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A GALOIS THEORY WITH STABLE UNITS FOR SIMPLICIAL SETS

JOÃO J. XAREZ

Abstract. We recall and reformulate certain known constructions, in order to make
a convenient setting for obtaining generalized monotone-light factorizations in the sense
of A. Carboni, G. Janelidze, G. M. Kelly and R. Paré. This setting is used to study the
existence of monotone-light factorizations both in categories of simplicial objects and in
categories of internal categories. It is shown that there is a non-trivial monotone-light
factorization for simplicial sets, such that the monotone-light factorization for reflexive
graphs via reflexive relations is a special case of it, obtained by truncation. More gener-
ally, we will show that there exists a monotone-light factorization associated with every
full subcategory Mono(Fn), n ≥ 0, consisting of all simplicial sets whose unit morphisms
are monic for the localization Fn : Set∆op → Set∆op

n , which truncates each simplicial
set after the object of n-simplices. The monotone-light factorization for categories via
preorders is as well derived from the proposed setting. We also show that, for regular
Mal’cev categories, the reflection of internal groupoids into internal equivalence relations
necessarily produces monotone-light factorizations. It turns out that all these reflections
do have stable units, in the sense of C. Cassidy, M. Hébert and G. M. Kelly, giving rise
to Galois theories.

1. Introduction

Essentially every reflection C → X , from a category C into its full subcategory X , gives
rise to a factorization system (E, M). Then, by respectively stabilizing and localizing
the classes E and M of morphisms in C, in the sense of [1], one may obtain another one
(E′, M∗), to be called a monotone-light factorization system. The main result of [1] gives
a necessary and sufficient condition for what seems to be a quite rare occurrence. Recall
also from [1], that M∗ is exactly the class of covering morphisms in the sense of Galois
theory of G. Janelidze.

In my PhD thesis [10] (see also [11]), I studied in particular the reflection Cat →
Preord from categories into preordered sets. It proved to be another example giving
a Galois theory for the category Cat of all categories and a non-trivial monotone-light
factorization (i.e., (E′, M∗) �= (E, M)). A unit morphism ηA : A → I(A) of this reflection is
the coequalizer of the kernel pair of another unit morphism ϕA : A → F (A), associated to
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the reflection of categories into indiscrete categories, as displayed in the pullback diagram
2.1.

In the present paper we study this coequalizer of the kernel pair process in a more
general fashion, by beginning not with a reflection but simply with a pointed endofunctor
(F, ϕ), i.e., a natural transformation ϕ : 1C → F , from the identity functor of a category
C to an endofunctor F : C → C. We impose then additional conditions, under which
the regular epimorphisms ηA : A → I(A) define a reflection (I, η). After that we give
sufficient conditions for (I, η) to have stable units, in the sense of [2] and [1].

In another instance of this process, the pointed endofunctor (F, ϕ), associated with the
reflection RGrphs → LEqRel of reflexive graphs into connected equivalence relations,
gives rise to the reflection of reflexive graphs into reflexive relations. This reflection
RGrphs → RRel has stable units, as follows from Corollary 4.4 (see Section 4).

It is known that if a reflection (I, η) has stable units it is necessarily admissible in the
sense of categorical Galois theory [5], also called semi-left exact in [2]. There is therefore
a Galois theory for reflexive graphs via reflexive relations.

Furthermore, if a reflection C → X from a finitely-complete category C has stable units
then there exists an associated monotone-light factorization in C, provided that for each
object B there is an effective descent morphism p : E → B in C such that its domain E
belongs to the full subcategory X (see Corollary 6.2 in [9], which follows from the main
result of [1]). This is really the case for both Cat → Preord and RGrphs → RRel.

