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ORLICZ-SOBOLEV SPACES WITH ZERO BOUNDARY
VALUES ON METRIC SPACES

NOUREDDINE AÏSSAOUI

Abstract. In this paper we study two approaches for the defi-
nition of the first order Orlicz-Sobolev spaces with zero boundary
values on arbitrary metric spaces. The first generalization, de-
noted by M

1,0

Φ
(E), where E is a subset of the metric space X , is

defined by the mean of the notion of the trace and is a Banach
space when the N-function satisfies the ∆2 condition. We give also
some properties of these spaces. The second, following another def-
inition of Orlicz-Sobolev spaces on metric spaces, leads us to three
definitions that coincide for a large class of metric spaces and N-
functions. These spaces are Banach spaces for any N-function.
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1. Introduction

This paper treats definitions and study of the first order Orlicz-
Sobolev spaces with zero boundary values on metric spaces. Since
we have introduce two definitions of Orlicz-Sobolev spaces on metric
spaces, we are leading to examine two approaches.

The first approach follows the one given in the paper [7] relative to
Sobolev spaces. This generalization, denoted by M 1,0

Φ (E), where E is
a subset of the metric space X, is defined as Orlicz-Sobolev functions
on X, whose trace on X \ E vanishes.
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This is a Banach space when the N-function satisfies the ∆2 con-
dition. For the definition of the trace of Orlicz-Sobolev functions we
need the notion of Φ-capacity on metric spaces developed in [2]. We
show that sets of Φ-capacity zero are removable in the Orlicz-Sobolev
spaces with zero boundary values. We give some results closely re-
lated to questions of approximation of Orlicz-Sobolev functions with
zero boundary values by compactly supported functions. The approx-
imation is not valid on general sets. As in Sobolev case, we study
the approximation on open sets. Hence we give sufficient conditions,
based on Hardy type inequalities, for an Orlicz-Sobolev function to be
approximated by Lipschitz functions vanishing outside an open set.

The second approach follows the one given in the paper [13] relative
to Sobolev spaces; see also [12]. We need the rudiments developed in
[3]. Hence we consider the set of Lipschitz functions on X vanishing
on X \ E, and close that set under an appropriate norm. Another
definition is to consider the space of Orlicz-Sobolev functions on X
vanishing Φ-q.e. in X \ E. A third space is obtained by considering
the closure of the set of compactly supported Lipschitz functions with
support in E. These spaces are Banach for any N-function and are, in
general, different. For a large class of metric spaces and a broad family
of N-functions, we show that these spaces coincide.

2. Preliminaries

An N -function is a continuous convex and even function Φ de-
fined on R, verifying Φ(t) > 0 for t > 0, limt→0 t−1Φ(t) = 0 and
limt→∞ t−1Φ(t) = +∞.

We have the representation Φ(t) =
|t|∫
0

ϕ(x)dL(x), where ϕ : R+ →

R+ is non-decreasing, right continuous, with ϕ(0) = 0, ϕ(t) > 0 for
t > 0, limt→0+ ϕ(t) = 0 and limt→∞ ϕ(t) = +∞. Here L stands for the
Lebesgue measure. We put in the sequel, as usually, dx = dL(x).

The N -function Φ∗ conjugate to Φ is defined by Φ∗(t) =
|t|∫
0

ϕ∗(x)dx,

where ϕ∗ is given by ϕ∗(s) = sup{t : ϕ(t) ≤ s}.
Let (X, Γ, µ) be a measure space and Φ an N -function. The Orlicz

class LΦ,µ(X) is defined by

LΦ,µ(X) =
{
f : X → R measurable :

∫
X

Φ(f(x))dµ(x) < ∞
}

.

We define the Orlicz space LΦ,µ(X) by
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LΦ,µ(X) ={
f : X → R measurable :

∫
X

Φ(αf(x))dµ(x) < ∞ for some α > 0
}

.

The Orlicz space LΦ,µ(X) is a Banach space with the following norm,
called the Luxemburg norm,

|||f |||Φ,µ,X = inf
{

r > 0 :
∫

X
Φ

(
f(x)

r

)
dµ(x) ≤ 1

}
.

If there is no confusion, we set |||f |||Φ = |||f |||Φ,µ,X.
The Hölder inequality extends to Orlicz spaces as follows: if f ∈

LΦ,µ(X) and g ∈ LΦ∗,µ(X), then fg ∈ L1 and
∫

X
|fg|dµ ≤ 2|||f |||Φ,µ,X. |||g|||Φ∗,µ,X .

Let Φ be an N -function. We say that Φ verifies the ∆2 condition if
there is a constant C > 0 such that Φ(2t) ≤ CΦ(t) for all t ≥ 0.

The ∆2 condition for Φ can be formulated in the following equivalent
way: for every C > 0 there exists C ′ > 0 such that Φ(Ct) ≤ C ′Φ(t) for
all t ≥ 0.

We have always LΦ,µ(X) ⊂ LΦ,µ(X). The equality LΦ,µ(X) =
LΦ,µ(X) occurs if Φ verifies the ∆2 condition.

We know that LΦ,µ(X) is reflexive if Φ and Φ∗ verify the ∆2 condi-
tion.

Note that if Φ verifies the ∆2 condition, then
∫

Φ(fi(x))dµ → 0 as
i → ∞ if and only if |||fi|||Φ,µ,X → 0 as i → ∞.

Recall that an N -function Φ satisfies the ∆′ condition if there is a
positive constant C such that for all x, y ≥ 0, Φ(xy) ≤ CΦ(x)Φ(y).
See [9] and [12]. If an N -function Φ satisfies the ∆′ condition, then it
satisfies also the ∆2 condition.

Let Ω be an open set in RN , C∞(Ω) be the space of functions which,
together with all their partial derivatives of any order, are continuous
on Ω, and C∞

0 (RN) = C∞
0 stands for all functions in C∞(RN) which

have compact support in RN . The space Ck(Ω) stands for the space
of functions having all derivatives of order ≤ k continuous on Ω, and
C(Ω) is the space of continuous functions on Ω.

The (weak) partial derivative of f of order |β| is denoted by

Dβf =
∂|β|

∂xβ1

1 .∂xβ2

2 ...∂xβN

N

f.

Let Φ be an N -function and m ∈ N. We say that a function f :
RN → R has a distributional (weak partial) derivative of order m,
denoted Dβf , |β| = m, if

∫
fDβθdx = (−1)|β|

∫
(Dβf )θdx, ∀θ ∈ C∞

0 .



SOUTHWEST JOURNAL OF PURE AND APPLIED MATHETICS 13

Let Ω be an open set in RN and denote LΦ,L(Ω) by LΦ(Ω). The
Orlicz-Sobolev space W mLΦ(Ω) is the space of real functions f , such
that f and its distributional derivatives up to the order m, are in LΦ(Ω).

The space W mLΦ(Ω) is a Banach space equipped with the norm

|||f |||m,Φ,Ω =
∑

0≤|β|≤m

|||Dβf |||Φ, f ∈ W mLΦ(Ω),

where |||Dβf |||Φ = |||Dβf |||Φ,L,Ω.
Recall that if Φ verifies the ∆2 condition, then C∞(Ω) ∩ W mLΦ(Ω)

is dense in W mLΦ(Ω), and C∞
0 (RN) is dense in W mLΦ(RN).

