ISSN 1842-6298 (electronic), 1843-7265 (print) Volume 13 (2018), 237 – 250

SOME RESULTS OF η -RICCI SOLITONS ON $(LCS)_n$ -MANIFOLDS

S. K. Yadav, S. K. Chaubey and D. L. Suthar

Abstract. In this paper, we consider an η -Ricci soliton on the $(LCS)_n$ -manifolds (M, ϕ, ξ, η, g) satisfying certain curvature conditions likes: $R(\xi, X) \cdot S = 0$ and $W_2(\xi, X) \cdot S = 0$. We show that on the $(LCS)_n$ -manifolds (M, ϕ, ξ, η, g) , the existence of η -Ricci soliton implies that (M, g) is a quasi-Einstein. Further, we discuss the existence of Ricci solitons with the potential vector field ξ . In the end, we construct the non-trivial examples of η -Ricci solitons on the $(LCS)_n$ -manifolds.

1 Introduction

In 2003, Shaikh [33] introduced the notion of Lorentzian concircular structure manifolds (briefly, $(LCS)_n$ -manifold) with an example, which generalize the notion of LP-Sasakian manifolds introduced by Matsumoto [27] and also by Mihai and Rosca [28]. The properties of $(LCS)_n$ -manifolds have been studied by many geometer, for instance we refer ([7], [8], [22]-[25], [29], [34], [36], [39]-[42]).

The Ricci solitons are natural generalization of Einstein metrics on a Riemannian manifold, being generalized fixed points of Hamilton's Ricci flow $\frac{\partial}{\partial t}g = -2S$ [20]. The evolution equation defining the Ricci flow is a kind of nonlinear diffusion equation, an analogue of heat equation for metrics. Under Ricci flow, a metric can be improved to evolve into more canonical one by smoothing out its irregularities, depending on the Ricci curvature of the manifold: it will expand in the directions of negative Ricci curvature and shrink in the positive case. The geometrical properties of the Ricci solitons have been studied in ([1]-[5], [7]-[13], [17]-[21], [26], [31], [37], [38], [43]) and by others. In paracontact geometry, the Ricci soliton first appeared in the paper of G. Calvaruso and D. Perrone [6]. C. L. Bejan and M. Crasmareanu studied the properties of Ricci solitons on the 3-dimensional normal paracontact manifolds [3]. A more general notion of a Ricci soliton is that of η -Ricci soliton introduced by J. T. Cho and M. Kimura [18], which was treated by C. Calin and M. Crasmareanu on Hopf hypersurfaces in complex-space-forms [4]. Metrics satisfying

2010 Mathematics Subject Classification: 53C15; 53C21; 53C25. Keywords: η -Ricci soliton; Quasi-Einstein; $(LCS)_n$ -manifold; Ricci tensors; Curvature tensors.

Ricci flow equations are interesting and useful in physics and are often referred as quasi-Einstein ([12]-[16]).

2 $(LCS)_n$ -manifolds (M, ϕ, ξ, η, g)

Let M be an n-dimensional smooth connected paracontact Hausdroff manifold equipped with a Lorentzian metric g. Then (M,g) is a Lorentzian manifold, that is, M admits a smooth symmetric tensor field g of type (0,2) such that for each point $p \in M$, the tensor $g_p: T_pM \times T_pM \to \Re$ is a non degenerate inner product of signature (-,+,...,+), where T_pM denotes the tangent space of M at p and \Re is the real number. A non-zero vector field $v \in T_pM$ is said to be timelike (resp., non-spacelike, null, and spacelike) if it satisfies $g_p(v,v) < 0$ (resp., $\leq 0, =, > 0$) [30].

Definition 1. A non-vanishing vector field ρ on a Lorentzian manifold (M,g) defined by $g(X,\rho) = A(X), \ \forall \ X \in \chi(M)$ is said to be a concircular vector field [41] if

$$(\nabla_X A)(Y) = \alpha \left\{ g(X, Y) + \omega(X) A(Y) \right\},\,$$

where α is a non-zero scalar and ω is a closed 1-form.

If the Lorentzian manifold M admits a unit timelike concircular vector field ξ , called the *generator* of the manifold, then we have

$$g(\xi,\xi) = -1, \ g(X,\xi) = \eta(X), \ (\nabla_X \eta)(Y) = \alpha \{g(X,Y) + \eta(X)\eta(Y)\},$$
 (2.1)

where $\alpha \neq 0$ and η is a non-zero 1-form. It is obvious from (2.1) that

$$\nabla_X \xi = \alpha \{ X + \eta(X)\xi \} \tag{2.2}$$

for all vector field X on M. Here ∇ denotes the operator of the covariant differentiation with respect to the Lorentzian metric g and α satisfies

$$\nabla_X \alpha = (X\alpha) = d\alpha(X) = \rho \eta(X), \tag{2.3}$$

 ρ being a certain scalar function given by $\rho = -(\xi \alpha)$. If we put

$$\alpha \, \phi X = \nabla_X \xi, \tag{2.4}$$

then (2.2) and (2.4) give

$$\phi X = X + \eta(X)\xi,\tag{2.5}$$

where ϕ is a (1,1)-tensor, called the structure tensor of M. Thus the Lorentzian manifold M together with a unit timelike concircular vector field ξ , its associated 1-form η and (1,1)-tensor field ϕ is said to be a Lorentzian concircular structure manifold (briefly $(LCS)_n$ -manifold) [33]. Especially, if we take $\alpha = 1$, then we can

obtain the LP-Sasakian structure of Matsumoto [27]. For details, we refer [11] and the references therein. In an $(LCS)_n$ -manifold, n > 2, the following relations

