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Abstract. The aim of this paper is to apply Newton’s method to
solve a kind of nonlinear integral equations of Fredholm type. The
study follows two directions: firstly we give a theoretical result on
existence and uniqueness of solution. Secondly we illustrate with
an example the technique for constructing the functional sequence
that approaches the solution.
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1. Introduction

In this paper we give an existence and uniqueness of solution result
for a nonlinear integral equation of Fredholm type:

(1) φ(x) = f(x) + λ

∫ b

a

K(x, t)φ(t)p dt, x ∈ [a, b], p ≥ 2,

where λ is a real number, the kernel K(x, t) is a continuous function
in [a, b]× [a, b] and f(x) is a given continuous function defined in [a, b].
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There exist various results about Fredholm integral equations of sec-
ond kind

φ(x) = f(x) + λ

∫ b

a

K(x, t, φ(t)) dt, x ∈ [a, b]

when the kernel K(x, t, φ(t)) is linear in φ or it is of Lipschitz type
in the third component. These two points have been considered, for
instance, in [7] or [3] respectively. However the above equation (1) does
not satisfy either of these two conditions.

In [3] we can also find a particular case of (1), for f(x) = 0 and
K(x, t) a degenerate kernel. In this paper we study the general case.
The technique will consist in writing equation (1) in the form:

(2) F (φ) = 0,

where F : Ω ⊆ X → Y is a nonlinear operator defined by

F (φ)(x) = φ(x) − f(x) − λ

∫ b

a

K(x, t)φ(t)p dt, p ≥ 2,

and X = Y = C([a, b]) is the space of continuous functions on the
interval [a, b], equipped with the max-norm

‖φ‖ = max
x∈[0,1]

|φ(x)|, φ ∈ X.

In addition, Ω = X if p ∈ N, p ≥ 2, and when it will be necessary,
Ω = C+([a, b]) = {φ ∈ C([a, b]); φ(t) > 0, t ∈ [a, b]} for p ∈ R, with
p > 2.

The aim of this paper is to apply Newton’s method to equation (2)
in order to obtain a result on the existence and unicity of solution for
such equation. This idea has been considered previously in different
situations [1], [2], [4], [6].

At it is well known, Newton’s iteration is defined by

(3) φn+1 = φn − ΓnF (φn), n ≥ 0,

where Γn is the inverse of the linear operator F ′

φn
. Notice that for each

φ ∈ Ω, the first derivative F ′

φ is a linear operator defined from X to Y
by the following formula:
(4)

F ′

φ[ψ](x) = ψ(x) − λp

∫ b

a

K(x, t)φ(t)p−1ψ(t) dt, x ∈ [a, b], ψ ∈ X.

In the second section we establish two main theorems, one about the
existence of solution for (2) and other about the unicity of solution for
the same equation. In the third section we illustrate these theoretical
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results with an example. For this particular case, we construct some
iterates of Newton’s sequence.

2. The main result

Let us denote N = max
x∈[a,b]

∫ b

a

|K(x, t)| dt. Let φ0 be a function in Ω

such that Γ0 = [F ′

φ0
]−1 exists and ‖Γ0F (φ0)‖ ≤ η. We consider the

following auxiliary scalar function

(5) f(t) = 2(η− t) +M(‖φ0‖+ t)p−2 [(p− 1)ηt− 2(η − t)(‖φ0‖ + t)] ,

where, M = |λ|pN . Let us note that if p ∈ N, with p ≥ 2, f(t) is
a polynomial of degree p − 2. Firstly, we establish the following two
technical lemmas:

Lemma 2.1. Let us assume that the equation f(t) = 0 has at least
a positive real solution and let us denote by R the smaller one. Then
we have the following relations:

i) η < R.
ii) a = M(‖φ0‖ +R)p−1 < 1.

iii) If we denote b =
(p− 1)η

2(‖φ0‖ +R)
and h(t) =

1

1 − t
, then, abh(a) <

1.
iv) R =

η

1 − abh(a)
.

Proof: First, notice that iv) follows from the relation f(R) = 0.
So, as R > 0, we deduce that abh(a) < 1, and iii) holds. Moreover,

1 > 1 − abh(a) > 0, then 1 <
1

1 − abh(a)
, so η < R, and i) also holds.

To prove ii), we consider the relation f(R) = 0 that can be written
in the form:

2(η − R)
[

1 −M(‖φ0‖ +R)p−1
]

= −Mη(p− 1)R(‖φ0‖ +R)p−2 < 0.