For more details on the theory of Orlicz spaces, see [1, 8, 9, 10, 11].
In this paper, the letter C will denote various constants which may

differ from one formula to the next one even within a single string of
estimates.

3. Orlicz-Sobolev space with zero boundary values

M1,0
Φ (E)

3.1. The Orlicz-Sobolev space M 1
Φ(X). We begin by recalling the

definition of the space M 1
Φ(X).

Let u : X → [−∞, +∞] be a µ-measurable function defined on X.
We denote by D(u) the set of all µ-measurable functions g : X →
[0, +∞] such that

(3.1) |u(x) − u(y)| ≤ d(x, y)(g(x) + g(y))

for every x, y ∈ X \ F , x 6= y, with µ(F ) = 0. The set F is called the
exceptional set for g.

Note that the right hand side of (3.1) is always defined for x 6= y.
For the points x, y ∈ X, x 6= y such that the left hand side of (3.1) is
undefined we may assume that the left hand side is +∞.

Let Φ be an N -function. The Dirichlet-Orlicz space L1
Φ(X) is the

space of all µ-measurable functions u such that D(u) ∩ LΦ(X) 6= ∅.
This space is equipped with the seminorm

(3.2) |||u|||
L1

Φ
(X) = inf {|||g|||Φ : g ∈ D(u) ∩ LΦ(X)} .

The Orlicz-Sobolev space M 1
Φ(X) is defined by M1

Φ(X) = LΦ(X) ∩
L1

Φ(X) equipped with the norm

(3.3) |||u|||M1
Φ
(X) = |||u|||Φ + |||u|||

L
1
Φ

(X) .
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We define a capacity as an increasing positive set function C given
on a σ-additive class of sets Γ, which contains compact sets and such
that C(∅) = 0 and C(

⋃
i≥1

Xi) ≤
∑
i≥1

C(Xi) for Xi ∈ Γ, i = 1, 2, ... .

C is called outer capacity if for every X ∈ Γ,

C(X) = inf {C(O) : O open, X ⊂ O} .

Let C be a capacity. If a statement holds except on a set E where
C(E) = 0, then we say that the statement holds C-quasieverywhere
(abbreviated C-q.e.). A function u : X → [−∞,∞] is C-quasicontinuous
in X if for every ε > 0 there is a set E such that C(E) < ε and the
restriction of u to X \ E is continuous. When C is an outer capacity,
we may assume that E is open.

Recall the following definition in [2]

Definition 1. Let Φ be an N -function. For a set E ⊂ X, define CΦ(E)
by

CΦ(E) = inf{|||u|||M1
Φ
(X) : u ∈ B(E)},

where B(E) = {u ∈ M 1
Φ(X) : u ≥ 1 on a neighborhood of E}.

If B(E) = ∅, we set CΦ,µ(E) = ∞.
Functions belonging to B(E) are called admissible functions for E.

In the definition of CΦ(E), we can restrict ourselves to those admis-
sible functions u such that 0 ≤ u ≤ 1. On the other hand, CΦ is an
outer capacity.

Let Φ be an N -function satisfying the ∆2 condition, then by [2 The-
orem 3.10] the set

Lip1
Φ(X) = {u ∈ M1

Φ(X) : u is Lipschitz in X}

is a dense subspace of M 1
Φ(X). Recall the following result in [2, Theo-

rem 4.10]

Theorem 1. Let Φ be an N -function satisfying the ∆2 condition and
u ∈ M1

Φ(X). Then there is a function v ∈ M 1
Φ(X) such that u = v

µ-a.e. and v is CΦ-quasicontinuous in X.
The function v is called a CΦ-quasicontinuous representative of u.

Recall also the following theorem, see [6]

Theorem 2. Let C be an outer capacity on X and µ be a nonnega-
tive, monotone set function on X such that the following compatibility
condition is satisfied: If G is open and µ(E) = 0, then

C(G) = C(G \ E).

Let f and g be C-quasicontinuous on X such that

µ({x : f(x) 6= g(x)}) = 0.
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Then f = g C-quasi everywhere on X.

It is easily verified that the capacity CΦ satisfies the compatibility
condition. Thus from Theorem 2, we get the following corollary.

Corollary 1. Let Φ be an N -function. If u and v are CΦ-quasicontinuous
on an open set O and if u = v µ-a.e. in O, then u = v CΦ-q.e. in O.

Corollary 1 make it possible to define the trace of an Orlicz-Sobolev
function to an arbitrary set.

Definition 2. Let Φ be an N -function, u ∈ M 1
Φ(X) and E be such

that CΦ(E) > 0. The trace of u to E is the restriction to E of any
CΦ-quasicontinuous representative of u.

Remark 1. Let Φ be an N -function. If u and v are CΦ-quasicontinuous
and u ≤ v µ-a.e. in an open set O, then max(u − v, 0) = 0 µ-a.e. in
O and max(u − v, 0) is CΦ-quasicontinuous. Hence by Corollary 1,
max(u− v, 0) = 0 CΦ-q.e. in O, and consequently u ≤ v CΦ-q.e. in O.

Now we give a characterization of the capacity CΦ in terms of qua-
sicontinuous functions. We begin by a definition

Definition 3. Let Φ be an N -function. For a set E ⊂ X, define
DΦ(E) by

DΦ(E) = inf{|||u|||M1
Φ
(X) : u ∈ B(E)},

where

B(E) = {u ∈ M1
Φ(X) : u is CΦ-quasicontinuous and u ≥ 1 CΦ-q.e. in E}.

If B(E) = ∅, we set DΦ(E) = ∞.

Theorem 3. Let Φ be an N -function and E a subset in X. Then

CΦ(E) = DΦ(E).

Proof. Let u ∈ M 1
Φ(X) be such that u ≥ 1 on an open neighborhood

O of E. Then, by Remark 1, the CΦ-quasicontinuous representative v
of u satisfies v ≥ 1 CΦ-q.e. on O, and hence v ≥ 1 CΦ-q.e. on E. Thus
DΦ(E) ≤ CΦ(E).

For the reverse inequality, let v ∈ B(E). By truncation we may
assume that 0 ≤ v ≤ 1. Let ε be such that 0 < ε < 1 and choose an
open set V such that CΦ(V ) < ε with v = 1 on E \ V and v

∣∣
X\V is

continuous. We can find, by topology, an open set U ⊂ X such that
{x ∈ X : v(x) > 1 − ε} \ V = U \ V . We have E \ V ⊂ U \ V . We
choose u ∈ B(V ) such that |||u|||M1

Φ
(X) < ε and that 0 ≤ u ≤ 1. We
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define w = v
1−ε

+ u. Then w ≥ 1 µ-a.e. in (U \ V )∪ V = U ∪ V , which
is an open neighbourhood of E. Hence w ∈ B(E). This implies that

CΦ(E) ≤ |||w|||M1
Φ
(X) ≤

1

1 − ε
|||v|||M1

Φ
(X) + |||u|||M1

Φ
(X)

≤
1

1 − ε
|||v|||M1

Φ
(X) + ε.

We get the desired inequality since ε and v are arbitrary. The proof
is complete.

We give a sharpening of [2, Theorem 4.8].