$$\eta(\xi) = -1, \quad \phi\xi = 0, \quad \phi^2 X = X + \eta(X)\xi,$$

$$\eta(\phi X) = 0, \quad g(\phi X, \phi Y) = g(X, Y) + \eta(X)\eta(Y),$$
(2.6)

$$\eta(R(X,Y)Z) = (\alpha^2 - \rho) \{ g(Y,Z)\eta(X) - g(X,Z)\eta(Y) \}, \tag{2.7}$$

$$R(X,Y)\xi = (\alpha^2 - \rho) \{ \eta(Y)X - \eta(X)Y \},$$
 (2.8)

$$R(\xi, X)Y = (\alpha^2 - \rho) \{ g(X, Y)\xi - \eta(Y)X \}, \tag{2.9}$$

$$(\nabla_X \phi)(Y) = \alpha \{ g(X, Y)\xi + 2\eta(X)\eta(Y)\xi + \eta(Y)X \}, \qquad (2.10)$$

$$S(X,\xi) = (n-1)(\alpha^2 - \rho)\eta(X), \tag{2.11}$$

$$S(\phi X, \phi Y) = S(X, Y) + (n-1)(\alpha^2 - \rho)\eta(X)\eta(Y), \tag{2.12}$$

$$(X\rho) = d\rho(X) = \beta\eta(X), \tag{2.13}$$

hold for any vector fields X, Y, Z on M, $\beta = -(\xi \rho)$ is a scalar function [34]. Here R is the curvature tensor corresponding to the Lorentzian metric g and S is the Ricci tensor corresponding to the Ricci operator Q, that is, S(X,Y) = g(QX,Y).

3 η -Ricci solitons on $(LCS)_n$ -manifolds (M, ϕ, ξ, η, g)

Let (M, ϕ, ξ, η, g) be an $(LCS)_n$ -manifold, then the quartet (g, ξ, λ, μ) on M is said to be an η -Ricci soliton [18] if it satisfies

$$L_{\xi}g + 2S + 2\lambda g + 2\mu \eta \otimes \eta = 0, \tag{3.1}$$

where L_{ξ} is the Lie-derivative operator along the vector field ξ , λ and μ are real constants. We write $L_{\xi}g$ in term of the Levi-Civita connection ∇ as:

$$(L_{\xi}g)(X,Y) = g(\nabla_Y \xi, X) + g(Y, \nabla_X \xi) = 2\alpha[g(X,Y) + \eta(X)\eta(Y)], \tag{3.2}$$

where equations (2.1) and (2.2) are used. In view of (3.1) and (3.2), we get

$$QX = -(\alpha + \lambda)X - (\alpha + \mu)\eta(X)\xi, \tag{3.3}$$

$$r = -n\lambda - (n-1)\alpha + \mu, (3.4)$$

$$S(X,Y) = -(\alpha + \lambda)g(X,Y) - (\alpha + \mu)\eta(X)\eta(Y), \tag{3.5}$$

$$S(X,\xi) = S(\xi,X) = (\mu - \lambda)\eta(X), \tag{3.6}$$

$$\mu - \lambda = (n-1)(\alpha^2 - \rho) \tag{3.7}$$

for any $X,Y \in \chi(M)$. Here r is the scalar curvature of (M,g) and is defined by $r = S(e_i, e_i)_{i=1}^n$, where $\{e_1, e_2, ..., e_n\}$ is a set of linearly independent vector fields on M. In particular, if $\mu = 0$ then the triplet (g, ξ, λ) is a Ricci soliton [20] and it is called shrinking, steady or expanding according as λ is negative, zero or positive, respectively [19].

Proposition 2. The following relations hold on an $(LCS)_n$ -manifold (M, ϕ, ξ, η, g)

(i)
$$\eta(\nabla_X \xi) = 0$$
, (ii) $\nabla_{\xi} \xi = 0$, (iii) $\nabla_{\xi} \eta = 0$, (iv) $L_{\xi} \phi = 0$,

(v)
$$L_{\xi}\eta = 0$$
, (vi) $L_{\xi}(\eta \otimes \eta) = 0$, (vii) $L_{\xi}g = 2\alpha(g + \eta \otimes \eta)$.

Also, if η is closed the distribution is involuntary and the Nijenhuis tensor of ϕ vanishes identically, i.e., the structure is normal.

Proof. Since $(\nabla_X \phi)(Y) = \alpha \{g(X,Y)\xi + 2\eta(X)\eta(Y)\xi + \eta(Y)X\}$ and therefore

$$\nabla_X \phi Y - \phi(\nabla_X Y) = \alpha \{ g(X, Y)\xi + 2\eta(X)\eta(Y)\xi + \eta(Y)X \}.$$

Taking $Y = \xi$ in the above equation, we have $\phi(\nabla_X \xi) = \alpha \phi X$. Applying ϕ on either sides, we get

$$\nabla_X \xi + \eta(\nabla_X \xi) \xi = \alpha \{ X + \eta(X) \xi \}.$$

Since $X(g(\xi,\xi)) = 2g(\nabla_X \xi, \xi)$ and $\nabla_X \xi = \alpha \phi X$, therefore $\eta(\nabla_X \xi) = 0$, and hence $\nabla_{\xi} \xi = 0$. As we know that $\eta(X) = g(X,\xi)$ and ∇ is metric, then we have $\nabla_{\xi} \eta = 0$. The Lie-derivative of ϕ along ξ gives

$$(L_{\xi}\phi)(X) = [\xi, \phi X] - \phi([\xi, X]) = \nabla_{\xi}\phi X - \phi(\nabla_{\xi}X) = (\nabla_{\xi}\phi)(X) = 0, i.e., L_{\xi}\phi = 0.$$