The two reflections just considered are of course respectively a special case of Cat(S) →
Preord(S), categories in S into preorders in S, and RGrphs(S) → RRel(S), reflexive
graphs in S into reflexive relations in S, when S = Set. Sufficient conditions on S for
successful internalizations of the former reflections were given in [9]. G. Janelidze sug-
gested me to extend the results obtained in that paper [9] to simplicial objects, looking
at them as higher dimensional graphs, with possible future applications in homotopy the-
ory. And so I did, applying the coequalizer of the kernel pair process to the reflection
of the category of simplicial sets Smp into its full subcategory of the nerves of indis-
crete categories; and obtaining as well a new reflection with stable units and a non-trivial
monotone-light factorization, into the category OSmC of ordered simplicial complexes.
Note that there is a non-trivial monotone-light factorization system associated to the
reflection Smpn → OSmCn, for each integer n ≥ 1. This reflection is just a special
case of Smp → OSmC after truncating the simplicial sets right after the object of n-
simplices. The previous reflection RGrphs → RRel is therefore simply the special case
Smp1 → OSmC1 having n = 1.

More generally, we could begin with the localizations Fn : Smp → Smpn, n ≥ 0 (n = 0
corresponding to the reflection of simplicial sets into the nerves of indiscrete categories
analyzed in the last paragraph), apply the coequalizer of the kernel pair process and
obtain reflections with stable units and monotone-light factorizations for Smp. In fact,
these localizations Fn are examples of geometric morphisms F ∗ � F∗ : E → F between
elementary topoi which are embeddings having Mono(F ∗) dense in F (i.e., every object
of F is a colimit of objects of Mono(F ∗)). This turns out to be enough to conclude
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that there is a reflection I : F → Mono(F ∗) with stable units and a monotone-light
factorization (see Proposition 7.3).

If S is a Mal’cev variety of universal algebras then every internal category in S is a
groupoid. Hence, the above-mentioned process produces in such a case a reflection with
stable units Grpd(S) → EqRel(S), from internal groupoids into equivalence relations.
As M. Gran pointed out to me, for each internal groupoid G in S, there is an internal
functor (σ, d1) : Eq(d0) → G from an equivalence relation (see Example 5.2). This guaran-
tees the existence of monotone-light factorizations for internal groupoids via equivalence
relations, exactly as in the other reflections studied. The category of groupoids in groups
is known to be equivalent to the category of crossed modules, Grpd(Grp) � CrossMod.
So, in particular, there is a monotone-light factorization for crossed modules via normal
subgroup inclusions.

2. The coequalizer of a pointed endofunctor’s kernel pair is well-pointed

Throughout all this paper, (F, ϕ) will denote a pointed endofunctor on a finitely-complete
category C, such that for every object A in C the kernel pair of ϕA : A → F (A) has a
coequalizer. That is:

• ϕ : 1C → F is a natural transformation from the identity functor of a finitely-
complete category C to the endofunctor F : C → C;

• for every object A in C, the kernel pair of the morphism ϕA does have a coequalizer
ηA = coeq(ker(ϕA)), and the morphisms involved will be displayed as

I(A)

�
�

�
�

���

�
�

�
�

��

�
�

�
�

��
F (A) .

ϕA
µA

A

�

ηA

A ×F (A) A �

�

π2,A

A �

ηA

π1,A

ϕA
(2.1)

Our next lemma follows immediately from the fact that, in the category CC of endofunc-
tors on C, both the kernel pair (π1, π2) of ϕ and its coequalizer η = coeq(ker(ϕ)) : 1C → I
are computed pointwise.

2.1. Lemma. Diagram 2.1 defines a pointed endofunctor (I, η) on C.

2.2. Proposition. The pair (I, η) obtained as above is a well-pointed endofunctor in the
sense of [7], i.e., Iη = ηI.

Proof. By naturality of η, I(ηA)ηA = ηI(A)ηA. Hence, being ηA an epimorphism, one
obtains I(ηA) = ηI(A) for each A in C.
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2.3. Example. Consider the category Smp(S) = S∆op
of simplicial objects in S, where

∆ is the category of positive ordinal numbers [n] (n ≥ 0).
If S is a finitely-complete category with coequalizers of kernel pairs, so is Smp(S),

since it is well known that in any functor category the limits and colimits can be calculated
pointwise. Hence, by the results above, one can state that, for any pointed endofunctor
(F, ϕ) on Smp(S), the pair (I, η) obtained by the coequalizer of the kernel pair process
is well-pointed, i.e., Iη = ηI.

2.4. Example. We are now beginning the analysis of an example already studied in [9].
In what follows, we will just adapt the results known for this case to the convenient setting
introduced in the present paper. More details are given in [9].