Theorem 4. Let Φ be an N -function and (ui)i be a sequence of CΦ-
quasicontinuous functions in M 1

Φ(X) such that (ui)i converges in M 1
Φ(X)

to a CΦ-quasicontinuous function u. Then there is a subsequence of
(ui)i which converges to u CΦ-q.e. in X.

Proof. There is a subsequence of (ui)i, which we denote again by (ui)i,
such that

(3.4)

∞∑

i=1

2i |||ui − u|||M1
Φ
(X) < ∞.

We set Ei = {x ∈ X : |ui(x) − u(x)| > 2−i} for i = 1, 2, ..., and Fj =
∞⋃
i=j

Ei. Then 2i |ui − u| ∈ B(Ei) and by Theorem 3 we obtain CΦ(Ei) ≤

2i |||ui − u|||M1
Φ
(X). By subadditivity we get

CΦ(Fj) ≤
∞∑

i=j

CΦ(Ei) ≤
∞∑

i=j

2i |||ui − u|||M1
Φ
(X) .

Hence

CΦ(

∞⋂

j=1

Fj) ≤ lim
j→∞

CΦ(Fj) = 0.

Thus ui → u pointwise in X \
∞⋂

j=1

Fj and the proof is complete.

3.2. The Orlicz-Sobolev space with zero boundary values M 1,0
Φ (E).

Definition 4. Let Φ be an N -function and E a subspace of X. We say
that u belongs to the Orlicz-Sobolev space with zero boundary values,
and denote u ∈ M 1,0

Φ (E), if there is a CΦ-quasicontinuous function
ũ ∈ M1

Φ(X) such that ũ = u µ-a.e. in E and ũ = 0 CΦ-q.e. in X \ E.
In other words, u belongs to M 1,0

Φ (E) if there is ũ ∈ M 1
Φ(X) as above

such that the trace of ũ vanishes CΦ-q.e. in X \ E.
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The space M 1,0
Φ (E) is equipped with the norm

|||u|||M1,0

Φ
(E) = |||ũ|||M1

Φ
(X) .

Recall that CΦ(E) = 0 implies that µ(E) = 0 for every E ⊂ X;
see [2]. It follows that the norm does not depend on the choice of the
quasicontinuous representative.

Theorem 5. Let Φ be an N -function satisfying the ∆2 condition and
E a subspace of X. Then M 1,0

Φ (E) is a Banach space.

Proof. Let (ui)i be a Cauchy sequence in M 1,0
Φ (E). Then for every ui,

there is a CΦ-quasicontinuous function ũi ∈ M1
Φ(X) such that ũi = ui

µ-a.e. in E and ũi = 0 CΦ-q.e. in X \ E. By [2, Theorem 3.6] M 1
Φ(X)

is complete. Hence there is u ∈ M 1
Φ(X) such that ũi → u in M1

Φ(X)
as i → ∞. Let ũ be a CΦ-quasicontinuous representative of u given
by Theorem 1. By Theorem 4 there is a subsequence (ũi)i such that
ũi → ũ CΦ-q.e. in X as i → ∞. This implies that ũ = 0 CΦ-q.e. in
X \ E and hence u ∈ M 1,0

Φ (E). The proof is complete.

Moreover the space M 1,0
Φ (E) has the following lattice properties. The

proof is easily verified.

Lemma 1. Let Φ be an N -function and let E be a subset in X. If
u, v ∈ M1,0

Φ (E), then the following claims are true.

1) If α ≥ 0, then min(u, α) ∈ M 1,0
Φ (E) and |||min(u, α)|||M1,0

Φ
(E) ≤

|||u|||M1,0

Φ
(E).

2) If α ≤ 0, then max(u, α) ∈ M 1,0
Φ (E) and |||max(u, α)|||M1,0

Φ
(E) ≤

|||u|||M1,0
Φ

(E).

3) |u| ∈ M1,0
Φ (E) and ||||u||||M1,0

Φ
(E) ≤ |||u|||M1,0

Φ
(E).

4) min(u, v) ∈ M1,0
Φ (E) and max(u, v) ∈ M 1,0

Φ (E).

Theorem 6. Let Φ be an N -function satisfying the ∆2 condition and
E a µ-measurable subset in X. If u ∈ M 1,0

Φ (E) and v ∈ M 1
Φ(X) are

such that |v| ≤ u µ-a.e. in E, then v ∈ M 1,0
Φ (E).

Proof. Let w be the zero extension of v to X \ E and let ũ ∈ M 1
Φ(X)

be a CΦ-quasicontinuous function such that ũ = u µ-a.e. in E and that
ũ = 0 CΦ-q.e. in X \E. Let g1 ∈ D(ũ)∩LΦ(X) and g2 ∈ D(v)∩LΦ(X).
Define the function g3 by

g3(x) =

{
max(g1(x), g2(x)),
g1(x),

x ∈ E
x ∈ X \ E.



18 NOUREDDINE AÏSSAOUI

Then it is easy to verify that g3 ∈ D(w)∩LΦ(X). Hence w ∈ M 1
Φ(X).

Let w̃ ∈ M1
Φ(X) be a CΦ-quasicontinuous function such that w̃ = w µ-

a.e. in X given by Theorem 1. Then |w̃| ≤ ũ µ-a.e. in X. By Remark
1 we get |w̃| ≤ ũ CΦ-q.e. in X and consequently w̃ = 0 CΦ-q.e. in
X \ E. This shows that v ∈ M 1,0

Φ (E). The proof is complete.

The following lemma is easy to verify.

Lemma 2. Let Φ be an N -function and let E be a subset in X. If u ∈
M1,0

Φ (E) and v ∈ M 1
Φ(X) are bounded functions, then uv ∈ M 1,0

Φ (E).

We show in the next theorem that the sets of capacity zero are re-
movable in the Orlicz-Sobolev spaces with zero boundary values.

Theorem 7. Let Φ be an N -function and let E be a subset in X. Let
F ⊂ E be such that CΦ(F ) = 0. Then M 1,0

Φ (E) = M1,0
Φ (E \ F ).

Proof. It is evident that M 1,0
Φ (E \ F ) ⊂ M1,0

Φ (E). For the reverse

inclusion, let u ∈ M1,0
Φ (E), then there is a CΦ-quasicontinuous function

ũ ∈ M1
Φ(X) such that ũ = u µ-a.e. in E and that ũ = 0 CΦ-q.e.

in X \ E. Since CΦ(F ) = 0, we get that ũ = 0 CΦ-q.e. in X \
(E \ F ). This implies that u|E\F ∈ M1,0

Φ (E \ F ). Moreover we have∣∣∣∣∣∣u|E\F

∣∣∣∣∣∣
M1,0

Φ
(E\F )

= |||u|||M1,0

Φ
(E). The proof is complete.

As in the Sobolev case, we have the following remark.

Remark 2. 1) If CΦ(∂F ) = 0, then M 1,0
Φ (int E) = M1,0

Φ (E).

2) We have the equivalence: M 1,0
Φ (X \ F ) = M1,0

Φ (X) = M1
Φ(X) if

and only if CΦ(F ) = 0.

The converse of Theorem 7 is not true in general. In fact it suffices
to take Φ(t) = 1

p
tp (p > 1) and consider the example in [7].

Nevertheless the converse of Theorem 7 holds for open sets.

