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AN INTERACTING PARTICLES PROCESS
FOR BURGERS EQUATION ON THE CIRCLE

ANTHONY GAMST

ABSTRACT. We adapt the results of Oelschläger (1985) to prove a weak
law of large numbers for an interacting particles process which, in the
limit, produces a solution to Burgers equation with periodic boundary
conditions. We anticipate results of this nature to be useful in the devel-
opment of Monte Carlo schemes for nonlinear partial differential equa-
tions.
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1. INTRODUCTION

Several propagation of chaos results have been proved for the Burgers
equation (Calderoni and Pulvirenti 1983, Osada and Kotani 1985, Oelschläg-
er 1985, Gutkin and Kac 1986, and Sznitman 1986) all using slightly differ-
ent methods. Perhaps the best result for the Cauchy free-boundary problem
is Sznitman’s (1986) result which describes the particle interaction in terms
of the average ‘co-occupation time’ of the randomly diffusing particles. For
various reasons, we follow Oelschläger and prove a Law of Large Numbers
type result for the measure valued process (MVP) where the interaction is
given in terms of a kernel density estimate with bandwidth a function of the
number N of interacting diffusions.
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The heuristics are as follows: The (nonlinear) partial differential equation

ut =
uxx

2
−
(

u(x, t)
∫

b(x − y)u(y, t) dy
)

x
(1)

is the Kolmogorov forward equation for the diffusion X = (Xt) which is
the solution to the stochastic differential equation

dXt = dWt +
{∫

b(Xt − y)u(y, t) dy
}

dt (2)

= dWt + E(b(Xt − X̄t))dt (3)

where u(x, t) dx is the density of Xt, Wt is standard Brownian motion (a
Wiener process), X̄ is an independent copy of X , and E is the expecta-
tion operator. Note the change in notation: for a stochastic process X , Xt

denotes its location at time t not a (partial) derivative with respect to t.
The law of large numbers suggests that

E(b(Xt − X̄t)) = lim
N→∞

1

N

N
∑

j=1

b(Xt − Xj
t )

where the Xj are independent copies of X and this empirical approximation
suggests looking at the system of N stochastic differential equations given
by

dX i,N
t = dW i,N

t +
1

N

N
∑

j=1

b(X i,N
t − Xj,N

t )dt, i = 1, . . . , N

where the W i,N are independent Brownian motions. Now if b is bounded
and Lipschitz and the N particles are started independently with distribution
µ0, then the system of N stochastic differential equations will have a unique
solution (Karatzas and Shreve 1991) and the measure valued process

µN
t =

1

N

N
∑

j=1

δXj,N
t

where δx is the point-mass at x will converge to a solution µ of (1) in the
sense that for every bounded continuous function f on the real-line and
every t > 0,

∫

f(x)µN
t (dx) =

1

N

N
∑

j=1

f(Xj,N
t ) →

∫

f(x)µt(dx),

where µt has a density u so µt(dx) = u(x, t)dx and u solves (1).
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By formal analogy, if we take 2b(x − y) = δ0(x − y), where δ0 is the
point-mass at zero, then

ut =
uxx

2
−

(

u(x, t)
∫

δ0(x − y)

2
u(y, t) dy

)

x

(4)

=
uxx

2
−

(

u2

2

)

x

(5)

=
uxx

2
− uux (6)

which is the Burgers equation with viscosity parameter ε = 1/2. Unfor-
tunately, δ0 is neither bounded nor Lipschitz and a lot of work goes into
dealing with this problem. This is covered in greater detail later in the pa-
per.

Our interest in these models lies partially in their potential use as numer-
ical methods for nonlinear partial differential equations. This idea has been
the subject of a good deal of recent research, see Talay and Tubaro (1996).
As noted there, and elsewhere, the Burgers equation is an excellent test for
new numerical methods precisely because it does have an exact solution. In
the next two sections, we prove the underlying Law of Large Numbers for
the Burgers equation with periodic boundary conditions. Such boundary
conditions seem natural for numerical work.