For any finitely-complete category S there is the category Cat(S) of categories in S.
That is, the category whose objects are the diagrams in S of the form

C = C1 ×C0 C1

�

�

�π1

γ

π2

C1

�

�

�d1

i

d0

C0 (2.4)

satisfying the conditions

d0i = 1C0 = d1i, d0π1 = d1π2, d0γ = d0π2, and d1γ = d1π1,

where the square represented by the second equation is a pullback and the composition
operation γ satisfies the associative and unit laws.

Consider now, for a finitely-complete category S with coequalizers of kernel pairs, the
pointed endofunctor (F, ϕ) on Cat(S) for which:

F (C) = C0 × C0 × C0

�
�
� C0 × C0

�
�

� C0 (2.5)

where C0 is the object of objects of C, and the morphisms are the obvious ones between
the powers of C0; for every C in Cat(S), ϕC = (dC , 1C0) : C → F (C), where dC = 〈d0, d1〉
is the morphism determined by the commutative diagram

C0 C0 × C0 C0 .

C1

�

�
�

�
�

��

d1

�
�

�
�

��

d0
dC

� � (2.6)

By the results above, in order to conclude that there is a well-pointed endofunctor
(I, η) obtained by the coequalizer of the kernel pair process, one needs only to show that
the coequalizer ηC of the kernel pair of every internal functor ϕC does exist in Cat(S).

Sufficient conditions for the existence of such coequalizers ηC were given in [9, Propo-
sition 3.3]. In particular, if the coequalizer eC : C1 → I(C)1 of the kernel pair (pC , qC)
of dC : C1 → C0 × C0 is a pullback stable regular epimorphism in S, then the following
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diagram displays the coequalizer ηC = (eC , 1C0) of the kernel pair of ϕC = (dC , 1C0) in
Cat(S):

(C1 ×C0×C0 C1) ×C0 (C1 ×C0×C0 C1)
�
�
� C1 ×C0×C0 C1

�
�

� C0

�

pC × pC

�

qC × qC

�

pC

�

qC

�

1C0

C1 ×C0 C1

�

�

�π1

γ

π2

C1

�

�

�d1

i

d0

C0

�

1C0

�

eC × eC

�

eC

I(C)1 ×C0 I(C)1

�

�

�π
I(C)
1

γI(C)

π
I(C)
2

I(C)1

�

�

�d
I(C)
1

eCi

d
I(C)
0

C0 . (2.7)

3. Idempotency of (I, η)

It is known that a pointed endofunctor (I, η) on C is idempotent (i.e., Iη = ηI and ηI is
an isomorphism) if and only if the full replete subcategory Fix(I, η) of (I, η)-fixed objects
in C is reflective in C with reflection η (an object A is (I, η)-fixed if ηA is an isomorphism;
see [6]).

Proposition 3.1 below states that, if (I, η) is the well-pointed endofunctor obtained
from the pointed endofunctor (F, ϕ) by the coequalizer of the kernel pair process, then
Fix(I, η) is equal to Mono(F, ϕ), the full subcategory of C formed by the objects A
with ϕA monic. It follows trivially that ηI is an isomorphism if and only if ϕI is a
monomorphism in CC. This new characterization of the idempotency of the well-pointed
endofunctor (I, η) will be given in Corollary 3.2.

3.1. Proposition. Consider the well-pointed endofunctor (I, η) on C obtained from a
pointed endofunctor (F, ϕ), through the coequalizer of the kernel pair process displayed in
diagram 2.1.

Then, the two full subcategories Fix(I, η) and Mono(F, ϕ) of C are identical, Fix(I, η) =
Mono(F, ϕ).

Proof. Consider the pullback diagram 2.1.

If ϕA is a monomorphism then ηA must also be a monomorphism. This implies that
ηA is an isomorphism, since it is in addition a regular epimorphism.

Conversely, if ηA is an isomorphism then π1,A = π2,A is an isomorphism, since ηA is
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the coequalizer of the kernel pair (π1,A, π2,A). Therefore, ϕA is a monomorphism provided
ηA is an isomorphism.

