, f ∈ F, s(f) = r(e)}∪{e−
∑

f∈F,s(f)=r(e)

eff∗ | r(e) ∈ r(F )∩s(F )∩s(E1\F )}

∪{e ∈ F | r(E) ∈ r(F )\s(F )}

In particular, θ(w) ∈ G0 for all vertices in EF and θ(w) ∈ G1 for all edges in
EF .

Let E be any graph, K any field, and {a1, a2, . . . , al} any finite subset of nonzero
elements of LK(E). For each 1 ≤ r ≤ l write

ar = kc1vc1 + kc2vc2 + . . .+ kcj(r)vcj(r) +

t(r)∑
i=1

kripriq
∗
ri

where each kj is a nonzero element ofK, and , for each 1 ≤ i ≤ t(r), at least one of pri
or qri has length at least 1. Let F be denote the (necessarily finite) set of those edges
in E which appear in the representation of some pri or qri , 1 ≤ ri ≤ t(r), 1 ≤ r ≤ l.
Now consider the set

S = {vc1 , vc2 , . . . , vcj(r) | 1 ≤ r ≤ l}
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The local-global principle in Leavitt path algebras 151

of vertices which appear in the displayed description of ar for some 1 ≤ r ≤ l. We
partition S into subsets as follows:

S1 = S ∩ r(F ),

and, for remaining vertices T = S\S1, we define

S2 = {v ∈ T | s−1
E (v) ⊆ F and s−1

E (v) ̸= ∅}
S3 = {v ∈ T | s−1

E (v) ∩ F = ∅}
S4 = {v ∈ T | s−1

E (v) ∩ F ̸= ∅ and s−1
E (v) ∩ (E1\F ) ̸= ∅}.

Definition 5. [5, Definition 3] Let E be any graph, K any field, and
{a1, a2, . . . , al} any finite subset of nonzero elements of LK(E). Consider the notation
presented in The Subalgebra Construction. We define B(a1, a2, . . . , al) to be the K-
subalgebra of LK(E) generated by the set Im(θ) ∪ S3 ∪ S4. That is,

B(a1, a2, . . . , al) =< Im(θ), S3, S4 > .

Proposition 6. [5, Proposition 1] Let E be any graph, K any field, and {a1, a2, . . . , al}
any finite subset of nonzero elements of LK(E). Let F denote the subset of E1

presented in The Subalgebra Construction. For w ∈ S4 let uw denote the element
w −

∑
f∈F,s(f)=w

ff∗ of LK(E). Then

(1) {a1, a2, . . . , al} ⊆ B(a1, a2, . . . , al).

(2) B(a1, a2, . . . , al) = Im(θ)⊕ (⊕vi∈S3Kvi)⊕ (⊕wj∈S4Kuwj ).

(3) The collection {B(S) | S ⊆ LK(E), S finite} is an upward directed set of
subalgebras of LK(E).

(4) LK(E) = lim−→{S⊆LK(E),S finite}B(S).

Proposition 6, can be modified to include some more properties of the subalgebra
construction in [5]. For instance, the morphism θ in the construction is actually a
graded morphism whose image is a graded submodule of LK(E) and it also reveals
some properties of cycles.

The stronger version of Proposition 6 is given in [10] as Theorem 4.1

Theorem 7. [10, Theorem 4.1] For an arbitrary graph E, the Leavitt path algebra
LK(E) is a directed union of graded subalgebras B = A ⊕ Kϵ1 ⊕ · · · ⊕ Kϵn where
A is the image of a graded homomorphism θ from a Leavitt path algebra LK(FB) to
LK(E) where FB a finite graph which depends on B, the elements ϵi are homogeneous
mutually orthogonal idempotents and ⊕ is a ring direct sum. Moreover, if E is
acyclic, so is each graph FB and in this case θ is a graded monomorphism.
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152 S. Esin

Moreover, any cycle c in the graph FB gives rise to a cycle c′ in E such that if
c has an exit in FB then c′ has an exit in E. In particular, a cycle in FB is of the
form (f1, f2)(f2, f3) . . . (fn, f1) and this case f1f2 . . . fn is a cycle in E.