Theorem 8. Let Φ be an N -function and suppose that µ is finite in
bounded sets and that O is an open set. Then M 1,0

Φ (O) = M1,0
Φ (O \ F )

if and only if CΦ(F ∩ O) = 0.

Proof. We must show only the necessity. We can assume that F ⊂ O.
Let x0 ∈ O and for i ∈ N∗, pose Oi = B(x0, i)∩{x ∈ O : dist(x, X \ O) > 1/i}.
We define for i ∈ N∗, ui : X → R by ui(x) = max(0, 1−dist(x, F ∩Oi)).
Then ui ∈ M1

Φ(X), ui is continuous, ui = 1 in F ∩ Oi and 0 ≤ ui ≤ 1.
For i ∈ N∗, define vi : Oi → R by vi(x) = dist(x, X \ Oi). Then
vi ∈ M1,0

Φ (Oi) ⊂ M1,0
Φ (O). By Lemma 2 we have, for every i ∈ N∗,

uivi ∈ M1,0
Φ (O) = M1,0

Φ (O \ F ). If w is a CΦ-quasicontinuous function
such that w = uivi µ-a.e. in O \ F , then w = uivi µ-a.e. in O since
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µ(F ) = 0. By Corollary 1 we get w = uivi CΦ-q.e. in O. In partic-
ular w = uivi > 0 CΦ-q.e. in F ∩ Oi. Since uivi ∈ M1,0

Φ (O \ F ) we
may define w = 0 CΦ-q.e. in X \ (O \ F ). Hence w = 0 CΦ-q.e. in
F ∩Oi. This is possible only if CΦ(F ∩Oi) = 0 for every i ∈ N∗. Hence

CΦ(F ) ≤
∞∑
i=1

CΦ(F ∩ Oi) = 0. The proof is complete.

3.3. Some relations between H1,0
Φ (E) and M1,0

Φ (E). We would de-
scribe the Orlicz-Sobolev space with zero boundary values on E ⊂ X
as the completion of the set Lip1,0

Φ (E) defined by

Lip1,0
Φ (E) = {u ∈ M1

Φ(X) : u is Lipschitz in X and u = 0 in X \ E}

in the norm defined by (3.3). Since M 1
Φ(X) is complete, this completion

is the closure of Lip1,0
Φ (E) in M1

Φ(X). We denote this completion by

H1,0
Φ (E).
Let Φ be an N -function satisfying the ∆2 condition and E a sub-

space of X. By [2, Theorem 3.10] we have H1,0
Φ (X) = M1,0

Φ (X).

Since Lip1,0
Φ (E) ⊂ M1,0

Φ (E) and M1,0
Φ (E) is complete, then H1,0

Φ (E) ⊂
M1,0

Φ (E). When Φ(t) = 1
p
tp (p > 1), simple examples show that the

equality is not true in general; see [7]. Hence for the study of the equal-
ity, we restrict ourselves to open sets as in the Sobolev case. We begin
by a sufficient condition.

Theorem 9. Let Φ be an N -function satisfying the ∆2 condition, O
an open subspace of X and suppose that u ∈ M 1

Φ(O). Let v be the

function defined on O by v(x) =
u(x)

dist(x, X \ O)
. If v ∈ LΦ(O), then

u ∈ H1,0
Φ (O).

Proof. Let g ∈ D(u) ∩ LΦ(O) and define the function g by

g(x) = max(g(x), v(x)) if x ∈ O

g(x) = 0 if x ∈ X \ O.

Then g ∈ LΦ(X). Define the function u as the zero extension of u
to X \ O. For µ-a.e. x, y ∈ O or x, y ∈ X \ O, we have

|u(x) − u(y)| ≤ d(x, y)(g(x) + g(y)).

For µ-a.e. x ∈ O and y ∈ X \ O, we get

|u(x) − u(y)| = |u(x)| ≤ d(x, y)
|u(x)|

dist(x, X \ O)
≤ d(x, y)(g(x) + g(y)).

Thus g ∈ D(u) ∩ LΦ(X) which implies that u ∈ M 1
Φ(O). Hence

(3.5) |u(x) − u(y)| ≤ d(x, y)(g(x) + g(y))
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for every x, y ∈ X \ F with µ(F ) = 0.
For i ∈ N∗, set

(3.6) Fi = {x ∈ O \ F : |u(x)| ≤ i, g(x) ≤ i} ∪ X \ O.

From (3.5) we see that u|Fi
is 2i-Lipschitz and by the McShane ex-

tension
ui(x) = inf {u(y) + 2id(x, y) : y ∈ Fi}

we extend it to a 2i-Lipschitz function on X. We truncate ui at the
level i and set ui(x) = min(max(ui(x),−i), i). Then ui is such that ui

is 2i-Lipschitz function in X, |ui| ≤ i in X and ui = u in Fi and, in
particular, ui = 0 in X \ O. We show that ui ∈ M1

Φ(X). Define the
function gi by

gi(x) = g(x), if x ∈ Fi,

gi(x) = 2i, if x ∈ X \ Fi.

We begin by showing that

(3.7) |ui(x) − ui(y)| ≤ d(x, y)(gi(x) + gi(y)),

for x, y ∈ X \ F . If x, y ∈ Fi, then (3.7) is evident. For y ∈ X \ Fi, we
have

|ui(x) − ui(y)| ≤ 2id(x, y) ≤ d(x, y)(gi(x) + gi(y)), if x ∈ X \ Fi,

|ui(x) − ui(y)| ≤ 2id(x, y) ≤ d(x, y)(g(x) + 2i), if x ∈ X \ Fi.

This implies that (3.7) is true and thus gi ∈ D(ui). Now we have

|||gi|||Φ ≤ |||gi|||Φ,Fi
+ 2i|||1|||Φ,X\Fi

≤ |||g|||Φ,Fi
+

2i

Φ−1( 1
µ(X\Fi)

)
< ∞,

and

|||ui|||Φ ≤ |||u|||Φ,Fi
+ 2i|||1|||Φ,X\Fi

≤ |||u|||Φ,Fi
+

2i

Φ−1( 1
µ(X\Fi)

)
< ∞.

Hence ui ∈ M1
Φ(X). It follows that ui ∈ Lip1,0

Φ (O).
It remains to prove that ui → u in M1

Φ(X). By (3.6) we have

µ(X \ Fi) ≤ µ({x ∈ X : |u(x)| > i}) + µ({x ∈ X : g(x) > i}).

Since u ∈ LΦ(X) and Φ satisfies the ∆2 condition, we get
∫

{x∈X:|u(x)|>i}

Φ(u(x))dµ(x) ≥ Φ(i)µ {x ∈ X : |u(x)| > i} ,

which implies that Φ(i)µ {x ∈ X : |u(x)| > i} → 0 as i → ∞.
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By the same argument we deduce that Φ(i)µ {x ∈ X : g(x) > i} → 0
as i → ∞.

Thus

(3.8) Φ(i)µ(X \ Fi) → 0 as i → ∞.

Using the convexity of Φ and the fact that Φ satisfies the ∆2 condi-
tion, we get∫

X

Φ(u − ui)dµ ≤

∫

X\Fi

Φ(|u| + |ui|)dµ

≤ C
2
[

∫

X\Fi

Φ ◦ |u| dµ + Φ(i)µ(X \ Fi)] → 0 as i → ∞.