2. THE SETUP AND GOAL.

We are interested in looking at the dynamics of the measure valued pro-
cess

µN
t =

N
∑

j=1

δY j,N
t

(7)

with δx the point-mass at x,

Y j,N
t = ϕ(Xj,N

t ) (8)

where ϕ(x) = x − [x] and [x] is the largest integer less than or equal to
x, with the Xj,N

t satisfying the following system of stochastic differential
equations

dXj,N
t = dW j,N

t + F

(

1

N

N
∑

l=1

bN (Xj,N
t − X l,N

t )

)

dt (9)

where the W j,N
t are independent standard Brownian motion processes,

F (x) =
x ∧ ‖u0‖

2
,
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u0 is a bounded measurable density function on S = [0, 1), ‖ · ‖ is the
supremum norm, ‖f‖ = supS |f(x)|, and bN (x) > 0 is an infinitely-
differentiable one-periodic function on the real line IR such that

∫ 1

0
bN (x) dx = 1 (10)

for all N = 1, 2, . . . , and for any continuous bounded one-periodic function
f

∫ 1/2

−1/2
f(x)bN (x) dx → f(0) (11)

as N → ∞. We call a function f on IR one-periodic if f(x) = f(x+1) for
every x ∈ IR.

For any x and y in S, let

ρ(x, y) = |x − y − 1| ∧ |x − y| ∧ |x − y + 1| (12)

and note that (S, ρ) is a complete, separable, and compact metric space. Let
Cb(S) denote the space of all continuous bounded functions on (S, ρ). Note
that if f is a continuous one-periodic function on IR and g is the restriction
of f to S, then g ∈ Cb(S). Additionally, for any one-periodic function f on
IR we have f(Y j,N

t ) = f(Xj,N
t ) and therefore

〈µN
t , f〉 =

∫

S
f(x)µN

t (dx)

=
1

N

N
∑

j=1

f(Y j,N
t )

=
1

N

N
∑

j=1

f(Xj,N
t )

for any one-periodic function f on IR.
To study the dynamics of the process µN

t as N → ∞ we will need to
study, for any f which is both one-periodic and twice-differentiable with
bounded first and second derivatives, the dynamics of the processes 〈µN

t , f〉.
These dynamics are obtained from (7), (9), and Itô’s formula (see Karatzas
and Shreve 1991, p.153)

〈µN
t , f〉 = 〈µN

0 , f〉 +
∫ t

0
〈µN

s , F (gN
s (·))f

′

+
1

2
f

′′

〉 ds

+
1

N

N
∑

j=1

∫ t

0
f

′

(Xj,N
s ) dW j,N

s (13)

where the use the notation

〈µ, f〉 =
∫

S
f(x)µ(dx)
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with µ a measure on S,

gN
t (x) =

1

N

N
∑

l=1

bN (x − X l,N
t ) (14)

and the fact that because bN is one-periodic, bN (Y j,N
t −Y l,N

t ) = bN (Xj,N
t −

X l,N
t ).
Given any metric space (M, m), let M1(M) be the space of probability

measures on M equipped with the usual weak topology:

lim
k→∞

µk = µ

if and only if

lim
k→∞

∫

M
f(x)µk(dx) =

∫

M
f(x)µ(dx)

for every f in Cb(M), where Cb(M) is the space of all continuous bounded
and real-valued functions f on M under the supremum norm ‖f‖ = supM |f(x)|.

On the space (S, ρ) the weak topology is generated by the bounded Lip-
schitz metric

‖µ1 − µ2‖H = sup
f∈H

|〈µ1, f〉 − 〈µ2, f〉|

where

H = {f ∈ Cb(S) : ‖f‖ ≤ 1, |f(x) − f(y)| < ρ(x, y) for all x, y ∈ S}

(Pollard 1984, or Dudley 1966).
Fix a positive T < ∞ and take C([0, T ],M1(S)) to be the space of all

continuous functions µ = (µt) from [0, T ] to M1(S) with the metric

m(µ1, µ2) = sup
0≤t≤T

‖µ1
t − µ2

t‖H ,

then the empirical processes µN
t with 0 ≤ t ≤ T are random elements of

the space C([0, T ],M1(S)). Indeed, take any sequence (tk) ⊂ [0, T ] with
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tk → t, then for any f in H we have

|〈µN
t , f〉 − 〈µN

tk
, f〉| =

∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

f(Y j,N
t ) − f(Y j,N

tk )

∣

∣

∣

∣

∣

∣

≤
1

N

N
∑

j=1

|f(Y j,N
t ) − f(Y j,N

tk )|

≤
1

N

N
∑

j=1

ρ(Y j,N
t , Y j,N

tk )

≤
1

N

N
∑

j=1

|Xj,N
t − Xj,N

tk |

=
1

N

N
∑

j=1

∣

∣

∣

∣

[W j,N
t − W j,N

tk ] +
∫ t

tk

F (gN
s (Xj,N

s )) ds
∣

∣

∣

∣

→ 0

because the W j,N
t are continuous in t and ‖F‖ < ∞. This means that the

distributions L(µN) of the processes µN = (µN
t ) can be considered random

elements of the space M1(C([0, T ],M1(S))).

