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AN ITERATIVE METHOD FOR COMPUTING ZEROS
OF OPERATORS SATISFYING AUTONOMOUS

DIFFERENTIAL EQUATIONS

IOANNIS K. ARGYROS

Abstract. We use an iteration method to approximate zeros of
operators satisfying autonomous differential equations. This it-
eration process has the advantages of the quadratic convergence
of Newton’s method and the simplicity of the modified Newton’s
method, as the inverse of the operator involved is calculated once
and for all. Our local and semilocal convergence results compare
favorably with earlier ones under the same computational cost.
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1. Introduction

In this study we are concerned with the problem of approximating a
locally unique solution x∗ of equation

(1) F (x) = 0,

where F is a Fréchet-differentiable operator defined on an open convex
subset D of a Banach space X with values in a Banach space Y .

We use the Newton-like method:

(2) xn+1 = xn − F ′ (yn)
−1

F (xn) (n ≥ 0)

to generate a sequence approximating x∗.
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Here F ′ (x) ∈ L (X, Y ) denotes the Fréchet-derivative. We are inter-
ested in the case when:

(3) yn = λnxn + (1 − λn) zn (n ≥ 0)

where,

λn ∈ [0, 1] , (n ≥ 0)(4)

zn = x∗(5)

or

(6) zn = xn (n ≥ 0) ,

or other suitable choice [1]-[4].
We provide a local and a semilocal convergence analysis for method

(2) which compare favorably with earlier results [4], and under the
same computational cost.

2. Convergence for method (2) for zn given by (5) and
λn = 0 (n ≥ 0)

We can show the following local result:

Theorem 1. Let F : D ⊆ X → Y be a Fréchet-differentiable operator.
Assume:
there exists a solution x∗ of equation

F (x) = 0 such that F ′ (x∗)−1 ∈ L (Y, X)

and
∥

∥F ′ (x∗)−1
∥

∥ ≤ b;(7)

‖F ′ (x) − F ′ (x∗)‖ ≤ L0 ‖x − x∗‖ for all x ∈ D,(8)

and

(9) U (x∗, r0) =
{

x ∈ X
∣

∣

∣
‖x − x∗‖ ≤ r0 = 2

bL0

}

⊆ D.

Then sequence {xn} (n ≥ 0) generated by Newton-like method (2) is
well defined remains in U (x∗, r0) for all n ≥ 0, and converges to x∗

provided that x0 ∈ U (x∗, r0).
Moreover the following error bounds hold for all n ≥ 0 :

(10) ‖xn − x∗‖ ≤ θ2n
−1

0 ‖x0 − x∗‖ (n ≥ 1) ,

where

(11) θ0 = 1

2
bL0 ‖x0 − x∗‖ .
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Proof. By (2) and F (x∗) = 0 we get for all n ≥ 0 :
(12)

xn+1−x∗ = −F ′ (x∗)−1





1
∫

0

(F ′ (x∗ + t (xn − x∗)) − F ′ (x∗)) (xn − x∗)



 dt

from which it follows

(13) ‖xn+1 − x∗‖ ≤ 1

2
bL0 ‖xn − x∗‖2

from which (10) follows.
By (9) and (11) θ0 ∈ [0, 1). hence it follows from (10) that xn ∈

U (x∗, r0) (n ≥ 0) and lim
n→∞

xn = x∗ (by using induction on the integer

n ≥ 0). �

Remark 1. Method (2) has the advantages of the quadratic conver-
gence of Newton’s method and the simplicity of the modified Newton’s
method, since the operator F ′ (x∗)−1 is computed only once. It turns
out that method (2) can be used for operators F which satisfy an au-
tonomous differential equation

(14) F ′ (x) = G (F (x)) ,

where G is a known continuous operator on Y . As F ′ (x∗) = G (0) can
be evaluated without knowing the value of x∗.

Moreover in order for us to compare Theorem 1 with earlier results,
consider the condition

(15) ‖F ′ (x) − F ′ (y)‖ ≤ L ‖x − y‖ for all x ∈ D

used in [4] instead of (8). The corresponding radius of convergence is
given by

(16) rR =
2

bL
.

since

(17) L0 ≤ L

holds in general we obtain

(18) rR ≤ r0.