As η −R < 0, 1 −M(‖φ0‖ +R)p−1 = 1 − a > 0, and therefore a < 1.

Let us denote B(φ0, R) = {φ ∈ X; ‖φ − φ0‖ < R} and B(φ0, R) =
{φ ∈ X; ‖φ− φ0‖ ≤ R}.

Lemma 2.2. If B(φ0, R) ⊆ Ω, the following conditions hold

i) For all φ ∈ B(φ0, R) there exists [F ′

φ]−1 and ‖[F ′

φ]
−1‖ ≤ h(a).
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ii) If φn, φn−1 ∈ B(φ0, R), then

‖F (φn)‖ ≤ (p− 1)a

2(‖φ0‖ +R)
‖φn − φn−1‖2.

Proof: To prove i) we apply the Banach lemma on invertible oper-
ators [5]. Taking into account

(I − F ′

φ)ψ(x) = λp

∫ b

a

K(x, t)φ(t)p−1ψ(t) dt,

then

‖I − F ′

φ‖ ≤ |λ|pN‖φ‖p−1 ≤M(‖φ0‖ +R)p−1 = a < 1,

therefore, there exists [F ′

φ]
−1 and ‖[F ′

φ]−1‖ ≤ 1

1 − a
= h(a).

To prove ii), using Taylor’s formula, we have

F (φn)(x) =

∫ 1

0

[F ′

φn−1+s(φn−φn−1)
− F ′

φn−1
](φn − φn−1)(x) ds

= −λp
∫ 1

0

∫ b

a

K(x, t)
[

ρn(s, t)p−1 − φn−1(t)
p−1
]

(φn(t) − φn−1(t)) dt ds,

−λp
∫ 1

0

∫ b

a

K(x, t)

[

p−2
∑

j=0

ρn(s, t)p−2−jφn−1(t)
j

]

[φn(t)−φn−1(t)]
2s dt ds,

where ρn(s, t) = φn−1(t) + s(φn − φn−1) and we have considered the
equality

xp−1 − yp−1 =

(

p−2
∑

j=0

xp−2−jyj

)

(x− y), x, y ∈ R.

As φn−1, φn ∈ B(φ0, R), for each s ∈ [0, 1], ρn(s, ·) ∈ B(φ0, R), then
‖ρn(s, ·)‖ ≤ ‖φ0‖ +R. Consequently

‖F (φn)‖ ≤ |λ|pN
2

(

p−2
∑

j=0

(‖φ0‖ +R))p−2−j‖φn−1‖j

)

‖φn − φn−1‖2

≤ |λ|p(p− 1)N

2
[‖φ0‖+R]p−2‖φn−φn−1‖2 =

(p− 1)a

2(‖φ0‖ +R)
‖φn−φn−1‖2,

and the proof is complete.

Next, we give the following results on existence and uniqueness of
solutions for the equation (2). Besides, we obtain that the sequence
given by Newton’s method has R-order two.
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Theorem 2.3. Let us assume that equation f(t) = 0, with f defined
in (5) has at least a positive solution and let R be the smaller one. If

B(φ0, R) ⊆ Ω, then there exists at least a solution φ∗ of (2) in B(φ0, R).
In addition, the Newton’s sequence (3) converges to φ∗ with at least R-
order two.

Proof: Firstly, as ‖φ1−φ0‖ ≤ η < R, we have φ1 ∈ B(φ0, R). Then,
Γ1 exists and ‖Γ1‖ ≤ h(a). In addition,

‖F (φ1)‖ ≤ (p− 1)a

2(‖φ0‖ +R)
‖φ1 − φ0‖2 = abη

and therefore

‖φ2 − φ1‖ ≤ abh(a)η.

Then, applying iv) from Lemma 2.1,

‖φ2 − φ0‖ ≤ ‖φ2 − φ1‖ + ‖φ1 − φ0‖ ≤ (1 − (abh(a))2)R < R,

and we have that x2 ∈ B(φ0, R). By induction is easy to prove that

(6) ‖φn − φn−1‖ ≤ (abh(a))2n−1
−1‖φ1 − φ0‖.