On the other hand, for each i ∈ N∗ we define the function hi by

hi(x) = g(x) + 3i, if x ∈ X \ Fi,

hi(x) = 0, if x ∈ Fi.

We claim that hi ∈ D(u − ui) ∩ LΦ(X). In fact, the only nontrivial
case is x ∈ Fi and y ∈ X \ Fi; but then

|(u − ui)(x) − (u − ui)(y)| ≤ d(x, y)(g(x) + g(y) + 2i)

≤ d(x, y)(g(y) + 3i).

By the convexity of Φ and by the ∆2 condition we have∫

X

Φ ◦ hidµ ≤

∫

X\Fi

Φ ◦ (g + 3i)dµ

≤ C[

∫

X\Fi

Φ ◦ gdµ + Φ(i)µ(X \ Fi)] → 0 as i → ∞.

This implies that |||hi|||Φ → 0 as i → ∞ since Φ verifies the ∆2

condition.
Now

|||u − ui|||L1
Φ
(X) ≤ |||hi|||Φ → 0 as i → ∞.

Thus u ∈ H1,0
Φ (O). The proof is complete.

Definition 5. A locally finite Borel measure µ is doubling if there is a
positive constant C such that for every x ∈ X and r > 0,

µ(B(x, 2r)) ≤ Cµ(B(x, r)).

Definition 6. A nonempty set E ⊂ X is uniformly µ-thick if there are
constants C > 0 and 0 < r0 ≤ 1 such that

µ(B(x, r) ∩ E) ≥ Cµ(B(x, r)),

for every x ∈ E, and 0 < r < r0.
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Now we give a Hardy type inequality in the context of Orlicz-Sobolev
spaces.

Theorem 10. Let Φ be an N -function such that Φ∗ satisfies the ∆2

condition and suppose that µ is doubling. Let O ⊂ X be an open set
such that X \ O is uniformly µ-thick. Then there is a constant C > 0
such that for every u ∈ M 1,0

Φ (O),

|||v|||Φ,O ≤ C|||u|||M1,0

Φ
(O),

where v is the function defined on O by v(x) =
u(x)

dist(x, X \ O)
. The

constant C is independent of u.

Proof. Let u ∈ M 1,0
Φ (O) and ũ ∈ M1

Φ(O) be Φ-quasicontinuous such
that u = ũ µ-a.e. in O and ũ = 0 Φ-q.e. in X\O. Let g ∈ D(ũ)∩LΦ(X)
and set O′ = {x ∈ O : dist(x, X \ O) < r0}. For x ∈ O′, we choose
x0 ∈ X \ O such that rx =dist(x, X \ O) = d(x, x0). Recall that the
Hardy-Littlewood maximal function of a locally µ-integrable function
f is defined by

Mf(x) = sup
r>0

1

µ(B(x, r))

∫

B(x,r)

f(y)dµ(y).

Using the uniform µ-thickness and the doubling condition, we get

1

µ(B(x0, rx) \ O)

∫

B(x0,rx)\O

g(y)dµ(y) ≤
C

µ(B(x0, rx))

∫

B(x0,rx)

g(y)dµ(y)

≤
C

µ(B(x, 2rx))

∫

B(x,2rx)

g(y)dµ(y)

≤ CMg(x).

On the other hand, for µ-a.e. x ∈ O′ there is y ∈ B(x0, rx) \ O such
that

|u(x)| ≤ d(x, y)(g(x) +
1

µ(B(x0, rx) \ O)

∫

B(x0,rx)\O

g(y)dµ(y))

≤ Crx(g(x) + Mg(x))

≤ Cdist(x, X \ O)Mg(x).

By [5], M is a bounded operator from LΦ(X) to itself since Φ∗

satisfies the ∆2 condition. Hence

|||v|||Φ,O′ ≤ C|||Mg|||Φ ≤ C|||g|||Φ.

On O \ O′ we have

|||v|||Φ,O\O′ ≤ r−1
0 |||u|||Φ,O.
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Thus

|||v|||Φ,O ≤ C(|||ũ|||Φ + |||g|||Φ).

By taking the infimum over all g ∈ D(ũ)∩LΦ(X), we get the desired
result.

By Theorem 9 and Theorem 10 we obtain the following corollaries

Corollary 2. Let Φ be an N -function such that Φ and Φ∗ satisfy the
∆2 condition and suppose that µ is doubling. Let O ⊂ X be an open
set such that X \ O is uniformly µ-thick. Then M 1,0

Φ (O) = H1,0
Φ (O).

Corollary 3. Let Φ be an N -function such that Φ and Φ∗ satisfy the
∆2 condition and suppose that µ is doubling. Let O ⊂ X be an open
set such that X \ O is uniformly µ-thick and let (ui)i ⊂ M1,0

Φ (O) be a

bounded sequence in M 1,0
Φ (O). If ui → u µ-a.e., then u ∈ M 1,0

Φ (O).

In the hypotheses of Corollary 3 we get M 1,0
Φ (O) = H1,0

Φ (O). Hence
the following property (P) is satisfied for sets E whose complement is
µ-thick:
(P) Let (ui)i be a bounded sequence in H1,0

Φ (E). If ui → u µ-a.e., then

u ∈ H1,0
Φ (E).

Remark 3. If M1
Φ(X) is reflexive, then by Mazur’s lemma closed con-

vex sets are weakly closed. Hence every open subset O of X satisfies
property (P). But in general we do not know whether the space M 1

Φ(X)
is reflexive or not.

Recall that a space X is proper if bounded closed sets in X are
compact.

Theorem 11. Let Φ be an N -function satisfying the ∆2 condition and
suppose that X is proper. Let O be an open set in X satisfying property
(P). Then M1,0

Φ (O) = H1,0
Φ (O).

Proof. It suffices to prove that M 1,0
Φ (O) ⊂ H1,0

Φ (O). Let u ∈ M1,0
Φ (O)

be a Φ-quasicontinuous function from M 1
Φ(X) such that u = 0 Φ-q.e.

on X \ O. By using the property (P), we deduce, by truncating and
considering the positive and the negative parts separately, that we can
assume that u is bounded and non-negative. If x0 ∈ O is a fixed point,
define the sequence (ηi)i by

ηi(x) =





1 if d(x0, x) ≤ i − 1,
i − d(x0, x) if i − 1 < d(x0, x) < i

0 if d(x0, x) ≥ i.
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If we define the sequence (vi)i by vi = uηi, then since vi → u µ-a.e.
in X and |||vi|||M1

Φ
(X) ≤ 2|||u|||M1

Φ
(X), by the property (P) it clearly

suffices to show that vi ∈ H1,0
Φ (O). Remark that

|vi(x) − vi(y)| ≤ |u(x) − u(y)| + |ηi(x) − ηi(y)|

≤ d(x, y)(g(x) + g(y) + u(x).

Hence vi ∈ M1
Φ(X).

Now fix i and set v = vi. Since v vanishes outside a bounded set, we
can find a bounded open subset U ⊂ O such that v = 0 Φ-q.e. in X \U .
We choose a sequence (wj) ⊂ M1

Φ(X) of quasicontinuous functions such
that 0 ≤ wj ≤ 1, wj = 1 on an open set Oj, with |||wj|||M1

Φ
(X) → 0, and

so that the restrictions v|X\Oj
are continuous and v = 0 in X \(U ∪Oj).