Again, $(L_{\xi}\eta)(X) = \xi(\eta(X) - \eta([\xi, X])) = g(X, \nabla_{\xi}\xi) + g(\nabla_{X}\xi, \xi) = 0$, i.e., $L_{\xi}\eta = 0$. Also, if $L_{\xi}\eta = 0$, then $L_{\xi}\eta \otimes \eta = 0$, as $L_{\xi}\eta \otimes \eta = (L_{\xi}\eta) \otimes \eta + \eta \otimes (L_{\xi}\eta)$. Again $(L_{\xi}g)(X,Y) = \xi g(X,Y) - g([\xi,X],Y) - g(X,[\xi,Y])$, implies that

$$(L_{\xi}g)(X,Y) = \alpha[g(\phi X,Y) + g(X,\phi Y)].$$

Using (2.5), we get

$$L_{\xi}g = 2\alpha(g + \eta \otimes \eta).$$

It is well known that

$$(d\eta)(X,Y) = X(\eta(Y)) - Y(\eta(X)) - \eta([X,Y])$$

implies that

$$(d\eta)(X,Y) = q(Y,\nabla_X\xi) - q(X,\nabla_Y\xi)$$

$$= \alpha \{g(Y, X) + \eta(X)\eta(Y)\} - \alpha \{g(X, Y) + \eta(X)\eta(Y)\} = 0, i.e., d\eta = 0.$$

Finally,

$$N_{\phi}(X,Y) = \phi^{2}[X,Y] + [\phi X, \phi Y] - \phi[\phi X, Y] - \phi[X, \phi Y]$$

yields that

$$N_{\phi}(X,Y) = \phi^{2}(\nabla_{X}Y) - \phi^{2}(\nabla_{Y}X) - \phi(\nabla_{X}\phi Y) + \phi(\nabla_{Y}\phi X) + \nabla_{\phi X}\phi Y - \phi(\nabla_{\phi X}Y) - \nabla_{\phi Y}\phi X + \phi(\nabla_{\phi Y}X) = 0,$$

i.e., the structure is normal.

In [7] and [8], Shaikh et al. proved that a second order parallel symmetric tensor on a Lorentzian concircular structure manifold with $\alpha^2 - \rho \neq 0$ is a constant multiple of the Ricci tensor. Thus we apply this concept for η -Ricci soliton and prove the following results.

Theorem 3. Let (M, ϕ, ξ, η, g) is an $(LCS)_n$ -manifold. If the symmetric tensor field $h = L_{\xi}g + 2S + 2\mu \eta \otimes \eta$ of type (0,2) is parallel with respect to the Levi-Civita connection ∇ , then (g, ξ, λ) on M yields an η -Ricci soliton.

Proof. In consequence of (3.2), we have

$$h(X,Y) = 2\alpha \, g(X,Y) + 2S(X,Y) + 2(\alpha + \mu)\eta(X)\eta(Y).$$

Replacing X and Y with ξ in the above equation, we get

$$h(\xi,\xi) = (L_{\xi}g)(\xi,\xi) + 2S(\xi,\xi) + 2\mu\eta(\xi)\eta(\xi) = 2\lambda,$$

and therefore

$$\lambda = \frac{1}{2}h(\xi, \xi).$$

From [7] and [8], we have

$$h(X,Y) = -h(\xi,\xi)g(X,Y), \forall X, Y \in \chi(M).$$

Thus, $L_{\xi}g + 2S + 2\mu\eta \otimes \eta = -2\lambda g$. Hence the statement of the theorem.

If $\mu = 0$, it follows that $L_{\xi}g + 2S + 2(n-1)(\alpha^2 - \rho)g = 0$. Thus we conclude the following corollary:

Corollary 4. On an $(LCS)_n$ -manifold (M, ϕ, ξ, η, g) with the property that a symmetric tensor field $h = L_{\xi}g + 2S$ of type (0,2) is parallel with respect to the Levi-Civita connection associated to g, then the equation (3.1), for $\mu = 0$ and $\lambda = (n-1)(\alpha^2 - \rho)$, define a Ricci soliton.

An $(LCS)_n$ manifold (M, ϕ, ξ, η, g) is said to be quasi-Einstein if its Ricci tensor S is a linear combination (with real scalars λ and $\mu(\neq 0)$) of g and the tensor product of a non-zero 1-form η satisfying (2.1) and for an Einstein if S is collinear with g [6]. From (3.5), we state the results in the form of corollary as:

Corollary 5. If the equation (3.5) define an η -Ricci soliton on an $(LCS)_n$ -manifold, then (M, g) is quasi-Einstein.

Next, we prove the following theorem as:

Theorem 6. Let (g, ξ, λ, μ) is an η -Ricci soliton on an $(LCS)_n$ -manifold (M, ϕ, ξ, η, g) . If the Ricci tensor S of M is

- (i) cyclic parallel, then $\mu = -\alpha \frac{\rho}{2\alpha}$, and $\lambda = -\frac{\rho}{2\alpha}(1 2\alpha(n-1)) \alpha(1 + (n-1)\alpha)$.
- (ii) cyclic parallel η -recurrent, then there does not exist an η -Ricci soliton or a Ricci soliton with the potential vector field ξ on M.