Our goal is to prove the following Law of Large Numbers type result.

Theorem 1. Under the conditions that

(i): bN is one-periodic, positive and infinitely-differentiable with
∫ 1

0
bN (x) dx = 1, (15)

and
∫ 1/2

−1/2
f(x)bN (x) dx → f(0) (16)

for every continuous, bounded, and one-periodic function f on IR,
(ii): ‖bN‖ ≤ ANα for some 0 < α < 1/2 and some constant A < ∞,
(iii): there is a β with 0 < β < (1 − 2α) such that

∑

λ

|b̃N(λ)|2(1 + |λ|β) < ∞ (17)

where λ = 2kπ, with k ∈ Z, and b̃N(λ) =
∫ 1
0 eiλxbN (x) dx is the

Fourier transform of bN ,
(iv): u0 is a density function on [0, 1) with ‖u0‖ < ∞, and
(v): 〈µN

0 , f〉 = 1
N

∑N
j=1 f(Y j,N

0 ) = 1
N

∑N
j=1 f(Xj,N

0 ) →
∫ 1
0 f(x)u0(x) dx

for every f ∈ Cb(S).
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then there is a deterministic family of measures µ = (µt) on [0, 1) such that

µN → µ (18)

in probability as N → ∞, for every t in [0, T ], with µN = (µN
t ), µt is

absolutely continuous with respect to Lebesgue measure on S with density
function gt(x) = u(x, t) satisfying the Burgers equation

ut + uux =
1

2
uxx (19)

with periodic boundary conditions.

The proof has three parts. First, we establish the fact that the sequence
of probability laws L(µN) is relatively compact in M1(C([0, T ],M1(S)))
and therefore every subsequence of (µNk) of (µN) has a further subsequence
that converges in law to some µ in C([0, T ],M1(S)). Second, we prove that
any such limit process µ must satisfy a certain integral equation, and finally,
that this integral equation has a unique solution. We follow rather closely
the arguments of Oelschläger (1985) and apply his result (Theorem 5.1,
p.31) in the final step of the argument.

3. THE LAW OF LARGE NUMBERS.

Relative Compactness. The first step in the proof of Theorem 1 is to show
that the sequence of probability laws L(µN), N = 1, 2, . . . , is relatively
compact in M = M1(C([0, T ],M1(S))). Since S is a compact metric
space M1(S) is as well (Stroock 1983, p.122) and therefore for any ε > 0
there is a compact set Kε ⊂ M1(S) such that

inf
N

P
(

µN
t ∈ Kε, ∀t ∈ [0, T ]

)

≥ 1 − ε; (20)
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in particular, we may take Kε = M1(S) regardless of ε ≥ 0. Furthermore,
for 0 ≤ s ≤ t ≤ T and some constant C > 0 we have

‖µN
t − µN

s ‖
4
H = sup

f∈H
(〈µN

t , f〉 − 〈µN
s , f〉)4

= sup
f∈H





1

N

N
∑

j=1

f(Y j,N
t ) − f(Y j,N

s )





4

≤





1

N

N
∑

j=1

ρ(Y j,N
t , Y j,N

s )





4

≤





1

N

N
∑

j=1

|Xj,N
t − Xj,N

s |





4

≤
1

N

N
∑

j=1

|Xj,N
t − Xj,N

s |4

=
1

N

N
∑

j=1

∣

∣

∣

∣

(W j,N
t − W j,N

s ) +
∫ t

s
F
(

gN
u (Xj,N

u )
)

du

∣

∣

∣

∣

4

≤ C





1

N

N
∑

j=1

∣

∣

∣W j,N
t − W j,N

s

∣

∣

∣

4
+

1

N

N
∑

j=1

∣

∣

∣

∣

∫ t

s
F
(

gN
u (Xj,N

u )
)

du

∣

∣

∣

∣

4




and therefore

E‖µN
t − µN

s ‖
4
H ≤ C(3(t − s)2 + ‖u0‖

4(t − s)4) < 3C‖u0‖
4(t − s)2

(21)

for t − s small. Together equations (20) and (21) imply that the sequence
of probability laws L(µN) is relatively compact (Gikhman and Skorokhod
1974, VI, 4) as desired.