3.2. Corollary. The endofunctor (I, η) on C, obtained by the process displayed in dia-
gram 2.1, is idempotent, in the sense of [7] and [6], if and only if ϕI(A) is a monomorphism
for each object A in C.

Corollaries 3.3 and 3.4 below will be useful in the examples.

3.3. Corollary. If µ is a monomorphism then (I, η) is idempotent provided either Fϕ
or Fη is a monomorphism.

Proof. Let us suppose first that both µ and Fη are monomorphisms. By naturality of
ϕ one has F (ηA)ϕA = ϕI(A)ηA for each object A in C. Therefore F (ηA)µA = ϕI(A), since
ϕA = µAηA and ηA is a regular epimorphism. Hence, ϕI(A) is a monomorphism because
it is the composite of two monomorphisms, for each object A in C. It follows then from
Corollary 3.2 that (I, η) is idempotent.

To complete this proof, one needs only to note that if the composite Fϕ = Fµ · Fη is
a monomorphism then Fη is necessarily also a monomorphism.

3.4. Corollary. If C is a regular category or, more generally, admits a (regular epi,
mono)-factorization, and (F, ϕ) is idempotent then (I, η) is idempotent.

Proof. Since C is regular, µ is a monomorphism because ϕA = µAηA is a regular epi-
mono factorization. Fϕ is an isomorphism since (F, ϕ) is idempotent. Hence, (I, η) is
idempotent by Corollary 3.3.

3.5. Example. For any finitely-complete category S with coequalizers of kernel pairs,
consider the pointed endofunctor (F, ϕ) on Smp(S) = S∆op

for which

F (A) = · · · A0 × A0 × A0

�� �� � A0 × A0

�� � A0 . (3.1)

The 0-component of ϕ(A) : A → F (A) is the identity morphism 1A0 : A0 → A0, as shown
in the diagram

· · · A2

�� �� � A1

�� � A0

�

1A0

�

dA· · ·

�

dA × dA

· · · A0 × A0 × A0

�� �� � A0 × A0

�� � A0 . (3.2)

Then, one knows that the pair (I, η) is a well-pointed endofunctor, by the reasons
given in Section 2.

Remark now that:
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• F (A) and F (F (A)) are the same simplicial objects, since their objects of points are
the same, (F (A))0 = A0 = (F (F (A)))0, for every simplicial object A;

• F (ϕA) is the identity morphism of F (A) for every simplicial object A, since
(F (ϕA))0 = (ϕA)0 = 1A0 (any morphism of simplicial objects with codomain F (A)
is completely determined by its 0-component!).

So, according to Corollary 3.3, one has only to show that every morphism µA in
Smp(S) is a monomorphism in order to prove that (I, η) is idempotent. But that is
the case when S admits a (regular epi, mono)-factorization, for then the factorization
ϕA = µAηA is calculated pointwise using the regular epi-mono factorizations in S.

One could as well arrive to the same conclusion, for a category S which is regular
or, more generally, admits a (regular epi, mono)-factorization, by using only Corollary
3.4: a functor category like Smp(S) admits regular epi-mono factorizations (respectively,
Smp(S) is regular) whenever S admits regular epi-mono factorizations (respectively, S
is regular); it is also easy to show that (F, ϕ) is idempotent in this example.

3.6. Example. Let us consider again, for a finitely-complete category S with coequalizers
of kernel pairs, the pointed endofunctor (F, ϕ) on Cat(S) of Example 2.4. It is also
required for each internal category C in S that the coequalizer ηC of the kernel pair of
ϕC does exist in Cat(S), which is known to be the case when in particular S is a regular
category (see [9, Proposition 3.3]).

Note that for this example F (ϕC) is the identity morphism of F (C). Indeed, one
has that F (C) = F (F (C)) since they have the same object of objects (F (C))0 = C0 =
(F (F (C)))0, and (F (ϕC))0 = (ϕC)0 = 1C0 the identity morphism of C0 in S.