Proof. It is well known that

$$(\nabla_X S)(Y, Z) = X(S(Y, Z)) - S(\nabla_X Y, Z) - S(Y, \nabla_X Z). \tag{3.8}$$

In view of (2.2), (2.3) and (3.5), the equation (3.8) reduces to

$$(\nabla_X S)(Y, Z) = -\rho g(\phi Y, \phi Z)\eta(X) - \alpha(\alpha + \mu)\{g(\phi X, \phi Z)\eta(Y) + g(\phi X, \phi Y)\eta(Z)\}.$$
(3.9)

If possible, we suppose that the Ricci tensor S of M is cyclic parallel, that is, $(\nabla_X S)(Y,Z) + (\nabla_Y S)(Z,X) + (\nabla_Z S)(Z,Y) = 0 \ \forall X,Y,Z \in \chi(M)$. The cyclic sum of (3.9) together with the last argument give

$$-\rho\{g(\phi Y, \phi Z)\eta(X) + g(\phi X, \phi Z)\eta(Y) + g(\phi Y, \phi X)\eta(Z)\} -2\alpha(\alpha + \mu)\{g(\phi X, \phi Z)\eta(Y) + g(\phi X, \phi Y)\eta(Z) + g(\phi Y, \phi Z)\eta(X)\} = 0.$$
(3.10)

Replacing $Z = \xi$ in (3.10), we have

$$(\rho + 2\alpha(\alpha + \mu))g(\phi X, \phi Y) = 0$$

for any $X,Y\in\chi(M)$. It follows that $\rho+2\alpha(\alpha+\mu)=0$ and thus (3.7) gives $\mu=-\alpha-\frac{\rho}{2\alpha}$, and $\lambda=-\frac{\rho}{2\alpha}(1-2\alpha(n-1))-\alpha(1+(n-1)\alpha)$. To prove the result (ii), we suppose that M is η -recurrent, that is, $(\nabla_X S)(Y,Z)=\eta(X)S(Y,Z)\ \forall\ X,\ Y,\ Z\in\chi(M)$. If the Ricci tensor S of the η -recurrent $(LCS)_n$ -manifold is cyclic parallel, then

$$\eta(X)S(Y,Z) + \eta(Y)S(Z,X) + \eta(Z)S(X,Y)
= -\rho\{g(\phi Y, \phi Z)\eta(X) + g(\phi X, \phi Z)\eta(Y) + g(\phi Y, \phi X)\eta(Z)\}
-2\alpha(\alpha + \mu)\{g(\phi X, \phi Z)\eta(Y) + g(\phi X, \phi Y)\eta(Z) + g(\phi Y, \phi Z)\eta(X)\} = 0$$
(3.11)

for any $X, Y, Z \in \chi(M)$. Taking $Y = Z = \xi$ in (3.11) and then using (3.5) and (3.6), we get $3(\mu - \lambda)\eta(X) = 0$ for any $X \in \chi(M)$. It follows that $\lambda = \mu$, which is a contradiction. Thus the statements of the theorem are proved.

In view of the Theorem 6, we can state the following corollaries.

Corollary 7. In an $(LCS)_n$ -manifold (M, ϕ, ξ, η, g) equipped with a cyclic parallel Ricci tensor, there is no Ricci soliton with the potential vector field ξ .

Corollary 8. If an $(LCS)_n$ -manifold (M, ϕ, ξ, η, g) possesses a cyclic parallel η -recurrent Ricci tensor, then M does not admit η -Ricci soliton or Ricci soliton with the potential vector field ξ .

Theorem 9. Let (g, ξ, λ, μ) be an η -Ricci soliton on an $(LCS)_n$ -manifold (M, ϕ, ξ, η, g) . If the Ricci tensor S of M satisfies

- (i) $\nabla S = 0$, then $\mu = -\alpha + \frac{\xi \alpha}{\alpha}$, and $\lambda = \frac{\xi \alpha}{\alpha} \alpha (n-1)(\alpha^2 \rho)$. (ii) $\nabla S = \eta \otimes S$, then there does not exist η -Ricci soliton or Ricci soliton with the
- (ii) $\nabla S = \eta \otimes S$, then there does not exist η -Ricci soliton or Ricci soliton with the potential vector field ξ on M.

Proof. Let us suppose that the Ricci tensor S of M satisfies $\nabla S = 0$, that is, M is Ricci symmetric $(LCS)_n$ -manifold. Replacing Z by ξ in (3.10), we obtain

$$\{\alpha(\alpha + \mu) + \rho\}g(\phi X, \phi Y) = 0, \quad \forall X, Y \in \chi(M).$$

It follows that $\mu = -\alpha + \frac{\xi \alpha}{\alpha}$, and $\lambda = \frac{\xi \alpha}{\alpha} - \alpha - (n-1)(\alpha^2 - \rho)$, the statement (i). Let M is η -recurrent $(LCS)_n$ -manifold, that is, $\nabla S = \eta \otimes S$. From (3.5) we obtain $\lambda = \mu$, which is not possible. Thus our theorem is proved.

In consequence of the Theorem 9, we state the following corollaries.

Corollary 10. If an $(LCS)_n$ -manifold (M, ϕ, ξ, η, g) is Ricci symmetric, then there is no Ricci soliton with the potential vector field ξ on M.

Corollary 11. If an $(LCS)_n$ -manifold (M, ϕ, ξ, η, g) is admitting an η -recurrent Ricci tensor, then there does not exist η -Ricci soliton or Ricci soliton with the potential vector field ξ on M.

4 η -Ricci solitons satisfying certain curvature conditions on the $(LCS)_n$ -manifolds (M, ϕ, ξ, η, g)

In 1970, Pokhariyal et al. [32], defined and studied the properties of W_2 -curvature tenor, and is given by

$$W_2(X,Y)Z = R(X,Y)Z + \frac{1}{n-1} \{g(X,Z)QY - g(Y,Z)QX\}$$
 (4.1)

for $X, Y, Z \in \chi(M)$.

Theorem 12. If an $(LCS)_n$ -manifold (M, ϕ, ξ, η, g) equipped with an η -Ricci soliton (g, ξ, λ, μ) satisfies $R(\xi, X) \cdot S = 0$, then $\mu = -\alpha$ and $\lambda = -\alpha - (n-1)(\alpha^2 - \rho)$.