Almost Sure Convergence. Now the relative compactness of the sequence
of laws L(µN) in M implies that there is an increasing subsequence (Nk) ⊂
(N) such that L(µNk) converges in M to some limit L(µ) which is the
distribution of some measure valued process µ = (µt). For ease of notation,
we assume at this point that (Nk) = (N). The Skorokhod representation
theorem implies now that after choosing the proper probability space, we
may define µN and µ so that

lim
N→∞

sup
t≤T

‖µN
t − µt‖H = 0 (22)

P -almost surely. This leaves us with the task of describing the possible
limit processes, µ.
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An Integral Equation. We know from Ito’s formula that for any f ∈
C2

b (S), µN satisfies

〈µN
t , f〉 − 〈µN

0 , f〉 −
∫ t

0
〈µN

s , F (gN
s (·))f

′

+
1

2
f

′′

〉 ds

=
1

N

N
∑

j=1

∫ t

0
f

′

(Xj,N
s ) dW j,N

s (23)

where the right hand side is a martingale. Because f ∈ C2
b (S), the weak

convergence of µN to µ gives us that

〈µN
t , f〉 → 〈µt, f〉 (24)

as N → ∞ for all 0 ≤ t ≤ T and we have

〈µN
0 , f〉 → 〈µ0, f〉 (25)

as N → ∞ by assumption. Furthermore, Doob’s inequality (Stroock 1983,
p.355) implies

E





sup
t≤T





1

N

N
∑

j=1

∫ t

0
f

′

(Xj,N
s ) dW j,N

s





2




 ≤ 4E











1

N

N
∑

j=1

∫ T

0
f

′

(Xj,N
s ) dW j,N

s





2






≤
4

N
T‖f

′

‖2

and therefore the right hand side of (23) vanishes as N → ∞. Clearly now,
the integral term third in equation (23) must converge as well and the goal
at present is to find out to what.

First, because f ∈ C2
b (S), the weak convergence of µN to µ gives us that

1

2

∫ t

0
〈µN

s , f
′′

〉 ds →
1

2

∫ t

0
〈µs, f

′′

〉 ds (26)

as N → ∞. Now only the
∫ t
0〈µ

N
s , F (gN

s (·))f
′

〉 ds-term remains and this
is indeed the most troublesome because of the interaction between the µN

s

and gN
s terms. To study this term we will need to work out the convergence

properties of the ‘density’ gN
s . We start by working on some L2 bounds.

The Convergence of the Density gN
s . Note that

〈gN
s (·), eiλ·〉 = 〈µN

s , eiλ·〉 b̃N(λ),

where b̃N is the Fourier transform of the interaction kernel bN .
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Ito’s formula implies that for any λ ∈ (2kπ) with k ∈ Z

|〈µN
t , eiλ·〉|2eλ2(t−τ) −

∫ t

0
((〈µN

s , e−iλ·〉〈µN
s , F (gN

s (·))(iλ)eiλ· −
λ2

2
eiλ·〉

+〈µN
s , eiλ·〉〈µN

s , F (gN
s (·))(−iλ)e−iλ· −

λ2

2
e−iλ·〉)eλ2(s−τ)

+|〈µN
s , eiλ·〉|2λ2eλ2(s−τ) +

1

N
λ2eλ2(s−τ)) ds

= |〈µN
t , eiλ·〉|2eλ2(t−τ) −

∫ t

0
((〈µN

s , e−iλ·〉〈µN
s , F (gN

s (·))(iλ)eiλ·〉

+〈µN
s , eiλ·〉〈µN

s , F (gN
s (·))(−iλ)e−iλ·〉)eλ2(s−τ)

+
λ2

N
eλ2(s−τ)) ds (27)

is a martingale.
Now take τ = t + h and

kN
h (λ, t) = |〈µN

t , eiλ·〉|2|b̃N(λ)|2e−λ2h

then the martingale property above gives

E[kN
h (λ, t)] = E[kN

t+h(λ, 0)] +
∫ t

0
E[〈µN

s , e−iλ·〉〈µN
s , F (gN

s (·))(iλ)eiλ·〉

+〈µN
s , eiλ·〉〈µN

s , F (gN
s (·))(−iλ)e−iλ·〉

+
λ2

N
]e−λ2(t+h−s)|b̃N (λ)|2 ds

≤ E[kN
t+h(λ, 0)]

