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SOME RESULTS OF 7-RICCI SOLITONS ON
(LCS),-MANIFOLDS

S. K. Yadav, S. K. Chaubey and D. L. Suthar

Abstract. In this paper, we consider an n-Ricci soliton on the (LC'S),-manifolds (M, ¢,£,n, g)
satisfying certain curvature conditions likes: R(£,X)-S = 0 and W2(¢, X) - S = 0. We show that
on the (LCS),-manifolds (M, ¢,&,n,g), the existence of n-Ricci soliton implies that (M, g) is a
quasi-Einstein. Further, we discuss the existence of Ricci solitons with the potential vector field &.

In the end, we construct the non-trivial examples of n-Ricci solitons on the (LCS),-manifolds.

1 Introduction

In 2003, Shaikh [33] introduced the notion of Lorentzian concircular structure manifolds
(briefly, (LCS),-manifold) with an example, which generalize the notion of LP-
Sasakian manifolds introduced by Matsumoto [27] and also by Mihai and Rosca
[28]. The properties of (LC'S),-manifolds have been studied by many geometer, for
instance we refer ([7], [8], [22]-[25], [29], [34], [36], [39]-[42]).

The Ricci solitons are natural generalization of Einstein metrics on a Riemannian
manifold, being generalized fixed points of Hamilton’s Ricci flow %g = —25 [20].
The evolution equation defining the Ricci flow is a kind of nonlinear diffusion
equation, an analogue of heat equation for metrics. Under Ricci flow, a metric can
be improved to evolve into more canonical one by smoothing out its irregularities,
depending on the Ricci curvature of the manifold: it will expand in the directions of
negative Ricci curvature and shrink in the positive case. The geometrical properties
of the Ricci solitons have been studied in ([1]-[5], [7]-[13], [17]-[21], [26], [31], [37],
[38], [43]) and by others. In paracontact geometry, the Ricci soliton first appeared
in the paper of G. Calvaruso and D. Perrone [6]. C. L. Bejan and M. Crasmareanu
studied the properties of Ricci solitons on the 3-dimensional normal paracontact
manifolds [3]. A more general notion of a Ricci soliton is that of n-Ricci soliton
introduced by J. T. Cho and M. Kimura [18], which was treated by C. Calin and M.
Crasmareanu on Hopf hypersurfaces in complex-space-forms [4]. Metrics satisfying
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Ricci flow equations are interesting and useful in physics and are often referred as
quasi-Einstein ([12]-[16]).

2 (LCS),-manifolds (M, ¢,&,n,q)

Let M be an n-dimensional smooth connected paracontact Hausdroff manifold equipped
with a Lorentzian metric g. Then (M, g) is a Lorentzian manifold, that is, M admits

a smooth symmetric tensor field g of type (0,2) such that for each point p € M,
the tensor g, : T,M x T,M — R is a non degenerate inner product of signature
(—,+,...,+), where T, M denotes the tangent space of M at p and R is the real
number. A non-zero vector field v € T),M is said to be timelike (resp., non-spacelike,
null, and spacelike) if it satisfies g,(v,v) < 0 (resp., < 0,=,> 0) [30].

Definition 1. A non-vanishing vector field p on a Lorentzian manifold (M, g)
defined by g(X,p) = A(X), V X € x(M) is said to be a concircular vector field

[41] if
(VxA) (V) = a{g(X,Y) + w(X)A(Y)},

where « is a non-zero scalar and w is a closed 1-form.

If the Lorentzian manifold M admits a unit timelike concircular vector field &,
called the generator of the manifold, then we have

9(&,8) = =1, 9(X,&) =n(X), (Vxn)(Y) =a{g(X,Y)+n(X)n(Y)}, (2.1)
where o # 0 and 7 is a non-zero 1-form. It is obvious from (2.1) that
Vx&=a{X +n(X)E} (2.2)

for all vector field X on M. Here V denotes the operator of the covariant differentiation
with respect to the Lorentzian metric g and « satisfies