Proof. Suppose M satisfies $R(\xi, X) \cdot S = 0$. Then we have

$$S(R(\xi, X)Y, Z) + S(Y, R(\xi, X)Z) = 0$$

for any $X, Y, Z \in \chi(M)$. Using (2.9) and (3.5) in the above equation, we yield

$$(\alpha^{2} - \rho)(\mu + \alpha)\{g(X, Y)\eta(Z) + g(X, Z)\eta(Y) + 2\eta(X)\eta(Y)\eta(Z)\} = 0.$$

For $Z = \xi$, we have

$$(\alpha^{2} - \rho)(\mu + \alpha)\{g(X, Y) + \eta(X)\eta(Y)\} = 0.$$

It is obvious from the above equation that $\mu = -\alpha$, provided $\alpha^2 - \rho \neq 0$. Equation (3.7) together with the last result give $\lambda = -\alpha - (n-1)(\alpha^2 - \rho)$. Hence the statement of the theorem is proved.

With the help of the Theorem 12, we state the following corollaries.

Corollary 13. Let an $(LCS)_n$ -manifold (M, ϕ, ξ, η, g) equipped with the η -Ricci soliton satisfies $R(\xi, X) \cdot S = 0$. Then there is no Ricci soliton on M with the potential vector field ξ .

Corollary 14. An $(LCS)_n$ -manifold (M, ϕ, ξ, η, g) together with the η -Ricci soliton (g, ξ, λ, μ) and $R(\xi, X) \cdot S = 0$ is Einstein.

Theorem 15. If an $(LCS)_n$ -manifold (M, ϕ, ξ, η, g) with an η -Ricci soliton satisfies $W_2(\xi, X) \cdot S = 0$, then either $\mu = -\alpha$, $\lambda = \alpha - (n-1)(\alpha^2 - \rho)$ or $\lambda = -\alpha$, $\mu = -\alpha + (n-1)(\alpha^2 - \rho)$.

Proof. If possible, we assume that the $(LCS)_n$ -manifolds endowed with the η -Ricci solitons are W_2 -Ricci symmetric, that is, $W_2(\xi, X) \cdot S = 0$. Thus we have

$$S(W_2(\xi, X)Y, Z) + S(Y, W_2(\xi, X)Z) = 0 (4.2)$$

for any $X, Y, Z \in \chi(M)$. Using (3.5) and (4.1) in (4.2), we get

$$(\alpha^{2} - \rho) \left[g(X,Y)S(\xi,Z) + g(X,Z)S(Y,\xi) - S(X,Z)\eta(Y) - S(X,Y)\eta(Z) \right] - \frac{1}{n-1} \left[(\alpha + \lambda) \{ S(X,Z)\eta(Y) + \eta(Z)S(Y,X) \} + (\alpha + \mu) \{ \eta(X)\eta(Y)S(\xi,Z) + \eta(X)\eta(Z)S(Y,\xi) \} + (\mu - \lambda) \{ g(X,Y)S(\xi,Z) + g(X,Z)S(Y,\xi) \} \right] = 0.$$
 (4.3)

In consequence of (3.5)-(3.7), equation (4.3) consider the form

$$\frac{(\alpha + \mu)(\alpha + \lambda)}{n - 1} \{ \eta(Y)g(X, Y) + \eta(Z)g(X, Y) + 2\eta(X)\eta(Y)\eta(Z) \} = 0.$$
 (4.4)

Taking $Z = \xi$ in (4.4), we yield

$$\frac{(\alpha + \mu)(\alpha + \lambda)}{n - 1}g(\phi X, \phi Y) = 0 \tag{4.5}$$

for any $X,Y\in\chi(M)$. In general, $g\neq 0$ on M, therefore (4.5) shows that either $\mu=-\alpha$ or $\lambda=-\alpha$, for n>1. These results together with (3.7) reflect that either $\mu=-\alpha,\,\lambda=\alpha-(n-1)(\alpha^2-\rho)$ or $\lambda=-\alpha,\,\mu=-\alpha+(n-1)(\alpha^2-\rho)$ on M. \square

Corollary 16. If an $(LCS)_n$ -manifold (M, ϕ, ξ, η, g) satisfies $W_2(\xi, X) \cdot S = 0$, then there is no Ricci soliton with the potential vector field ξ on M.

5 Examples of η -Ricci soliton on $(LCS)_n$ -manifolds

Example 17. Let a 3-dimensional manifold $M = \{(x, y, z) \in \mathbb{R}^3 : z \neq 0\}$, where (x, y, z) are the standard coordinates in \mathbb{R}^3 . Let $\{E_1, E_2, E_3\}$ be a linearly independent global frame on M given by

$$E_1 = e^z \left(x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} \right), \qquad E_2 = e^z \frac{\partial}{\partial y}, \qquad E_3 = e^{2z} \frac{\partial}{\partial z}.$$

Assume that g be the Lorentzian metric on M, and is defined by

$$g(E_1, E_3) = g(E_2, E_3) = g(E_1, E_2) = 0, \ g(E_1, E_1) = g(E_2, E_2) = 1, \ g(E_3, E_3) = -1.$$

Let η be the 1-form defined by $\eta(V) = g(V, E_3)$ for any $V \in \chi(M)$ and ϕ is a (1, 1)-tensor field defined by $\phi E_1 = E_1$, $\phi E_2 = E_2$, $\phi E_3 = 0$. Then using the linearity of ϕ and g we have

$$\eta(E_3) = -1, \quad \phi^2 V = V + \eta(V) E_3, \quad g(\phi V, \phi W) = g(V, W) + \eta(V) \eta(W)$$

for any $V, W \in \chi(M)$. Let ∇ be the Levi-Civita connection with respect to the Lorentzian metric g and R be the curvature tensor of g. Then we obtain

$$[E_1, E_2] = -e^z E_2,$$
 $[E_1, E_3] = -e^{2z} E_1,$ $[E_2, E_3] = -e^{2z} E_2.$