+
∫ t

0
(E[2|〈µN

s , eiλ·〉||〈µN
s , F (gN

s (·))eiλ·〉

·|λ| e−λ2(t+h−s)|b̃N (λ)|2]

+
λ2

N
e−λ2(t+h−s)|b̃N(λ)|2) ds

≤ E[kN
t+h(λ, 0)]

+
∫ t

0
(2‖u0‖E[|〈µN

s , eiλ·〉|2|λ|e−λ2(t+h−s)|b̃N(λ)|2]

+
λ2

N
e−λ2(t+h−s)|b̃N(λ)|2) ds. (28)
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Summing over λ ∈ (λk) gives
∑

λ

E[kN
h (λ, t)] ≤

∑

λ

E[kN
t+h(λ, 0)]

+2‖u0‖
∑

λ

∫ t

0
E
[

|〈µN
s , eiλ·〉|2|λ|e−λ2(t+h−s)|b̃N(λ)|2

]

ds

+
∑

λ

∫ t

0

(

λ2

N
e−λ2(t+h−s)|b̃N (λ)|2

)

ds

= A
I
+ A

II
+ A

III
.

Now, of course,
∑

λ

kN
t+h(λ, 0) ≤

∑

λ

e−λ2(t+h) ≤ (t + h)−1/2

and therefore
A

I
=
∑

λ

E[kN
t+h(λ, 0)] ≤ (t + h)−1/2.

For A
III

, using hypothesis (ii) from Theorem 1, we have

A
III

=
1

N

∑

λ

|b̃N(λ)|2
∫ t

0
λ2e−λ2(t+h−s) ds =

1

N

∑

λ

|b̃N (λ)|2e−λ2h

≤
1

N

∑

λ

|b̃N(λ)|2 =
1

N

∫ 1

0
(bN(x))2 dx

≤
2N2α

N
C ≤ 2C

for some constant C > 0. Now

2‖u0‖
∫ t

0
E[|〈µN

s , eiλ·〉|2|b̃N(λ)|2|λ|e−λ2(t+h−s)] ds

= 2‖u0‖
∫ t

0
E[|〈µN

s , eiλ·〉|2|b̃N(λ)|2e−λ2(t+h−s)/2|λ|e−λ2(t+h−s)/2] ds

≤ 2‖u0‖C
∫ t

0
E[|〈µN

s , eiλ·〉|2|b̃N (λ)|2e−λ2(t+h−s)/2] ds

= 2‖u0‖C
∫ t

0
E[kN

(t+h−s)/2(λ, s)] ds

≤ 2‖u0‖C
∫ t

0
e−λ2(t+h−s)/2 ds

≤
4‖u0‖C

λ2

for some other constant C > 0 and therefore

A
II
≤ 4‖u0‖C

∑

λ6=0

λ−2 ≤ 4‖u0‖D
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for some constant D < ∞. Hence
∑

λ

E[kN
h (λ, t)] =

∑

λ

E[|〈µN
t , eiλ·〉|2|b̃N(λ)|2]e−λ2h

= A
I
+ A

II
+ A

III

≤ (t + h)−1/2 + C(‖u0‖ + 1)

uniformly in h > 0 for some constant C < ∞. Letting h go to zero gives
∑

λ

E|g̃N
t (λ)|2 =

∑

λ

E[kN
0 (λ, t)]

= lim
h→0

∑

λ

E[kN
h (λ, t)] ≤ t−1/2 + C(‖u0‖ + 1).