The sequence (sj)j, defined by sj = (1−wj) max(v − 1
j
, 0), is bounded

in M1
Φ(X), and passing if necessary to a subsequence, sj → v µ-a.e.

Since v|X\Oj
is continuous, we get

{x ∈ X : sj(x) 6= 0} ⊂

{
x ∈ X : v(x) ≥

1

j

}
\ Oj ⊂ U .

This means that {x ∈ X : sj(x) 6= 0} is a compact subset of O, whence

by Theorem 9, sj ∈ H1,0
Φ (O). The property (P) implies v ∈ H1,0

Φ (O)
and the proof is complete.

Corollary 4. Let Φ be an N -function satisfying the ∆2 condition and
suppose that X is proper. Let O be an open set in X and suppose that
M1

Φ(X) is reflexive. Then M 1,0
Φ (O) = H1,0

Φ (O).

Proof. By Remark 3, O satisfies property (P), and Theorem 11 gives
the result.

4. Orlicz-Sobolev space with zero boundary values N 1,0
Φ (E)

4.1. The Orlicz-Sobolev space N 1
Φ(X). We recall the definition of

the space N1
Φ(X).

Let (X, d, µ) be a metric, Borel measure space, such that µ is positive
and finite on balls in X.

If I is an interval in R, a path in X is a continuous map γ : I → X.
By abuse of language, the image γ(I) =: |γ| is also called a path. If
I = [a, b] is a closed interval, then the length of a path γ : I → X is

l(γ) =length(γ) = sup
n∑

i=1

|γ(ti+1) − γ(ti)|,

where the supremum is taken over all finite sequences a = t1 ≤ t2 ≤
... ≤ tn ≤ tn+1 = b. If I is not closed, we set l(γ) = sup l(γ |J ), where
the supremum is taken over all closed sub-intervals J of I. A path is
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said to be rectifiable if its length is a finite number. A path γ : I → X
is locally rectifiable if its restriction to each closed sub-interval of I is
rectifiable.

For any rectifiable path γ, there are its associated length function sγ :
I → [0, l(γ)] and a unique 1-Lipschitz continuous map γs : [0, l(γ)] → X
such that γ = γs ◦ sγ. The path γs is the arc length parametrization of
γ.

Let γ be a rectifiable path in X. The line integral over γ of each

non-negative Borel function ρ : X → [0,∞] is
∫

γ
ρds =

∫ l(γ)

0
ρ ◦ γs(t)dt.

If the path γ is only locally rectifiable, we set
∫

γ
ρds = sup

∫
γ′

ρds,

where the supremum is taken over all rectifiable sub-paths γ ′ of γ. See
[5] for more details.

Denote by Γrect the collection of all non-constant compact (that is,
I is compact) rectifiable paths in X.

Definition 7. Let Φ be an N -function and Γ be a collection of paths
in X. The Φ-modulus of the family Γ, denoted ModΦ(Γ), is defined as

inf
ρ∈F(Γ)

|||ρ|||Φ,

where F(Γ) is the set of all non-negative Borel functions ρ such that∫
γ
ρds ≥ 1 for all rectifiable paths γ in Γ. Such functions ρ used to

define the Φ-modulus of Γ are said to be admissible for the family Γ.

From the above definition the Φ-modulus of the family of all non-
rectifiable paths is 0.

A property relevant to paths in X is said to hold for Φ-almost all
paths if the family of rectifiable compact paths on which that property
does not hold has Φ-modulus zero.

Definition 8. Let u be a real-valued function on a metric space X. A
non-negative Borel-measurable function ρ is said to be an upper gra-
dient of u if for all compact rectifiable paths γ the following inequality
holds

(4.1) |u(x) − u(y)| ≤

∫

γ

ρds,

where x and y are the end points of the path.

Definition 9. Let Φ be an N -function and let u be an arbitrary real-
valued function on X. Let ρ be a non-negative Borel function on X.
If there exists a family Γ ⊂ Γrect such that ModΦ(Γ) = 0 and the
inequality (4.1) is true for all paths γ in Γrect \ Γ, then ρ is said to
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be a Φ-weak upper gradient of u. If inequality (4.1) holds true for Φ-
modulus almost all paths in a set B ⊂ X, then ρ is said to be a Φ-weak
upper gradient of u on B.

Definition 10. Let Φ be an N -function and let the set Ñ1
Φ(X, d, µ) be

the collection of all real-valued function u on X such that u ∈ LΦ and

u have a Φ-weak upper gradient in LΦ. If u ∈ Ñ1
Φ, we set

(4.2) |||u|||gN1
Φ

= |||u|||Φ + inf
ρ

|||ρ|||Φ,

where the infimum is taken over all Φ-weak upper gradient, ρ, of u such
that ρ ∈ LΦ.

Definition 11. Let Φ be an N -function. The Orlicz-Sobolev space cor-

responding to Φ, denoted N 1
Φ(X), is defined to be the space Ñ1

Φ(X, d, µ)� v,
with norm |||u|||N1

Φ
:= |||u|||gN1

Φ

.

For more details and developments, see [3].

4.2. The Orlicz-Sobolev space with zero boundary values N 1,0
Φ (E).

Definition 12. Let Φ be an N -function. For a set E ⊂ X define
CapΦ(E) by

CapΦ(E) = inf
{
|||u|||N1

Φ
: u ∈ D(E)

}
,

where D(E) = {u ∈ N 1
Φ : u |E ≥ 1}.

If D(E) = ∅, we set CapΦ(E) = ∞. Functions belonging to D(E)
are called admissible functions for E.

Definition 13. Let Φ be an N -function and E a subset of X. We

define Ñ1,0
Φ (E) as the set of all functions u : E → [−∞,∞] for which

there exists a function ũ ∈ Ñ1
Φ(E) such that ũ = u µ-a.e. in E and ũ =

0 CapΦ-q.e. in X \ E; which means CapΦ ({x ∈ X \ E : ũ(x) 6= 0}) =
0.

Let u, v ∈ Ñ1,0
Φ (E). We say that u ∼ v if u = v µ-a.e. in E. The

relation ∼ is an equivalence relation and we set N 1,0
Φ (E) = Ñ1,0

Φ (E)� v.
We equip this space with the norm |||u|||N1,0

Φ
(E) := |||u|||N1

Φ
(X).

It is easy to see that for every set A ⊂ X, µ(A) ≤ CapΦ(A). On the
other hand, by [3, Corollary 2] if ũ and ũ′ both correspond to u in the
above definition, then |||ũ − ũ′|||N1

Φ
(X) = 0. This means that the norm

on N1,0
Φ (E) is well defined.
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Definition 14. Let Φ be an N -function and E a subset of X. We set

Lip1,0
Φ,N (E) =

{
u ∈ N1

Φ(X) : u is Lipschitz in X and u = 0 in X \ E
}

,

and

Lip1,0
Φ,C(E) =

{
u ∈ Lip1,0

Φ,N(E) : u has compact support
}

.

We let H1,0
Φ,N(E) be the closure of Lip1,0

Φ,N (E) in the norm of N 1
Φ(X),

and H1,0
Φ,C(E) be the closure of Lip1,0

Φ,C(E) in the norm of N 1
Φ(X).