Furthermore in case strict inequality holds in (17), so does in (18).
We showed in [1] that the ration L

L0

can be arbitrarily large. Hence we

managed to enlarge the radius of convergence for method (2) under the
same computational cost as in Theorem 1 in [4, p.113].

This observation is very important in computational mathematics
since a under choice of initial guesses x0 can be obtained.
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Below we give an example of a case where strict inequality holds in
(17) and (18).

Example 1. Let X = Y = R, D = U (0, 1) and define F on D by

(19) F (x) = ex − 1.

Note that (19) satisfies (14) for T (x) = x + 1. Using (7), (8), (9),
(15) and (16) we obtain

(20) b = 1, L0 = e − 1, L = e,

(21) r0 = 1.163953414

and

(22) rR = .735758882.

In order to keep the iterates inside D we can restrict r0 and choose

(23) r0 = 1.

In any case (17) and (18) holds as a strict inequalities.

We can show the following global result:

Theorem 2. Let F : X → Y be Fréchet-differentiable operator, and G

a continuous operator from Y into Y . Assume:

condition (14) holds;

G (0)−1 ∈ L (Y, X) so that (7) holds;

F (x) ≤ c for all x ∈ X;(24)

(25) ‖G (0) − G (z)‖ ≤ a0 ‖z‖ for all z ∈ Y

and

(26) h0 = α0bc < 1.

Then, sequence {xn} (n ≥ 0) generated by method (2) is well defined
and converges to a unique solution x∗ of equation F (x) = 0.

Moreover the following error bounds hold for all n ≥ 0 :

(27) ‖xn − x∗‖ ≤ hn

0

1 − h0

‖x1 − x0‖ (n ≥ 0) .

Proof. It follows from the contraction mapping principle [2] by using
(25), (26) instead of

(28) ‖G (v) − G (z)‖ ≤ a ‖v − z‖ for all v, z ∈ Y

and

(29) h = abc < 1
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respectively in the proof of Theorem 2 in [4, p.113]. �

Remark 2. If F ′ is L0 Lipschitz continuous in a ball centered at x∗,
then the convergence of method (2) will be quadratic as soon as

(30) bL0 ‖x0 − x∗‖ < 2

holds with x0 replaced by an iterate xn sufficiently close to x∗.

Remark 3. If (25) is replaced by the stronger (28), Theorem 2 reduces
to Theorem 2 in [4]. Otherwise our Theorem is weaker than Theorem
2 in [4] since

(31) a0 < a

holds in general.

We note that if (25) holds and

(32) ‖F (x) − F (x0)‖ ≤ γ0 ‖x − x0‖
then

(33) ‖F (x)‖ ≤ ‖F (x) − F (x0)‖+‖F (x0)‖ ≤ γ0 ‖x − x0‖+‖F (x0)‖ .

Let r = ‖x − x0‖, and define

(34) P (r) = a0b (‖F (x0)‖ + γ0r) .

If P (0) = a0b ‖F (x0)‖ < 1, then as in Theorem 3 in [4, p.114]
inequality (26) and the contraction mapping principle we obtain the
following semilocal result:

Theorem 3. If

(35) q = (1 − a0b ‖F (x0)‖)2 − 4ba0γ0

∥

∥G (0)−1
F (x0)

∥

∥ ≥ 0,

then a solution x∗ of equation

F (x) exists in U (x0, r1) ,

and is unique in U (x0, r2), where

(36) r1 =
1 − a0b ‖F (x0)‖ −

√
q

2ba0γ0

and

(37) r2 =
1 − a0b ‖F (x0)‖

ba0γ0

.

Remark 4. Theorem 3 reduces to Theorem 3 in [4, p.114] if (25) and
(32) are replaced by the stronger (28) and

(38) ‖F (x) − F (y)‖ ≤ γ ‖x − y‖
respectively. Otherwise our Theorem is weaker than Theorem 3 in [4].
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