Taking $E_3 = \xi$ and using the Koszul's formula for the Lorentzian metric g, we have

$$\nabla_{E_1} E_3 = -e^{2z} E_1, \qquad \nabla_{E_1} E_1 = -e^{2z} E_3, \qquad \nabla_{E_1} E_2 = 0,$$

$$\nabla_{E_2} E_3 = -e^{2z} E_2, \qquad \nabla_{E_3} E_2 = 0, \qquad \nabla_{E_2} E_1 = e^z E_2,$$

$$\nabla_{E_3} E_3 = 0, \qquad \nabla_{E_2} E_2 = e^{2z} E_3 - e^z E_1, \qquad \nabla_{E_3} E_1 = 0.$$

From the above equations, it can be easily seen that $E_3 = \xi$ is a unit timelike concircular vector field and hence the structure (ϕ, ξ, η, g) is an $(LCS)_3$ -structure on M. Consequently, $M^3(\phi, \xi, \eta, g)$ is an $(LCS)_3$ -manifold with $\alpha = -e^{2z} \neq 0$ such that $(X\alpha) = \rho\eta(X)$, where $\rho = 2e^{4z}$. Using the above relations, we can easily calculate the non-vanishing components of the curvature tensor R and the Ricci tensor S as follows:

$$R(E_2, E_3)E_3 = -e^{4z}E_2, \quad R(E_1, E_3)E_3 = -e^{4z}E_1, \quad R(E_1, E_2)E_2 = \{e^{4z} - e^{2z}\}E_1,$$

$$R(E_2, E_3)E_2 = e^{4z}E_3 - e^{3z}E_1, \quad R(E_1, E_3)E_1 = -e^{4z}E_3, \quad R(E_2, E_1)E_1 = \{e^{4z} - e^{2z}\}E_2,$$

$$S(E_1, E_1) = -e^{2z}, \quad S(E_2, E_2) = -e^{2z}, \quad S(E_3, E_3) = -2e^{4Z}.$$

Also from the equation (3.5), we can see that

$$S(E_1, E_1) = -(\alpha + \lambda),$$
 $S(E_2, E_2) = -(\alpha + \lambda),$ $S(E_3, E_3) = (\lambda - \mu).$

Thus we conclude from the last two expressions that for $\alpha = -e^{2z}$, $\lambda = 2e^{2z}$ and $\mu = 2\{e^{2z} + e^{4z}\}$, the structure (g, ξ, λ, μ) is an η -Ricci soliton on $M^3(\phi, \xi, \eta, g)$.

Example 18. Let a 3-dimensional manifold $M = \{(x, y, z) \in \mathbb{R}^3 : z \neq 0\}$, where (x, y, z) are the standard coordinates in \mathbb{R}^3 . In [35], Shaikh defined the linearly independent vector fields $\{E_1, E_2, E_3\}$ on M as:

$$E_1 = e^{-z} \left(x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} \right), \qquad E_2 = e^{-z} \frac{\partial}{\partial y}, \qquad E_3 = e^{-2z} \frac{\partial}{\partial z}.$$

Let g be the Lorentzian metric defined by

$$g(E_1, E_3) = g(E_2, E_3) = g(E_1, E_2) = 0, \ g(E_1, E_1) = g(E_2, E_2) = 1, \ g(E_3, E_3) = -1.$$

Let η be the 1-form defined by $\eta(V) = g(V, E_3)$ for any $V \in \chi(M)$. Let ϕ be the (1,1)-tensor field defined by $\phi E_1 = E_1$, $\phi E_2 = E_2$, $\phi E_3 = 0$. Then using the linearity of ϕ and g we have

$$\eta(E_3) = -1, \quad \phi^2 V = V + \eta(V) E_3, \quad g(\phi V, \phi W) = g(V, W) + \eta(V) \eta(W),$$

for any $V,W \in \chi(M)$. Let ∇ be the Levi-Civita connection with respect to the Lorentzian metric g and R be the curvature tensor of g. Then we obtain

$$[E_1, E_2] = -e^{-z}E_2,$$
 $[E_1, E_3] = -e^{-2z}E_1,$ $[E_2, E_3] = -e^{-2z}E_2.$

Taking $E_3 = \xi$ and using the Koszul's formula for the Lorentzian metric g, we have

$$\nabla_{E_1} E_3 = e^{-2z} E_1, \qquad \nabla_{E_1} E_1 = e^{-2z} E_3, \qquad \nabla_{E_1} E_2 = 0,$$

$$\nabla_{E_2} E_3 = e^{-2z} E_2, \qquad \nabla_{E_3} E_2 = 0, \qquad \nabla_{E_2} E_1 = e^{-2z} E_2,$$

$$\nabla_{E_2} E_3 = 0, \qquad \nabla_{E_2} E_2 = e^{-2z} E_3 - e^{-z} E_1, \qquad \nabla_{E_2} E_1 = 0.$$