From the martingale property (27) we have

E[kN
0 (λ, t)] ≤ E[kN

t/2(λ, t/2)] + 2‖u0‖
∫ t

t/2
E[|〈µN

s , eiλ·〉|2|b̃N (λ)|2]|λ|e−λ2(t−s) ds

+
λ2

N

∫ t

t/2
e−λ2(t−s)|b̃N(λ)|2 ds

and for β ∈ (0, 1 − 2α) we have

(1 + |λ|β)E[kN
0 (λ, t)] ≤ (1 + |λ|β)E[kN

t/2(λ, t/2)]

+2‖u0‖
∫ t

t/2
E[|〈µN

s , eiλ·〉|2|b̃N(λ)|2]

· |λ|(1 + |λ|β)e−λ2(t−s) ds

+(1 + |λ|β)
λ2

N

∫ t

t/2
e−λ2(t−s)|b̃N (λ)|2 ds

≤ (1 + |λ|β)e−λ2t/2

+2‖u0‖C
∫ t

t/2
E[|〈µN

s , eiλ·〉|2|b̃N(λ)|2]e−λ2(t−s)/2 ds

+(1 + |λ|β)
λ2

N

∫ t

t/2
e−λ2(t−s)|b̃N (λ)|2 ds

for some constant C < ∞ and we know that
∑

λ

(1 + |λ|β)e−λ2t/2 < ∞,

2‖u0‖C
∫ t

t/2

∑

λ

E[kN
(t−s)/2(λ, s)] ds ≤ 2‖u0‖C

∫ t

t/2

∑

λ

e−λ2(t−s)/2 ds < ∞,

and, from hypothesis (iii) of Theorem 1,

1

N

∑

λ

(1 + |λ|β)|b̃N(λ)|2 < ∞
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and therefore
∑

λ

(1 + |λ|β)E|g̃N
t (λ)|2 =

∑

λ

(1 + |λ|β)E[kN
0 (λ, t)] < ∞.

(29)

Finally, from (29) it is easy to work out the convergence properties of gN .
Indeed,

lim
N,M→∞

E

[

∫ T

0

∫ 1

0
|gN

t (x) − gN
t (x)|2 dx dt

]

= lim
N,M→∞

E

[

∫ T

0

∑

λ

|g̃N
t (λ) − g̃M

t (λ)|2 dt

]

≤ lim
N,M→∞

E





∫ T

0

∑

|λ|≤K

|g̃N
t (λ) − g̃M

t (λ)|2 dt





+ lim
N,M→∞

2E





∫ T

0

∑

|λ|>K

(|g̃N
t (λ)|2 + |g̃M

t (λ)|2) dt





≤ lim
N,M→∞

4E





∫ T

0

∑

|λ|≤K

|〈µN
t − µM

t , eiλ·〉|2 dt





+4(1 + Kβ)−1 sup
N

E

[

∫ T

0

∑

λ

|g̃N
t (λ)|2(1 + |λ|β) dt

]

≤ C(1 + Kβ)−1T

for some constant C < ∞ and the right hand side of this last inequality
can be made smaller than any given ε > 0 by the choice of K. So, by
the completeness of L2, we have proved the existence of a positive random
function gt(x) such that

lim
N→∞

E

[

∫ T

0

∫ 1

0
|gN

t (x) − gt(x)|2 dx dt

]

= 0. (30)

Of course, this means that for any f ∈ Cb(S) we have

∫ 1

0
f(x)gt(x) dx = lim

N→∞

∫ 1

0
f(x)gN

t (x) dx = lim
N→∞

〈µN
t ∗ bN , f〉

= lim
N→∞

〈µN
t , f ∗ bN〉 = 〈µt, f〉 =

∫ 1

0
f(x) µt(dx)

and therefore µt is absolutely continuous with respect to Lebesgue measure
on S with derivative gt.
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Conclusion. Finally, combining (23-26), and (30), implies

〈µt, f〉 − 〈µ0, f〉 =
∫ t

0
〈µs, F (gs(·))f

′

+
1

2
f

′′

〉 ds (31)

and from Proposition 3.5 of Oelschläger (1985) we know that the integral
equation (31) has a unique solution µt absolutely continuous with respect
to Lebesgue measure on S with density gt. We note also that the solution
gt(x) = u(x, t) of the Burgers equation

ut + uux =
1

2
uxx

with periodic boundary conditions

u(x, t) = u(x + 1, t),

for all real x, and all t > 0, and initial condition u0, satisfies the integral
equation

〈gt(·), f〉 − 〈u0(·), f〉 =
∫ t

0
〈gs(·),

1

2
gs(·)f

′

+
1

2
f

′′

〉 ds

and from the Hopf-Cole solution (II.67) we see that

‖gt‖ ≤ ‖u0‖

and therefore gt(x) satisfies (31) as well. The uniqueness result for solutions
to the periodic boundary problem for the Burgers equation then completes
the proof of Theorem 1.
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