Vxa = (Xa) = da(X) = py(X), (2.3)
p being a certain scalar function given by p = —(£a). If we put
adX = V¢, (2.4)

then (2.2) and (2.4) give
¢X = X +n(X)¢E, (2.5)

where ¢ is a (1,1)-tensor, called the structure tensor of M. Thus the Lorentzian
manifold M together with a unit timelike concircular vector field £, its associated
1-form n and (1,1)-tensor field ¢ is said to be a Lorentzian concircular structure
manifold (briefly (LCS),-manifold) [33]. Especially, if we take a = 1, then we can
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obtain the LP-Sasakian structure of Matsumoto [27]. For details, we refer [11] and
the references therein. In an (LC'S),-manifold, n > 2, the following relations

nE) =-1, ¢£=0, ¢*°X =X +n(X),

n@X) =0, g(¢X,¢Y)=g(X,Y)+n(X)nY), (2.6)
N(R(X,Y)Z) = (o = p) {g(Y, Z)n(X) — g(X, Z)n(Y)}, (2.7)
R(X,Y)§ = (o = p) {n(Y)X —n(X)Y}, (2.8)
R(&X)Y = (o = p) {g(X,Y)E—n(Y) X}, (2.9)
(Vx¢) (V) = a{g(X,Y)E + 2n(X)n(Y)§ +n(Y) X}, (2.10)
S(X,8) = (n—1)(a® = p)n(X), (2.11)

S(¢X,¢Y) = S(X,Y) + (n—1)(a® = p)n(X)n(Y), (2.12)
(Xp) = dp(X) = Bn(X), (2.13)

hold for any vector fields X, Y, Z on M, = —(&p) is a scalar function [34]. Here R
is the curvature tensor corresponding to the Lorentzian metric g and S is the Ricci
tensor corresponding to the Ricci operator @, that is, S(X,Y) = g(QX,Y).

3 n-Ricci solitons on (LCS),-manifolds (M, ¢,&,n, g)

Let (M, $,&,m,g) be an (LCS),-manifold, then the quartet (g,&, A, u) on M is said
to be an n-Ricci soliton [18] if it satisfies

Leg+25+2Xg+2un®n =0, (3.1)

where L¢ is the Lie-derivative operator along the vector field {, A\ and p are real
constants. We write L¢g in term of the Levi-Civita connection V as:

(Leg)(X,Y) = g(Vy &, X) + g(Y, Vx§) = 20[g(X,Y) + n(X)n(Y)], (3:2)
where equations (2.1) and (2.2) are used. In view of (3.1) and (3.2), we get

QX = —(a+ )X — (a+ p)n(X)g, (3.3)
r=-nA—(n—1)a+pu, (3.4)

S(X,Y) = —(a+ Ng(X,¥) — (@ + mn(X)n(¥), (3.5)

S(X,8) = S(€.X) = (u— \n(X), (3.6)

p=A=(n—1)(a*~p) (3.7)

for any X,Y € x(M). Here r is the scalar curvature of (M, g) and is defined by
r = S(e;, ei)l,, where {e1, ez, ..., ey} is a set of linearly independent vector fields

on M. In particular, if gy = 0 then the triplet (g,£, A) is a Ricci soliton [20] and it
is called shrinking, steady or expanding according as A is negative, zero or positive,
respectively [19].
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Proposition 2. The following relations hold on an (LCS),-manifold (M, $,&,n,g)
(1) n(Vx§) =0, (i) Ve =0, (iii) Ven=0, (iv) Le¢d =0,

(v) Len=0, (vi) Leg(n®@n) =0, (vii) Leg =2a(g+n®n).
Also, if n is closed the distribution is involuntary and the Nijenhuis tensor of ¢
vanishes identically, i.e., the structure is normal.

Proof. Since (Vx¢)(Y) = a{g(X,Y)E +2n(X)n(Y) +n(Y)X} and therefore
VxoY — ¢(VxY) = a{g(X,Y)E + 2n(X)n(Y)E +n(Y) X}

Taking Y = £ in the above equation, we have ¢(V x§) = apX. Applying ¢ on either
sides, we get

Vx€+n(Vx§)E§ = a{X +n(X)E}
Since X (g(§,€)) = 29(Vx&, &) and Vx& = agX, therefore n(Vx&) = 0, and hence
Ve€ = 0. As we know that n(X) = g(X,£) and V is metric, then we have V¢n = 0.
The Lie-derivative of ¢ along £ gives
(Leg)(X) = [§,0X] — ¢([§, X]) = VedpX — ¢(VeX) = (Ved)(X) = 0,i.e., Led = 0.

Again, (Len)(X) = En(X) —n([§, X])) = 9(X, Vel) +9(Vx€,§) =0, ie., Len=0.
Also, if L¢n = 0, then Legn ®@n = 0, as Len @ n = (Len) @ 1+ 1 & (Len). Again
(ng)(X,Y) = fg(X7Y) - g([f,X],Y) - g(Xa [§7Y])7 imphes that

(Leg)(X,Y) = a[g(¢X,Y) + g(X, ¢Y)].