From the above equations, it can be easily seen that $E_3 = \xi$ is a unit timelike concircular vector field and hence (ϕ, ξ, η, g) is an $(LCS)_3$ -structure on M. Thus $M^3(\phi, \xi, \eta, g)$ is an $(LCS)_3$ -manifold with $\alpha = e^{-2z} \neq 0$ such that $(X\alpha) = \rho \eta(X)$, where $\rho = 2e^{-4z}$. Using the above relations, we can easily calculate the non-vanishing components of the curvature tensor R and the Ricci tensor S as follows:

$$R(E_2, E_3)E_3 = e^{-4z}E_2, \quad R(E_1, E_3)E_3 = e^{-4z}E_1, \quad R(E_1, E_2)E_2 = \{e^{-4z} - e^{-2z}\}E_1,$$

$$R(E_2, E_3)E_2 = e^{-4z}E_3, \quad R(E_1, E_3)E_1 = e^{-4z}E_3, \quad R(E_1, E_2)E_1 = \{-e^{-4z} - e^{-2z}\}E_2,$$

$$S(E_1, E_1) = 2e^{-4z} - e^{-2z}, \quad S(E_2, E_2) = 2e^{-4z} - e^{-2z}, \quad S(E_3, E_3) = 2e^{-4z}.$$

Also from (3.5), we calculate that

$$S(E_1, E_1) = -(\alpha + \lambda), \quad S(E_2, E_2) = -(\alpha + \lambda), \quad S(E_3, E_3) = (\lambda - \mu).$$

We conclude from (3.5) that for $\alpha = e^{2z}$, $\lambda = -2e^{-4z}$ and $\mu = -4e^{-4z}$, the data (g, ξ, λ, μ) admits an η -Ricci soliton on $M^3(\phi, \xi, \eta, g)$.

Acknowledgement. The authors are thankful to the Editor and anonymous referees for their valuable comments.

References

- C. S. Bagewadi and G. Ingalahalli, Ricci soliton in Lorentzian α-Sasakian manifolds, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 28(2012), no. 1, 59-68. MR2942704. Zbl 1265.53036.
- [2] C. S. Bagewadi, G. Ingalahalli and S. R. Ashoka, A Study of Ricci soliton in Kenmotsu manifolds, ISRN Geometry, (2013). Article ID 412593, 6 pages. MR3092012. Zbl 1266.53032.
- [3] C. L. Bejan and M. Crasmareanu, Second order parallel tensor and Ricci solitons in 3-dimensional normal paracontact geometry, Anal. Global Anal. Geom. 46 (2014), 117–127. DOI:10.1007/s10455-014-9414-4. MR3239277. Zbl 1312.53049.
- [4] C. Calin and M. Crasmareanu, Eta-Ricci soliton on Hopf hypersurfaces in complex space forms, Rev. Roumaine Math. Pures Appl. 57(2012), no. 1, 55-63. MR3051979. Zbl 1389.53084.
- [5] C. Calin, M. Crasmareanu, From the Eisenhart problem to Ricci soliton in f-Kenmotsu manifolds, Bull. Malaysian Math. Sci. Soc. 33(2010), no. 3, 361-368. MR2732157. Zbl 1204.53024.
- [6] G. Calvaruso and D. Perrone, Geometry of H-paracontact metric manifolds. Publ. Math. Debrecen 86 (2015), no. 3-4, 325–346. MR3346090. Zbl 1374.53111.
- [7] S. Chandra, S. K. Hui and A. A. Shaikh, Second order parallel tensors and Ricci solitons on $(LCS)_n$ -manifolds, Commun. Korean Math. Soc. **30**(2015), no. 2, 123-130. MR3346486. Zbl 1338.53055.
- [8] S. K. Chaubey and A. A. Shaikh, On 3-dimensional lorentzian concircular structure manifolds, Commun. Korean Math. Soc., (2018) https://doi.org/10.4134/CKMS.c180044.
- [9] S. K. Chaubey and S. K. Yadav, W-semisymmetric generalized Sasakian-space-forms, Adv. Pure Appl. Math. (2018) https://doi.org/10.1515/apam-2018-0032.
- [10] S. K. Chaubey, On special weakly Ricci-symmetric and generalized Riccirecurrent trans-Sasakian manifolds, Thai Journal of Mathematics, 18 (2018), no. 3 (in press).
- [11] S. K. Chaubey, Some properties of LP-Sasakian manifolds equipped with m-projective curvature tensor, Bull. Math. Anal. Appl. 3 (2011), no. 4, 50–58. MR 2955373. Zbl 1314.53127.
- [12] S. K. Chaubey, Certain results on N(k)-quasi Einstein manifolds, Afr. Mat. (2018). https://doi.org/10.1007/s13370-018-0631-z.

- [13] S. K. Chaubey, K. K. Baishya and M. Danish Siddiqi, Existence of some classes of N(k)-quasi Einstein manifolds, Bol. Soc. Paran. Mat., doi:10.5269/bspm.41450.
- [14] S. K. Chaubey, On weakly m-projectively symmetric manifolds, Novi Sad J. Math. 42 (2012), no. 1, 67-79. MR2986147. Zbl 1313.53060.
- [15] S. K. Chaubey, Existence of N(k)-quasi Einstein manifolds, Facta Universitatis (NI \check{S}) Ser. Math. Inform. **32** (2017), no. 3, 369–385. MR3719806.
- [16] T. Chave and G. Valent, Quasi-Einstein metrics and their renormalizability properties, Helv. Phys. Acta. **69** (1996), 344-347. MR1440692. Zbl 0865.53039.
- [17] B. Y. Chen and S. Deshmukh, Geometry of compact shrinking Ricci solitons, Balkan J. Geom. Appl. 19(2014), no. 1, 13-21. MR3223305.
- [18] J. T. Cho and M. Kimura, Ricci soliton and real hypersurfaes in a complex space form, Tohoku Math. J. 61(2009), no. 2, 205-212. MR2541405. Zbl 1172.53021.
- [19] B. Chow, P. Lu and L. Ni, Hamilton's Ricci flow, Graduate Studies in Mathematics, 77, AMS, Providence, RI, USA (2006). MR2274812.
- [20] R. S. Hamilton, The Ricci flow on surfaces, Math. and general relativity (Santa Cruz, CA, 1986), 237-262, Contemp. Math. 71, AMS (1988). MR954419. Zbl 0663.53031.
- [21] C. He and M. Zhu, The Ricci soliton on Sasakian manifold, arXiv: 1109.4404v2. (2011). MR3719806. Zbl 1265.53036.
- [22] S. K. Hui, R. S. Lemence and D. Chakraborty, *Ricci solitons on Ricci pseudosymmetric* $(LCS)_n$ -manifolds, Honam Mathematical journal, **40** (2018), 325-346. MR3821461.
- [23] S. K. Hui, R. Prasad and T. Pal, Ricci solitons on submanifolds of $(LCS)_n$ -manifolds, Ganita, **68** (2018), no. 1, 53-63. MR3814887.
- [24] S. K. Hui and M. Atceken, Contact warped product semi-slant submanifolds of $(LCS)_n$ -manifolds, Acta Univ. Sapientiae Math. **3**(2011), no. 2, 212-224. MR2915836. Zbl 1260.53081.
- [25] S. K. Hui, On ϕ -pseudo symmetries of $(LCS)_n$ -manifolds, Kyungpook Math. J. **53**(2013), no. 2, 285-294. MR3078089. Zbl 1286.53038.
- [26] G. Ingalahalli and C. S. Bagewadi, Ricci soliton on α-Sasakian manifolds, ISRN Geometry, Article ID 421384, (2012), 13 pages. http://dx.doi.org/10.5402/2012/421384.