By definition H1,0
Φ,N(E) and H1,0

Φ,C(E) are Banach spaces. We prove

that N1,0
Φ (E) is also a Banach space.

Theorem 12. Let Φ be an N -function and E a subset of X. Then
N1,0

Φ (E) is a Banach space.

Proof. Let (ui)i be a Cauchy sequence in N 1,0
Φ (E). Then there is a cor-

responding Cauchy sequence (ũi)i in N1
Φ(X), where ũi is the function

corresponding to ui as in the definition of N 1,0
Φ (E). Since N1

Φ(X) is a
Banach space, see [3, Theorem 1], there is a function ũ ∈ N 1

Φ(X),
and a subsequence, also denoted (ũi)i for simplicity, so that as in
the proof of [3, Theorem 1], ũi → ũ pointwise outside a set T with
CapΦ(T ) = 0, and also in the norm of N 1

Φ(X). For every i, set
Ai = {x ∈ X \ E : ũi(x) 6= 0}. Then CapΦ(∪iAi) = 0. Moreover, on
(X \ E) \ (∪iAi ∪ T ), we have ũ(x) = lim

i→∞
ũi(x) = 0.

Since CapΦ(∪iAi ∪ T ) = 0, the function u = ũ|E is in N1,0
Φ (E). On

the other hand we have

|||u − ui|||N1,0

Φ
(E) = |||ũ − ũi|||N1

Φ
(X) → 0 as i → ∞.

Thus N1,0
Φ (E) is a Banach space and the proof is complete.

Proposition 1. Let Φ be an N -function and E a subset of X. Then
the space H1,0

Φ,N(E) embeds isometrically into N 1,0
Φ (E), and the space

H1,0
Φ,C(E) embeds isometrically into H1,0

Φ,N(E).

Proof. Let u ∈ H1,0
Φ,N(E). Then there is a sequence (ui)i ⊂ N1

Φ(X) of

Lipschitz functions such that ui → u in N1
Φ(X) and for each integer i,

ui|X\E = 0. Considering if necessary a subsequence of (ui)i, we proceed
as in the proof of [3, Theorem 1], we can consider the function ũ defined
outside a set S with CapΦ(S) = 0, by ũ = 1

2
(lim sup

i
ui + lim inf

i
ui).

Then ũ ∈ N1
Φ(X) and u|E = ũ|E µ-a.e and ũ|(X\E)\S = 0. Hence

u|E ∈ N1,0
Φ (E), with the two norms equal. Since H1,0

Φ,C(E) ⊂ Lip1,0
Φ,N(E),

it is easy to see that H1,0
Φ,C(E) embeds isometrically into H1,0

Φ,N(E). The
proof is complete.
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When Φ(t) = 1
p
tp, there are examples of spaces X and E ⊂ X for

which N1,0
Φ (E), H1,0

Φ,N(E) and H1,0
Φ,C(E) are different. See [13]. We give,

in the sequel, sufficient conditions under which these three spaces agree.
We begin by a definition and some lemmas.

Definition 15. Let Φ be an N -function. The space X is said to support
a (1, Φ)-Poincaré inequality if there is a constant C > 0 such that for
all balls B ⊂ X, and all pairs of functions u and ρ, whenever ρ is
an upper gradient of u on B and u is integrable on B, the following
inequality holds

1

µ(B)

∫

B

|u − uE| ≤ Cdiam(B) |||g|||
LΦ(B) Φ−1(

1

µ(B)
).

Lemma 3. Let Φ be an N -function and Y a metric measure space
with a Borel measure µ that is finite on bounded sets. Let u ∈ N 1

Φ(Y )
be non-negative and define the sequence (ui)i by ui = min(u, i), i ∈ N.
Then (ui)i converges to u in the norm of N 1

Φ(Y ).

Proof. Set Ei = {x ∈ Y : u(x) > i}. If µ(Ei) = 0, then ui = u µ-a.e.
and since ui ∈ N1

Φ(Y ), by [3, Corollary 2] the N 1
Φ(Y ) norm of u− ui is

zero for sufficiently large i. Now, suppose that µ(Ei) > 0. Since µ is
finite on bounded sets, it is an outer measure. Hence there is an open
set Oi such that Ei ⊂ Oi and µ(Oi) ≤ µ(Ei) + 2−i.

We have
1

i
|||u|||

LΦ(Ei)
≥ |||1|||

LΦ(Ei)
=

1

Φ−1( 1
µ(Ei)

)
.

Since Φ−1 is continuous, increasing and verifies Φ(x) → ∞ as x → ∞,
we get

1

Φ−1( 1
µ(Oi)−2−i )

≤
1

i
|||u|||

LΦ
→ 0 as i → ∞,

and
µ(Oi) → 0 as i → ∞.

Note that u = ui on Y \Oi. Thus u− ui has 2gχOi
as a weak upper

gradient whenever g is an upper gradient of u and hence of ui as well;
see [3, Lemma 9]. Thus ui → u in N1

Φ(Y ). The proof is complete.

Remark 4. By [3, Corollary 7], and in conditions of this corollary, if
u ∈ N1

Φ(X), then for each positive integer i, there is a wi ∈ N1
Φ(X)

such that 0 ≤ wi ≤ 1, |||wi|||N1
Φ
(X) ≤ 2−i, and wi|Fi

= 1, with Fi an

open subset of X such that u is continuous on X \ Fi.

We define, as in the proof of Theorem 11, for i ∈ N∗, the function ti
by
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ti = (1 − wi) max(u − 1
i
, 0).

Lemma 4. Let Φ be an N -function satisfying the ∆′ condition. Let
X be a proper doubling space supporting a (1, Φ)-Poincaré inequality,
and let u ∈ N 1

Φ(X) be such that 0 ≤ u ≤ M , where M is a constant.
Suppose that the set A = {x ∈ X : u(x) 6= 0} is a bounded subset of X.
Then ti → u in N1

Φ(X).

Proof. Set Ei =
{
x ∈ X : u(x) < 1

i

}
. By [3, Corollary 7] and by the

choice of Fi, there is an open set Ui such that Ei \ Fi = Ui \ Fi.
Pose Vi = Ui ∪ Fi and remark that wi|Fi

= 1 and u|Ei
< 1

i
. Then

{x ∈ X : ti(x) 6= 0} ⊂ A\Vi ⊂ A. If we set vi = u−ti, then 0 ≤ vi ≤ M
since 0 ≤ ti ≤ u. We can easily verify that ti = (1 − wi)(u − 1/i) on
A \ Vi, and ti = 0 on Vi. Therefore

(4.3) vi = wiu + (1 − wi)�i on A \ Vi,

and

(4.4) vi = u on Vi.

Let x, y ∈ X. Then

|wi(x)u(x) − wi(y)u(y)| ≤ |wi(x)u(x) − wi(x)u(y)| + |wi(x)u(y) − wi(y)u(y)|

≤ wi(x) |u(x) − u(y)|+ M |wi(x) − wi(y)| .

Let ρi be an upper gradient of wi such that |||ρi|||LΦ
≤ 2−i+1 and let

ρ be an upper gradient of u belonging to LΦ. If γ is a path connecting
two points x, y ∈ X, then

|wi(x)u(x) − wi(y)u(y)| ≤ wi(x)

∫

γ

ρds + M

∫

γ

ρids.