Throughout recent literature this subalgebra construction has been a powerful
tool. The first theorem that appears in the literature is the following:

Theorem 8. [5, Theorem 1] LK(E) is von Neumann regular if and only if E is
acyclic. If E is acyclic, then LK(E) is locally K-matricial; that is, LK(E) is the
direct union of subrings, each of which is isomorphic to a finite matrix rings over
K.

Now, we give one implication of the statement to demonstrate how the subalgebra
construction is used in the proof:

Proof. We assume E is acyclic. Let {B(S) | S ⊆ LK(E), S finite} be the collection
of subalgebras of LK(E) indicated in Proposition 6(3). By Proposition 6(4), it
suffices to show that each such B(S) is of the indicated form. But by Proposition 6
(2), B(S) = B(a1, a2, . . . , al) = Im(θ) ⊕ (⊕vi∈S3Kvi) ⊕ (⊕wj∈S4Kuwj ). Since terms
appearing in the second and third summands are clearly isomorphic as algebras to
K ∼= M1(K), it suffices to show that Im(θ) is isomorphic to a finite direct sum of
finite matrix rings over K. Since E is acyclic, by Lemma 1 in [5] we have that EF

is acyclic. But EF is always finite by definition, so we have by [3, Proposition 3.5],
that LK(EF ) ∼= ⊕l

i=1Mmi(K) for some m1, . . . ,ml in N. Since each Mmi(K) is a
simple ring, we have that any homomorphic image of LK(EF ) must have this same
form. So we get that Im(θ) ∼= ⊕t

i=1Mmi(K) for some m1, . . . ,mt in N, and we are
done. (As remarked previously, since θ is in fact an isomorphism we have t = l.)

We list the following theorems which are using the same Subalgebra Construction
in their proofs. In particular, we only quote the parts that uses the Subalgebra
Construction.

Theorem 9. [10, Theorem 5.1] Let E be an arbitrary graph. Then for the Leavitt
path algebra LK(E) the following are equivalent:

(1) Every left/right ideal of LK(E) is graded;

(2) The class of all simple left/right LK(E)-modules coincides with the class of all
graded-simple left/right LK(E)-modules;

(3) The graph E is acyclic.

******************************************************************************
Surveys in Mathematics and its Applications 13 (2018), 147 – 157

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v13/v13.html
http://www.utgjiu.ro/math/sma


The local-global principle in Leavitt path algebras 153

Proof. (3) ⇒ (1) For the sake of simplicity of the notation, let L := LK(E). Suppose
E is acyclic. Now, by Theorem 7, L is a direct union of graded subalgebras Bλ

where λ ∈ I, an index set and where each Bλ is a finite direct sum of copies of
K and a graded homomorphic image of a Leavitt path algebra of a finite acyclic
graph. By [8, Theorem 4.14], Leavitt path algebras of finite acyclic graphs are semi-
simple algebras which have elementary gradings, that is, all the matrix units are
homogeneous. Consequently, every ideal of each Bλ is graded. Let L =

⨁
n∈Z

Ln

be the Z-graded decomposition of L. Since the Bλ are graded subalgebras, each
Bλ =

⨁
n∈Z

(Bλ ∩Ln). Let M be a left ideal of L. To show that M is graded, we need

only to show that M =
⨁
n∈Z

(M ∩ Ln). Let a ∈ M. Then, for some λ, a ∈ M ∩ Bλ.

Note that M ∩ Bλ = Bλ or a left ideal of Bλ. Since every left ideal of Bλ and in
particular M ∩Bλ is graded, we can write a = an1 + · · ·+ ank

where

ani ⊂ (M ∩Bλ) ∩ (Bλ ∩ Lni) ⊂ M ∩ Lni

for i = 1, . . . , k. This show that M =
⨁
n∈Z

(M ∩ Ln) and hence M is a graded left

ideal of L.

The next result is about graded von Neumann regular Leavitt path algebras.
A ring R is von Neumann regular if for every x ∈ R there exists y ∈ R such
that x = xyx. Moreover, a graded ring R is graded von Neumann regular if each
homogeneous element is von Neumann regular.