- [27] K. Matsumoto, On Lorentzian almost paracontact manifolds, Bull. Yamagata Univ. Nature. Sci. 12 (1989), 151-156.
- [28] I. Mihai and R. Rosca, On Lorentzian para-Sasakian manifolds, Classical Anal. (1992), 155-169, W.S. Publ., Singapore.
- [29] D. Narain and S. Yadav, On weak Symmetric of Lorentzian concircular structure manifolds, CUBO A Mathematical Journal 15 (2013), no. 2, 33-42. MR3114862. Zbl 1279.53017.
- [30] B. O'Neill, Semi Riemannian geometry with applications to relativity, Academic Press, New York, (1983).
- [31] G. P. Pokhariyal, S. Yadav and S. K. Chaubey, Ricci solitons on trans-Sasakian manifolds, Differential Geometry-Dynamical Systems 20 (2018), pp. 138-158. MR3847743. Zbl 1395.53089.
- [32] G. P. Pokhariyal and R. S. Mishra, The curvature tensor and their relativistic significance, Yokohama Math. J. 18 (1970), 105-108.
- [33] A. A. Shaikh, On Lorentzian almost paracontact manifolds with a structure of the concircular type, Kyungpook Math. J. 43 (2003), 305-314. MR1983436. Zbl 1054.53056.
- [34] A. A. Shaikh, T. Basu and S. Eyasmin, On locally ϕ -symmetric(LCS)_n-manifolds, Int. J. Pure Appl. Math. **41** (2007), no. 8, 1161-1170. MR2384602. Zbl 1136.53030.
- [35] A. A. Shaikh, Some results on $(LCS)_n$ -manifolds, J. Korean Math. Soc. **46** (2009), no. 3, 449-461. MR2515129. Zbl 1193.53094.
- [36] A. A. Shaikh, T. Basu and S. Eyasmin, On the existence of φ -recurrent $(LCS)_n$ -manifolds, Extr. Math. 23 (2008), no. 1, 71-83. Zbl 1165.53013.
- [37] R. Sharma, Certain results on K-contact and (κ, μ) -contact manifolds, J. of Geometry, **89** (2008), 138-147. MR2457028. Zbl 1175.53060.
- [38] M. M. Tripathi, Ricci solitons in contact metric manifolds, (2008) http//arxiv.org/abs/0801.4222.
- [39] S. Yadav, D. L. Suthar and P. K. Dwivedi, *Some results on* $(LCS)_{2n+1}$ -manifolds, International journal of Mathematics, Engineering & Technology **6** (2013), 73-84.
- [40] S. Yadav, P. K. Dwivedi and D. L. Suthar, On $(LCS)_{2n+1}$ manifolds satisfying certain conditions on the concircular curvature tensor, Thai Journal of Mathematics 9 (2011), 597-603. MR2862053. Zbl 1261.53023.

- [41] S. K. Yadav, D. L. Suthar and M. Hailu, On extended generalized φ -recurrent $(LCS)_{2n+1}$ -manifolds, Bol. Soc. Paran. Mat. (3s.) v. **37** (2019), no. 2, 9-21. MR3845155.
- [42] S. K. Yadav, S. K. Chaubey and D. L. Suthar, Some geometric properties of η -Ricci solitons and gradient Ricci solitons on $(lcs)_n$ -manifolds, CUBO A Mathematical Journal, 19 (2017), no. 2, 33-48. MR3800489.
- [43] S. K. Yadav, S. K. Chaubey and D. L. Suthar, Certain results on almost Kenmotsu (κ, μ, ν) -spaces, Konuralp Journal of Mathematics **6** (2018), no. 1, 128-133. MR3800439.

S. K. Yadav

Department of Mathematics, Poornima College of Engineering, Jaipur, 302022, Rajasthan, India. e-mail: prof_sky16@yahoo.com

S. K. Chaubey

Section of Mathematics, Department of Information Technology, Shinas College of Technology, Oman. e-mail: sk22_math@yahoo.co.in

D. L. Suthar

Department of Mathematics, Wollo University, P. O. Box: 1145, Dessie, South Wollo, Ethopia. e-mail: dlsuthar@gmail.com

License

This work is licensed under a Creative Commons Attribution 4.0 International License.