Using (2.5), we get
Leg = 2a(g +n®m).

It is well known that

(dn)(X,Y) = X(n(Y)) = Y (n(X)) = n([X,Y])

implies that
(dn)(X,Y) = g(Y,Vx¢) — 9(X, Vy¢§)
=a{g(Y, X) + n(X)n(Y)} — a{g(X.Y) + n(X)n(Y)} = 0,i.e..,dn = 0.

Finally,
Ny(X,Y) = ¢*[X, Y] + [¢X, ¢Y] — ¢[pX,Y] — ¢[X, ¢Y]

yields that
Ny(X,Y) = ¢*(VxY) — $*(VyX) — 6(VxoY) + ¢(Vy¢X)
+Vox oY — d(VexY) — Voy o X + ¢(Vgy X) =0,

i.e., the structure is normal. ]
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In [7] and [8], Shaikh et al. proved that a second order parallel symmetric tensor
on a Lorentzian concircular structure manifold with o —p # 0 is a constant multiple
of the Ricci tensor. Thus we apply this concept for n-Ricci soliton and prove the
following results.

Theorem 3. Let (M,¢,£,n,9) is an (LCS),-manifold. If the symmetric tensor
field h = Leg 4+ 2S5 4 2pun ®@n of type (0,2) is parallel with respect to the Levi-Civita
connection V, then (g,&§,\) on M yields an n-Ricci soliton.

Proof. In consequence of (3.2), we have
hMX,Y)=2ag(X,Y)+25(X,Y) 4+ 2(a+ p)n(X)n(Y).
Replacing X and Y with £ in the above equation, we get
& €) = (Leg)(§,€) +25(£,€) + 2un(E)n(€) = 22,

and therefore )
A= Sh(E6).
From [7] and [8], we have
MX,Y) = =h(£,§)g(X,Y), VX, Y € x(M).
Thus, L¢g + 25 + 2un ® n = —2Mg. Hence the statement of the theorem. O

If 1 = 0, it follows that L¢g +2S +2(n —1)(a? — p)g = 0. Thus we conclude the
following corollary:

Corollary 4. On an (LCS),-manifold (M, ¢,&,n, g) with the property that a symmetric
tensor field h = L¢g + 28 of type (0,2) is parallel with respect to the Levi-Civita
connection associated to g, then the equation (3.1), for 4 =0 and A = (n—1)(a®—p),
define a Ricci soliton.

An (LCS),, manifold (M, ¢,&,n, g) is said to be quasi-Einstein if its Ricci tensor
S is a linear combination (with real scalars A and p(# 0)) of g and the tensor product
of a non-zero 1-form 7 satisfying (2.1) and for an Einstein if S is collinear with g
[6]. From (3.5), we state the results in the form of corollary as:

Corollary 5. If the equation (3.5) define an n-Ricci soliton on an (LC'S),,-manifold,
then (M, g) is quasi-Einstein.

Next, we prove the following theorem as:

Theorem 6. Let (g,&, A, ) is ann-Ricci soliton on an (LC'S),,-manifold (M, ¢,&,m,g).
If the Ricci tensor S of M is

(i) cyclic parallel, then p = —a — 4=, and A = —4=(1-2a(n —1)) —a(l+(n—1)a).
(i1) cyclic parallel n-recurrent, then there does not exist an n-Ricci soliton or a Ricci

soliton with the potential vector field & on M.
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Proof. 1t is well known that
(VxS)(Y. 2) = X(S(Y, Z)) - S(VxY, Z) - S(Y,Vx Z). (3.8)
In view of (2.2), (2.3) and (3.5), the equation (3.8) reduces to

(VxS)(Y, Z) = —pg(¢Y, pZ)n(X) — ala + p){g(¢X, 6Z)n(Y) + g(¢ X, ¢Y)n(Z)}.

(3.9)
If possible, we suppose that the Ricci tensor S of M is cyclic parallel, that is,
(VxS)Y,Z) + (VyS)(Z,X) + (VzS)(Z,Y) =0 VX, Y, Z € x(M). The cyclic
sum of (3.9) together with the last argument give

—p{9(6Y, 0Z)n(X) + g(¢X, 6Z)n(Y) + g(6Y, o X)n(Z)} (3.10)
—2a(a+ p{g(6X, 6Z)n(Y) + g(¢X, ¢Y)n(Z) + 9(¢Y, ¢ Z)n(X)} = 0.