In addition, taking into account Bernoulli’s inequality, we also have:

‖φn − φ0‖ ≤
(

n−1
∑

j=0

(abh(a))2j
−1

)

‖φ1 − φ0‖ <
(

∞
∑

j=0

(abh(a))2j
−1

)

η

<

(

∞
∑

j=0

(abh(a))j

)

η = R

Consequently, φn ∈ B(φ0, R) for all n ≥ 0.
Next, we prove that {φn} is a Cauchy sequence. From (6), Lemma

2.1 and Bernouilli’s inequality, we deduce

‖φn+m−φn‖ ≤ ‖φn+m−φn+m−1‖+‖φn+m−1−φn+m−2‖+· · ·+‖φn−φn−1‖

≤
[

(abh(a))2n+m−1
−1 + (abh(a))2n+m−2

−1 + · · ·+ (abh(a))2n
−1
]

‖φ1−φ0‖

≤ (abh(a))2n
−1
[

(abh(a))2n(2m−1
−1) + (abh(a))2n(2m−2

−1) + · · ·+ (abh(a))2n

+ 1
]

η

< (abh(a))2n
−1
[

(abh(a))2n(m−1) + (abh(a))2n(m−2) + · · ·+ (abh(a))2n

+ 1
]

η

= (abh(a))2n
−1 1 − (abh(a))2nm

1 − (abh(a))2n η.
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But this last quantity goes to zero when n → ∞. Let φ∗ = lim
n→∞

φn,

then, by letting m→ ∞, we have

‖φ∗−φn‖ ≤ (abh(a))2n
−1 η

1 − (abh(a))2n =
η

(1 − (abh(a))2n)(abh(a))
(abh(a))2n

≤ η

(1 − (abh(a)))(abh(a))
(abh(a))2n

= Cγ2n

with C > 0 and γ = abh(a) < 1. This inequality guarantees that {φn}
has at least R-order of convergence two [8].

Finally, for n = 0, we obtain

‖φ∗ − φ0‖ <
η

1 − abh(a)
= R

then, φ∗ ∈ B(φ0, R). Moreover, as

‖F (φn)‖ ≤ 1

2
M(p− 1)(‖φ0‖ +R)p−2‖φn − φn−1‖2,

when n→ ∞ we obtain F (φ∗) = 0, and φ∗ is a solution of F (x) = 0.

Now we give a uniqueness result:

Theorem 2.4. Let ‖Γ0‖ ≤ β, then the solution of (2) is unique in
B(φ0, R)

⋂

Ω, with R is the bigger positive solution of the equation

(7)
Mβ(p− 1)

2
(2‖φ0‖ +R + x)p−2(R + x) = 1.

Proof: To show the uniqueness, we suppose that γ∗ ∈ B(φ0, R)
⋂

Ω
is another solution of (2). Then

0 = Γ0F (γ∗) − Γ0F (φ∗) =

∫ 1

0

Γ0F
′

φ∗+s(γ∗−φ∗) ds(γ
∗ − φ∗).

We are going to prove that A−1 exists, where A is a linear operator
defined by

A =

∫ 1

0

Γ0F
′

φ∗+s(γ∗−φ∗) ds,

then γ∗ = φ∗. For this, notice that for each ψ ∈ X and x ∈ [a, b], we
have

(A− I)(ψ)(x) =

∫ 1

0

Γ0[F
′

φ∗+s(γ∗−φ∗) − F ′

φ0
]ψ(x) ds,

= −λp
∫ 1

0

Γ0

∫ b

a

K(x, t)
[

ρ∗(s, t)p−1 − φ0(t)
p−1
]

ψ(t) dt ds
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= −λp
∫ 1

0

Γ0

∫ b

a

K(x, t)

[

p−2
∑

j=0

ρ∗(s, t)p−2−jφ0(t)
j

]

(ρ∗(s, t)−φ0(t))ψ(t) dt ds,

where ρ∗(s, t) = φ∗(t) + s(γ∗(t) − φ∗(t)).
Taking into account that

|ρ∗(s, t)−φ0(t)| ≤ ‖φ∗−φ0+s(γ
∗−φ∗)‖ ≤ (1−s)‖φ∗−φ0‖+s‖γ∗−φ0‖ < (1−s)R+sR,

we obtain

‖(A−I)ψ‖ ≤ |λ|pN‖Γ0‖
[

∫ 1

0

(

p−2
∑

j=0

‖ρ∗(s, ·)‖p−2−j‖φ0‖j

)

((1 − s)R + sR) ds

]

‖ψ‖.