Hence, by Corollary 3.3, if µC = (mC , 1C0) : I(C) → F (C) is a monomorphism for
each internal category C in Cat(S), then (I, η) is idempotent. Equivalently, if mC is a
monomorphism for each C in C, then Fix(I, η) is a full reflexive subcategory of Cat(S).
Remark that this is obviously the case when S is regular, since then dC = mCeC is a
regular epi-mono factorization in S (the morphisms dC : C1 → F (C)1, eC : C1 → I(C)1

and mC : I(C)1 → F (C)1 in S, are respectively the first components of the internal
functors ϕC = (dC , 1C0), ηC = (eC , 1C0) and µC = (mC , 1C0); see diagram 2.7).

4. Stabilization of the idempotent (I, η)

Our next proposition gives sufficient conditions for the coequalizer of the kernel pair pro-
cess to produce a reflection (I, η) such that, for every pullback g∗(ηA) of a unit morphism
ηA along any morphism g in C, I(g∗(ηA)) is an isomorphism.

4.1. Proposition. Consider the well-pointed endofunctor (I, η), obtained from the pointed
endofunctor (F, ϕ) by the coequalizer of the kernel pair process displayed in diagram 2.1.

Then, (I, η) is idempotent with stable units, in the sense of [2] and [1], provided the
following four conditions hold:
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(i) µ is a monomorphism;

(ii) Fη is an isomorphism;

(iii) the functor F preserves the pullback diagrams of the form

C

C ×I(A) A

I(A) ;

A

ηA

g
�

�

� �

(iv) all morphisms ηA are pullback stable regular epimorphisms.

Proof. Consider the commutative diagram

C ×I(A) A

�
C

g∗(ηA)

�

�
ηC×I(A)A

ηC
I(C)

I(C ×I(A) A)

I(g∗(ηA))
�

�

�
ϕI(C×I(A)A)

ϕI(C)
FI(C) ,

FI(C ×I(A) A)

FI(g∗(ηA))
�

where g∗(ηA) is the pullback of the unit morphism ηA : A → I(A) along g : C → I(A).
As, by Corollary 3.3, conditions (i) and (ii) in the statement imply that (I, η) is

idempotent, it only remains to verify that I(g∗(ηA)) is an isomorphism.
Conditions (ii) and (iii) in the statement imply that both F (ηC) and F (g∗(ηA)) are

isomorphisms in C. FI(g∗(ηA)) is therefore also an isomorphism, since
FI(g∗(ηA))F (ηC×I(A)A) = F (ηC)F (g∗(ηA)). Hence, we conclude that I(g∗(ηA)) is a monomor-
phism, since ϕI(C)I(g∗(ηA)) = FI(g∗(ηA))ϕI(C×I(A)A) and ϕI(C×I(A)A) is a monomorphism
by Corollary 3.2.

Furthermore, by condition (iv) in the statement, g∗(ηA), ηC×I(A)A and ηC are all pull-
back stable regular epimorphisms, which are known to be closed under composition and to
have the strong right cancellation property. I(g∗(ηA)) is therefore a regular epimorphism
since I(g∗(ηA))ηC×I(A)A = ηCg∗(ηA).

Hence, being I(g∗(ηA)) a regular epimorphism which is simultaneously a monomor-
phism, it is necessarily an isomorphism.

Corollary 4.3 below, which follows trivially from our next lemma and Proposition 4.1,
restates the latter in terms of factorization systems.

We will now suppose that both pointed endofunctors (F, ϕ) and (I, η), respectively
the “input” and “output” of the coequalizer of the kernel pair process, are idempotent.
It is well known that in this case the full reflective subcategories Fix(F, ϕ) and Fix(I, η)
give rise respectively to prefactorization systems (EF , MF ) and (EI , MI), where EF , re-
spectively EI , is the class of morphisms f in C such that Ff , respectively If , is an isomor-
phism (see [1]). We have already showed in Proposition 3.1 that Fix(I, η) = Mono(F, ϕ),
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which implies Fix(F, ϕ) ⊆ Fix(I, η). Hence, by the properties of prefactorization systems
associated to reflective subcategories, MF ⊆ MI and EI ⊆ EF (see [1, §3]).

4.2. Lemma. If the pointed endofunctors (F, ϕ) and (I, η) are idempotent then µ is a
monomorphism and Fη is an isomorphism.