Theorem 10. [10, Theorem 4.2]; [9, Theorem 10] Every Leavitt path algebra LK(E)
of an arbitrary graph E is a graded von Neumann regular ring.

Proof. [10, Proof of Theorem 4.2] Suppose E is an arbitrary graph. By [10, Theorem
4.1], LK(E) is a directed union of graded subalgebras B = A ⊕ Kϵ1 ⊕ · · · ⊕ Kϵn
where A is the image of a graded homomorphism θ from a Leavitt path algebra
LK(FB) to LK(E) with FB a finite graph (depending on B), the elements ϵi are
homogeneous mutually orthogonal idempotents and ⊕ is a ring direct sum. Since
FB is a finite graph, LK(FB) and hence B is graded von Neumann regular by [9].
It is then clear from the definition that the direct union LK(E) is also graded von
Neumann regular.

Recall that a ring R is called left Bézout in case every finitely generated left
ideal of R is principal. If the graph E is finite, then LK(E) is Bézout [4, Theorem
15]. The proof of this statement is given via a nice induction argument which we do
not quote here. The generalization of this result to arbitrary graphs, which again
appears in [4], uses the subalgebra construction.
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Theorem 11. [4, Corollary 16] Let E be an arbitrary graph and K any field. Then
LK(E) is Bézout.

Proof. By Theorem 7, LK(E) is the direct limit of unital subalgebras, each of which
is isomorphic to the Leavitt path K-algebra of a finite graph. By [4, Theorem 15],
each of these unital subalgebras is a Bézout subring of LK(E).

Now, we are going to prove that for any ring R, if every finite subset of R is
contained in a unital Bézout subring of R, then R is Bézout. Let us consider a
finitely generated left ideal of R with generators x1, x2, . . . , xn ∈ R. Then there is
a unital Bézout subring S of R that contains {x1, x2, . . . , xn}. Hence, there exists
x ∈ S such that the left S-ideal Sx1 + Sx2 + · · ·+ Sxn = Sx.

Since 1Sxi = xi for all 1 ≤ i ≤ n, and each xi is in Sx1 + Sx2 + · · ·+ Sxn = Sx
which implies that for each i there exists si ∈ S with xi = six.

Hence Rx1 + Rx2 + · · · + Rxn = Rs1x + Rs2x + · · · + Rsnx ⊆ Rx. Also,
x = 1sx ∈ Sx implies x ∈ Sx1 + Sx2 + · · · + Sxn ⊆ Rx1 + Rx2 + · · · + Rxn.
Therefore, Rx1 +Rx2 + · · ·+Rxn = Rx and R is a Bézout ring.

Hence, if R is taken to be LK(E), the result follows.

Recall that a ring with local units R is said to be directly finite if for every
x, y ∈ R and an idempotent element u ∈ R such that xu = ux = x and yu = uy = y,
we have that xy = u implies yx = u.

Theorem 12. [13, Proposition 4.3] LK(E) is directly finite if and only if no cycle
in E has an exit.

The converse of Theorem 12 for Leavitt path algebras of finite graphs has been
proven in [7, Theorem 3.3]. To get the infinite graphs, Lia Vas proved the theorem
by using Cohn-Leavitt approach. In particular, the localization of the graph is used
by considering a finite subgraph generated by the vertices and edges of just those
paths that appear in representations of x, y and u in LK(E) where xy = u for
some local unit u. However, the subgraph F defined in this way may not produce a
subalgebra LK(F ) of LK(E). This problem is avoided by considering an appropriate
finite subgraph F such that the Cohn-Leavitt algebra of F is a subalgebra of LK(E)
and then adapts [7, Theorem 3.3] to Cohn-Leavitt algebras of finite graphs.

An alternative proof using the subalgebra construction is pointed out in [11,
Theorem 3.7] using the grading on matrices. We outline the proof below (without
considering the grading to refer to Theorem 12).