Therefore, as

‖ρ∗(s, ·)‖ ≤ (1−s)‖φ∗‖+s‖γ∗‖ ≤ (1−s)(‖φ0‖+R)+s(‖φ0‖+R) ≤ 2‖φ0‖+R+R,

we have, from (7),

‖A−I‖ ≤ ‖Γ0‖M
2

(R+R)

[

p−2
∑

j=0

( ‖φ0‖
2‖φ0‖ +R +R

)j
]

(2‖φ0‖+R+R)p−2

<
Mβ

2
(R +R)(p− 1)(2‖φ0‖ +R +R)p−2 = 1.

So, the operator

∫ 1

0

F ′(φ∗ + t(γ∗ − φ∗)) dt has an inverse and conse-

quently, γ∗ = φ∗. Then, the proof is complete.

3. An example

To illustrate the above theoretical results, we consider the following
example

(8) φ(x) = sin(πx) +
1

5

∫ 1

0

cos(πx) sin(πt)φ(t)3 dt, x ∈ [0, 1].

Let X = C[0, 1] be the space of continuous functions defined on the
interval [0, 1], with the max-norm and let F : X → X be the operator
given by
(9)

F (φ)(x) = φ(x) − sin(πx) − 1

5

∫ 1

0

cos(πx) sin(πt)φ((t)3 dt, x ∈ [0, 1].

By differentiating (9) we have:

(10) F ′

φ[u](x) = u(x) − 3

5
cos(πx)

∫ 1

0

sin(πt)φ(t)2u(t) dt.
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With the notation of section 2,

λ =
1

5
, N = max

x∈[0,1]

∫ 1

0

| sin(πt)| dt = 1 and M = |λ|pN =
3

5
.

We take as starting-point φ0(x) = sin(πx), then we obtain from (10)

F ′

φ0
[u](x) = u(x) − 3

5
cos(πx)

∫ 1

0

sin3(πt)u(t) dt

If F ′

φ[u](x) = ω(x), then [F ′

φ]
−1[ω](x) = u(x) and u(x) = ω(x) +

3
5
cos(πx)Ju, where

Ju =

∫ 1

0

sin(πt)φ(t)2u(t) dt.

Therefore the inverse of F ′

φ0
is given by

[F ′

φ0
]−1[ω](x) = ω(x) +

3

5

∫ 1

0
sin3(πt)w(t) dt

1 − 3
5

∫ 1

0
cos(πt) sin3(πt) dt

cos(πx).

Then

‖Γ0‖ ≤ ‖I +
4

5π
cos(πx)‖ ≤ 1.25468 · · · = β,

and ‖F (φ0)‖ ≤ 3
40

= 0.075. Consequently ‖Γ0F (φ0)‖ ≤ 0.094098 · · · =
η.

The equation f(t) = 0, with f given by (5) is now

1.2t3 + 2.4t2 − 0.912918t+ 0.0752789 = 0.

This equation has two positive solutions. The smaller one is R =
0.129115 . . . . Then, by Theorem 2.3, we know there exists a solution
of (8) in B(φ0, R). To obtain the uniqueness domain we consider the
equation (7) whose positive solution is the uniqueness ratio. In this
case, the solution is unique in B(φ0, 0.396793 . . . ).

Finally, we are going to deal with the computational aspects to
solve (8) applying Newton’s method (3). To calculate the iterations
φn+1(x) = φn(x)−[F ′

φn
]−1[F (φn)](x) with the function φ0(x) as starting-

point, we proceed in the following way:

(1) First we compute the integrals

An =

∫ 1

0

sin(πt)φn(t)3 dt; Bn =

∫ 1

0

sin(πt)2φn(t)2 dt;

Cn =

∫ 1

0

cos(πt) sin(πt)φn(t)2 dt.
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(2) Next we define

φn+1(x) = sin(πx) +
1

5

−2An + 3Bn

1 − 3
5
Cn

cos(πx).

So we obtain the following approximations

φ0(x) = sin πx,

φ1(x) = sin πx+ 0.075 cosπx,

φ2(x) = sin πx + 0.07542667509481667 cosπx,

φ3(x) = sin πx+ 0.07542668890493719 cosπx,

φ4(x) = sin πx+ 0.07542668890493714 cosπx,

φ5(x) = sin πx+ 0.07542668890493713 cosπx,

As we can see, in this case Newton’s method converges to the solution

φ∗(x) = sin πx+
20 −

√
391

3
cos πx.
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