Replacing Z = £ in (3.10), we have

(p+2a(a+p)g(p X,¢Y) =0

for any X, Y € x(M). It follows that p + 2a(o + ) = 0 and thus (3.7) gives
p=—a—g~ and A = —£-(1-2a(n—1)) —a(l+(n—1)a). To prove the result (ii),
we suppose that M is n-recurrent, that is, (VxS)(Y,Z2) =n(X)S(Y,Z2) VX, Y, Z €
X(M). If the Ricci tensor S of the n-recurrent (LC'S),-manifold is cyclic parallel,
then

n(X)S(Y,Z) +n(Y)S(Z,X) +n(Z)S(X,Y)
= —p{g(@Y, 0Z)n(X) + g(¢X,0Z)n(Y) + g(dY, 6 X)n(Z)} (3.11)
—2a(a+ p){g(@X, 0Z)n(Y) + g(¢X,0Y )n(Z) + g(¢Y, ¢Z)n(X)} =0

for any X, Y, Z € x(M). Taking Y = Z = £ in (3.11) and then using (3.5) and (3.6),
we get 3(u — AM)n(X) = 0 for any X € x(M). It follows that A = u, which is a
contradiction. Thus the statements of the theorem are proved. O

In view of the Theorem 6, we can state the following corollaries.

Corollary 7. In an (LCS)y,-manifold (M, ¢,&,m,g9) equipped with a cyclic parallel
Ricci tensor, there is no Ricci soliton with the potential vector field €.

Corollary 8. If an (LCS),-manifold (M, ¢,&,n,q) possesses a cyclic parallel n-
recurrent Ricci tensor, then M does not admit n-Ricci soliton or Ricci soliton with
the potential vector field &.

Theorem 9. Let (g,&, A\, i) be an n-Ricci soliton on an (LCS),-manifold (M, ¢, &, 1, g).
If the Ricci tensor S of M satisfies

(1) VS =0, then,u:—a—l-%a, and A = %a—oz—(n—l)(aZ—p).

(11) VS =n® S, then there does not exist n-Ricci soliton or Ricci soliton with the
potential vector field & on M.
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Proof. Let us suppose that the Ricci tensor S of M satisfies VS = 0, that is, M is
Ricci symmetric (LCS),-manifold. Replacing Z by £ in (3.10), we obtain

{ala+p) +p}g(¢X,0Y) =0, V X, Y € x(M).

It follows that p = —a + %a, and \ = %a —a— (n—1)(a® — p), the statement (7).
Let M is n-recurrent (LC'S),-manifold, that is, VS =7 ® S. From (3.5) we obtain
A = i, which is not possible. Thus our theorem is proved. O

In consequence of the Theorem 9, we state the following corollaries.

Corollary 10. If an (LCS),,-manifold (M, $,&,n, g) is Ricci symmetric, then there
1s no Ricci soliton with the potential vector field & on M.

Corollary 11. If an (LCS),-manifold (M, $,&,n,g) is admitting an n-recurrent
Ricci tensor, then there does mot exist n-Ricci soliton or Ricci soliton with the
potential vector field & on M.

4 n-Ricci solitons satisfying certain curvature conditions
on the (LCS),-manifolds (M, ¢,&,1,9)

In 1970, Pokhariyal et al. [32], defined and studied the properties of Wa-curvature
tenor, and is given by

Wo(X,Y)Z = R(X,Y)Z + ﬁ {9(X, 2)QY — g(Y,2)QX} (4.1)

for X, Y, Z € x(M).

Theorem 12. If an (LCS),-manifold (M, ¢,&,n,g) equipped with an n-Ricci soliton
(9,&,\, ) satisfies R(§,X)-S =0, then p=—a and A\ = —a — (n — 1)(a® — p).

Proof. Suppose M satisfies R(, X)-S = 0. Then we have
S(R(€, X)Y, Z) + S(Y,R(¢,X)Z) = 0
for any X, Y, Z € x(M). Using (2.9) and (3.5) in the above equation, we yield
(@® = p)(u+ a){g(X, Y)n(Z) + 9(X, Z)n(Y) + 2n(X)n(Y)n(Z)} = 0.
For Z = £, we have

(@ = p)(p+ a){g(X,Y) + n(X)n(Y)} = 0.