Theorem 13. ([11, Theorem 3.7] rephrased) For an arbitrary graph E, the following
properties are equivalent for LK(E):

******************************************************************************
Surveys in Mathematics and its Applications 13 (2018), 147 – 157

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v13/v13.html
http://www.utgjiu.ro/math/sma


The local-global principle in Leavitt path algebras 155

(a) No cycle in E has an exit;

(b) LK(E) is a directed union of graded semisimple Leavitt path algebras; specifically,
LK(E) is a directed union of direct sums of matrices of finite order over K or
K[x, x−1].

(c) LK(E) is directly-finite.

Proof. (a) implies (b) Assume (a). By Theorem 7, LK(E) is a directed union of
graded subalgebras B = A ⊕ Kϵ1 ⊕ · · · ⊕ Kϵn, where A is the image of a graded
homomorphism θ from a Leavitt path algebra LK(FB) to LK(E) with FB a finite
graph depending on B. Moreover, any cycle with an exit in FB gives rise to a cycle
with an exit in E. Since no cycle in E has an exit, no cycle in the finite graph FB

has an exit. So by using [2, Theorem 2.7.3],

LK(FB) ∼=
⨁
i∈I

Mni(K)⊕
⨁
j∈J

Mmj (K[x, x−1]),

where ni and mj are positive integers I, J are index sets. Since the matrix rings
Mni(K) and Mmj (K[x, x−1]) are simple rings, A and hence B is a direct sum of
finitely many matrix rings of finite order over K and/or K[x, x−1]. This proves (b).

(b) implies (c) follows from the known fact that matrix rings Mni(K) and
Mmj (K[x, x−1]) are directly-finite and finite ring direct sums of such matrix rings
are directly-finite. Hence, by condition (b), LK(E) is directly-finite.

We want to finish the survey with another application of the Subalgebra Construction.
In [6], the authors do not use the exact results, however they carry the same
techniques and proofs to another subgraph (dual graph) construction.

The authors present the notion of a dual of a subgraph in a graph, which is the
generalization of the usual notion of dual graph found in the literature that we quote
here:

Usual dual: Let E be an arbitrary graph. The usual dual of E, D(E), is the
graph formed from E by taking

D(E)0 = {e | e ∈ E1}
D(E)1 = {ef | ef ∈ E2}

sD(E)(ef) = e, rD(E)(ef) = f for all ef ∈ E2.

The interest on the usual dual graph notion in the context of Leavitt path algebras
lies on the fact that, if E is a row-finite graph without sinks, then there is an algebra
isomorphism LK(E) ∼= LK(D(E)) ([1, Proposition 2.11]). These statement is untrue
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for usual dual of a graph with sinks. The authors propose a new definition of dual
graph which generalizes this important property to row-finite graphs with sinks.

Dual of F in E: Let E be a graph and let F be a subgraph of E. Denote F 0
1 =

{v ∈ F 0 | s−1
F (v) = ∅}, F 1

1 = r−1
F (F 0

1 ) and F 0
2 = s(F 1) ∩ s(E1\F 1), F 1

2 = r−1
F (F 0

2 ).
The graph DE(F ), the dual of F in E is defined by

DE(F )0 = D(F )0 ∪ F 0
1 ∪ F 0

2

DE(F )1 = D(F )1 ∪ F 1
1 ∪ F 1

2

sDE(F )|D(F ) = sD(F ), rDE(F )|D(F ) = rD(F )

For all e ∈ F 1
i with i ∈ {1, 2}, sDE(F ) = e ∈ D(F )0, rDE(F )(e) = rF (e) ∈ F 0

i .

Dual graph: Given a graph E, they define d(E) = DE(E) and call it the dual
graph of E.

Then they prove the graded algebra isomorphism LK(d(E)) ∼= LK(E) when E
is a row-finite graph ([6, Proposition 3.6]). In this paper the authors also prove
that for a graph E and a row-finite subgraph of E there is a graded monomorphism
θ : LK(DE(F )) → LK(E). In addition, F 0 ∪ F 1 ⊆ θ(LK(DE(E))). This result is
stated as [6, Proposition 3.8] and the proof is basically rephrasing [5, Proposition
1,2].
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