Hence, if z ∈ |γ|, then

|wi(x)u(x) − wi(y)u(y)| ≤ |wi(x)u(x) − wi(z)u(z)| + |wi(z)u(z) − wi(y)u(y)|

≤ wi(z)

∫

γxz

ρds + M

∫

γxz

ρids + wi(z)

∫

γzy

ρds + M

∫

γzy

ρids

≤ wi(z)

∫

γ

ρds + M

∫

γ

ρids,

where γxz and γzy are such that the concatenation of these two segments
gives the original path γ back again. Therefore

|wi(x)u(x) − wi(y)u(y)| ≤

∫

γ

(
inf
z∈|γ|

wi(z)ρ + Mρi

)
ds.
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Thus

|wi(x)u(x) − wi(y)u(y)| ≤

∫

γ

(wi(z)ρ + Mρi)ds.

This means that wiρ + Mρi is an upper gradient of wiu. Since
|||wi|||LΦ

≤ 2−i, we get that wi → 0 µ-a.e. On the other hand wiρ ≤ ρ

on X implies that wiρ ∈ LΦ and hence Φ ◦ (wiρ) ∈ L1 because Φ veri-
fies the ∆2 condition. Since Φ is continuous, Φ ◦ (wiρ) → 0 µ-a.e. The
Lebesgue dominated convergence theorem gives

∫
X

Φ ◦ (wiρ)dx → 0
as i → ∞. Thus |||wiρ|||LΦ

→ 0 as i → ∞ since Φ verifies the ∆2

condition.
Let B be a bounded open set such that A ⊂ BT. Then Oi = (A ∪

Fi) ∩ B is a bounded open subset of A and Oi ⊂ A. Therefore since
Oi ∩ Vi ⊂ (Ei ∩ A) ∪ Fi, we get

µ(Oi ∩ Vi) ≤ µ(Ei ∩ A) + µ(Fi)

≤ µ

({
x ∈ X : 0 < u(x) <

1

i

})
+ CapΦ(Fi).

Hence µ(Oi ∩ Vi) → 0 as i → ∞, since bounded sets have finite
measure and therefore µ

({
x ∈ X : 0 < u(x) < 1

i

})
→ µ(∅) = 0 as i →

∞. Thus |||ρ|||
LΦ(Oi∩Vi)

→ 0 as i → ∞.

By [3, Lemma 8] and equations (4.3) and (4.4), we get

gi :=

(
wiρ + Mρi +

1

i
ρi

)
χOi

+ ρχOi∩Vi

is a weak upper gradient of vi and since

|||gi|||LΦ
≤ |||wiρ|||LΦ

+ (M + 1
i
) |||ρi|||LΦ

+ |||ρ|||
LΦ(Oi∩Vi)

,

we infer that |||gi|||LΦ
→ 0 as i → ∞.

On the other hand, we have

|||vi|||LΦ
= |||u − ti|||LΦ

≤ |||wiu|||LΦ(A\Vi)
+

1

i
|||1 − wi|||LΦ(A\Vi)

+ |||u|||
LΦ(Oi∩Vi)

≤ M |||wi|||N1
Φ
(X) +

1

i

1

Φ−1( 1
µ(A)

)
+ |||u|||

LΦ(Oi∩Vi)
.

Since |||wi|||N1
Φ
(X) → 0 and |||u|||

LΦ(Oi∩Vi)
→ 0 as i → ∞, we conclude

that |||vi|||LΦ
→ 0 as i → ∞, and hence ti → u in N1

Φ(X). The proof
is complete.

Theorem 13. Let Φ be an N -function satisfying the ∆′ condition. Let
X be a proper doubling space supporting a (1, Φ)-Poincaré inequality
and E an open subset of X. Then N 1,0

Φ (E) = H1,0
Φ,N(E) = H1,0

Φ,C(E).
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Proof. By Proposition 1 we know that H1,0
Φ,C(E) ⊂ H1,0

Φ,N(E) ⊂ N1,0
Φ (E).

It suffices to prove that N 1,0
Φ (E) ⊂ H1,0

Φ,C(E). Let u ∈ N1,0
Φ (E), and

identify u with its extension ũ. By the lattice properties of N 1
Φ(X) it is

easy to see that u+ and u− are both in N1,0
Φ (E) and hence it suffices to

show that u+ and u− are in H1,0
Φ,C(E). Thus we can assume that u ≥ 0.

On the other hand, since N 1,0
Φ (E) is a Banach space that is isometrically

embedded in N1
Φ(X), if (un)n is a sequence in N 1,0

Φ (E) that is Cauchy

in N1
Φ(X), then its limit, u, lies in N 1,0

Φ (E). Hence by Lemma 3, it also
suffices to consider u such that 0 ≤ u ≤ M , for some constant M . By [3,
Lemma 17], it suffices to consider u such that A = {x ∈ X : u(x) 6= 0}
is a bounded set. By Lemma 4, it suffices to show that for each positive
integer i, the function ϕi = (1 − wi) max(u − 1

i
, 0) is in H1,0

Φ,C(E).
On the other hand, if Oi and Fi are open subsets of X and CapΦ(Fi) ≤

2−i, as in the proof of Lemma 4, we have A∪Fi = Oi∪Fi. Since u has
bounded support, we can choose Oi as bounded sets contained in E.
We have wi |Fi

= 1 and hence ϕi |Fi
= 0. Set Ei =

{
x ∈ X : u(x) < 1

i

}
.

Then, as in the proof of Lemma 4, there is an open set Ui ⊂ E such
that Ei \ Fi = Ui \ Fi and ϕi |Fi∪Ui

= 0. Thus

{x : ϕi(x) 6= 0} ⊂ {x ∈ E : u(x) ≥ 1/i} \ Fi = Oi \ (Ei ∪ Fi) ⊂ Oi ⊂
E.

The support of ϕi is compact because X is proper, and hence δ =dist(supp
ϕi, X \ E) > 0. By [3, Theorem 5], ϕi is approximated by Lipschitz
functions in N1

Φ(X). Let gi be an upper gradient of ϕi. By [3, Lemma
9] we can assume that gi

∣∣
X\Oi

= 0. As in [3], define the operator M′

by M′(f)(x) = sup
B

1

µ(B)
Φ(|||f |||

LΦ(B)), where the supremum is taken

over all balls B ⊂ X such that x ∈ B. Then if x ∈ X \ E, we get

M′(gi)(x) = sup
x∈B, radB>δ/2

1

µ(B)
Φ(|||gi|||LΦ(B)) ≤

C ′

(δ/2)s
Φ(|||gi|||LΦ

) < ∞,

where s = LogC
Log2

, C being the doubling constant, and C ′ is a constant

depending only on C and A. We know from [3, Proposition 4] that
if f ∈ LΦ, then lim

λ→∞
λµ {x ∈ X : M′(f)(x) > λ} = 0. Hence in the

proof of [3, Theorem 5], choosing λ > C′

(δ/2)s Φ(|||gi|||LΦ
) ensures that

the corresponding Lipschitz approximations agree with the functions
ϕi on X \E. Thus these Lipschitz approximations are in H1,0

Φ,N(E), and
therefore so is ϕi. Moreover, these Lipschitz approximations have com-
pact support in E, and hence ϕi ∈ H1,0

Φ,C(E). The proof is complete.
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