It is obvious from the above equation that p = —a, provided o — p # 0. Equation
(3.7) together with the last result give A\ = —a—(n—1)(a?—p). Hence the statement
of the theorem is proved. ]
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With the help of the Theorem 12, we state the following corollaries.

Corollary 13. Let an (LCS),-manifold (M, ¢,&,n,9) equipped with the n-Ricci
soliton satisfies R({,X) - S = 0. Then there is no Ricci soliton on M with the
potential vector field &.

Corollary 14. An (LCS),-manifold (M, $,&,n,g) together with the n-Ricci soliton
(9,6, \,0) and R(§,X) - S =0 is Einstein.

Theorem 15. If an (LCS),-manifold (M, ¢,&,n, g) with an n-Ricci soliton satisfies
Wo(&,X) -8 = 0, then either p = —a, A = a — (n — 1)(a® — p) or A = —a,
p=—at(n—1)(a?— p).

Proof. If possible, we assume that the (LCS),-manifolds endowed with the n-Ricci
solitons are Wa-Ricci symmetric, that is, Wa(§, X) - S = 0. Thus we have

for any X, Y, Z € x(M). Using (3.5) and (4.1) in (4.2), we get

(0® = p) [9(X,Y)S(,Z) + g(X, Z)S(Y.€) — S(X, Z)n(Y) — S(X,Y)n(Z)]
—tl(a+ M{S(X, Z)n(Y) + n(2)S(Y, X)} + (o + m{n(X)n(Y)S(€, Z)  (4.3)

n—

+n(X)n(Z)S(Y, )} + (n — M{g(X,Y)S(E, Z2) + 9(X, Z2)S(Y, §)}]
In consequence of (3.5)-(3.7), equation (4.3) consider the form
(04 B+ )
n—1
Taking Z = £ in (4.4), we yield
(a+p)o+ )
n—1

for any X, Y € x(M). In general, g # 0 on M, therefore (4.5) shows that either
p=—aor A =—q, for n > 1. These results together with (3.7) reflect that either
p=—-a,A=a—(n—-1)(a®=p)or A=—a, u=—-a+n-1)(a®>—-p)on M. [

0.

n(Y)g(X,Y) +n(2)9(X,Y) +2n(X)n(Y)n(Z)} =0.  (4.4)

96X, 4Y) =0 (4.5)

Corollary 16. If an (LCS),-manifold (M, ¢,£,n,q) satisfies Wa(&, X)-S = 0, then
there is no Ricci soliton with the potential vector field & on M.

5 Examples of n-Ricci soliton on (LC'S),-manifolds

Example 17. Let a 3-dimensional manifold M = {(a:,y, 2)ERS 2 £ 0} , where
(z,y, z) are the standard coordinates in R3. Let { E1, B3, E3} be a linearly independent
global frame on M given by

Ey=¢° <xa+ya>, Egzezi, E3:622£.
dy

sk sk sk ok sk ok sk s ok sk sk ok s ok sk sk ok sk sk sk s ok sk sk ok s sk sk sk ok sk sk sk sk ok sk sk sk sk sk sk ok sk ok sk sk ok sk sk sk s sk sk sk sk ok sk sk ok ok sk ok sk sk ok ok sk skok ok sk ok

Surveys in Mathematics and its Applications 13 (2018), 237 — 250
http://www.utgjiu.ro/math/sma


http://www.utgjiu.ro/math/sma/v13/v13.html
http://www.utgjiu.ro/math/sma

Some results of n-Ricci solitons on (LC'S),-manifolds 245

Assume that g be the Lorentzian metric on M, and is defined by
9(En, E3) = g(E2, E3) = g(E1, E2) =0, g(E1, Ev) = g(Ea, E) =1, g(E3, E3) = —1.

Let n be the 1-form defined by n(V) = g(V, E3) for any V € x(M) and ¢ is a (1,1)-
tensor field defined by ¢ E1 = Fy, ¢ Eo = Fo, ¢ E3 = 0. Then using the linearity of
¢ and g we have

n(Bs) =1, $*V=V+n(V)E;s g(oV,eW) = g(V,W) +n(V)n(W)

for any V, W € x(M). Let V be the Levi-Civita connection with respect to the
Lorentzian metric g and R be the curvature tensor of g. Then we obtain

[Eq, Eq] = —€”Ey, [Ey, B3] = —e*Ey, [Ey, E3] = —*Es.

Taking F5 = £ and using the Koszul’s formula for the Lorentzian metric g, we have

Vg, B3 = —**Fy, Vg, B = —e**Fs, Vg, Er =0,
Vg, B3 = —e** By, Vi, Ey =0, Vi, Bl = €e*Ey,
VE3E3 = 0, VE2E2 = €2ZE3 - eZEl, VE3E1 =0.
From the above equations, it can be easily seen that Es = £ is a unit timelike

concircular vector field and hence the structure (¢,€,n,q) is an (LCS)s-structure
on M. Consequently, M3(¢,&,m,9) is an (LCS)3-manifold with o = —e* # 0
such that (Xa) = pn(X), where p = 2e¢**. Using the above relations, we can easily
calculate the non-vanishing components of the curvature tensor R and the Ricci
tensor S as follows:

R(Fy, B3)F3 = —¢"Fy, R(E1, E3)E3 = —e¥Ey, R(Ei, E)Ey = {e"* —e**} Fy,
R(Es, E3)E, = € E3—e* Ey, R(Ey, E3)Ey = —e*E3, R(Ey, B1)Ey = {e*—e**}Es,
S(El,El) = —622, S(EQ,EQ) = —622, S(Eg,Eg) = —264Z.

Also from the equation (3.5), we can see that
S(E, Er) = —(a+A),  S(Ez,E2)=—(a+), S(E3, E3) = (A — ).

Thus we conclude from the last two expressions that for a = —e??, X\ = 2¢?* and
p = 2{e* + e**}, the structure (g,&, \, ) is an n-Ricci soliton on M3(¢,¢,7, g).

Example 18. Let a 3-dimensional manifold M = {(:U,y, 2)ER3 2 #£ O} , where
(w,y,2) are the standard coordinates in R3. In [35], Shaikh defined the linearly
independent vector fields {F1, E2, Es} on M as:

FEi=e (x +y8y>’ Ey=e¢ 9y’ Es=e EPR
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Let g be the Lorentzian metric defined by

9(Er, E3) = g(Ep, E3) = g(En, E2) =0, g(Er, Er) = g(E2, Ep) =1, g(E3, E3) = —1.
Let n be the 1-form defined by n(V) = g(V, E3) for any V € x(M). Let ¢ be the
(1,1)-tensor field defined by ¢y = Ey, ¢E2 = Es, pE3 = 0. Then using the
linearity of ¢ and g we have

n(Es) =—-1, ¢*V=V+n(V)Es g(¢V,eW)=g(V,W)+n(V)n(W),

for any V,\W € x(M). Let V be the Levi-Civita connection with respect to the
Lorentzian metric g and R be the curvature tensor of g. Then we obtain

(1, By] = —e™ " Ey, (1, B3] = —e % En, [z, B3] = —e % By,

Taking F5 = £ and using the Koszul’s formula for the Lorentzian metric g, we have

Vi B3 =e *Ey, Vi Bl =e *Ej3, Vg Er =0,
Vg,Bs=e By, Vg, By =0, Vi,El=e By,
Ve, E3 =0, Vg, By = e ¥E3 — e ?Fy, Vg, E1 =0.
From the above equations, it can be easily seen that Fs = £ is a unit timelike

concircular vector field and hence (¢,§,n,9) is an (LCS)s-structure on M. Thus
M3(¢,¢,m, g) is an (LCS)3-manifold with o = e=2* # 0 such that (Xa) = pn(X),
where p = 2e~4*. Using the above relations, we can easily calculate the non-vanishing
components of the curvature tensor R and the Ricci tensor S as follows:

R(Es, E3)E3 = e ¥ FEy, R(Ey,E3)E3 =e ¥ E1, R(Ey, Ey)Ey={e ¥ —e ®}Ey,
R(Ey,E3)Ey = e ¥*E3, R(E1,E3)E| =e ¥E3, R(E1,FEy)E| = {—e ¥ —e 2*}Ey,
S(Ey, E) =24 — 725 S(Ey, Ey) =2 % —e % S(E3 E3) =2 %,

Also from (3.5), we calculate that
S(En, Ey) =—(a+2), S(EyEx)=—(a+A),  S(Es E3)=(A—p).

We conclude from (3.5) that for a = €2*, X\ = —2e~4* and p = —4e **, the data
(g,&, )\, ) admits an n-Ricci soliton on M3(¢,£,1,g).

Acknowledgement. The authors are thankful to the Editor and anonymous
referees for their valuable comments.
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