Proof. It is known that every unit morphism ηA belongs to EI (see [1]). Therefore, ηA

also belongs to EF ⊇ EI , i.e., F (ηA) is an isomorphism.
Then, as Fϕ is an isomorphism by hypothesis, it is easy to conclude that Fµ must

also be an isomorphism, since ϕ = µ · η. This implies that µ is a monomorphism, since
F (µA)ϕI(A) = ϕF (A)µA by naturality of ϕ, for every object A in C, and ϕI is a monomor-
phism by hypothesis (see Corollary 3.2).

4.3. Corollary. Suppose that the pointed endofunctors (F, ϕ) and (I, η) of Section 2
are both idempotent, i.e., they are in fact reflections with the respective associated prefac-
torization systems (EF , MF ) and (EI , MI) (see [1]).

Then, the reflection (I, η) does have stable units, in the sense of [2], provided the
following two conditions hold:

(i) the functor F preserves the pullback diagrams of the form

C

C ×I(A) A

I(A) ,

A

ηA

g
�

�

� �

where ηA is any unit morphism of the reflection (I, η);

(ii) all unit morphisms ηA are pullback stable regular epimorphisms.

Condition (i) is equivalent to the following condition (i’) provided (F, ϕ) and (I, η) are
both idempotent:

(i’) for every object A in C, the unit morphism ηA of I belongs to E′
F , the largest class

of morphisms contained in EF which is stable under pullbacks.

Our next corollary is a direct consequence of Corollaries 3.3 and 4.3.

4.4. Corollary. If C is a regular category, (F, ϕ) is idempotent and F is a left exact
functor, then (I, η) is idempotent with stable units.

Proof. If C is a regular category and (F, ϕ) is idempotent, then Corollary 3.4 states that
(I, η) is also idempotent.

The left exactness of F is equivalent to the condition that every pullback of a morphism
in EF is in EF (see [2, Th. 4.7]), i.e., EF = E′

F , which implies that every unit morphism
ηA is in E′

F , since it is known to be in EI ⊆ EF . We have just checked that condition (i’)
in Corollary 4.3 holds.

Finally, the fact that C is a regular category validates condition (ii) in Corollary 4.3.
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4.5. Example. In Examples 3.5 and 3.6, of pointed endofunctors (F, ϕ) on Smp(S) and
Cat(S) respectively, for a finitely-complete category S with coequalizers of kernel pairs,
it is easy to check that (F, ϕ) is idempotent and F is a left exact functor.

Hence, if S is a regular category then all the conditions in Proposition 4.1 hold for
those examples. We can conclude that the two general examples do give rise to (I, η)
idempotent with stable units, provided S is a regular category.

5. Monotone-light factorization for the idempotent (I, η)

Proposition 5.1 below is a weaker version of [9, Corollary 6.2]. The latter is a consequence
of the main result of [1], which gives necessary and sufficient conditions for the existence
of a monotone-light factorization system (E′, M∗).

5.1. Proposition. [9] Suppose that the following two conditions hold:

• the pointed endofunctor (I, η) on C, obtained as in Section 2, is idempotent and does
have stable units;

• for each object B in C, there is an effective descent morphism p : E → B in C such
that its domain E is an object of Fix(I, η)(=Mono(F, ϕ)).

Then, (E, M) and (E′, M∗) are factorization systems. The pair (E, M) stands for the
prefactorization system associated to the reflection (I, η). The latter pair (E′, M∗) is ob-
tained from the former by simultaneous stabilization of E and localization of M, in the
sense of [1], and it is called a monotone-light factorization system.

5.2. Example. For S = Set the category of sets, the idempotent (I, η) with stable units
on Cat(Set) is simply the reflection Cat → Preord of small categories into preordered
sets, which was studied in [11]. For each object B in Cat, there is the effective descent
morphism εB : Cat([3], B) · [3] → B in Cat, the obvious projection from the coproduct
of sufficiently many copies of the ordinal number [3]. Note that the morphism εB is the
counit of the adjunction (−) · [3] � Cat([3],−) : Cat → Set.

Hence, the conditions of Proposition 5.1 hold and one can conclude that there is a
non-trivial monotone-light factorization on Cat which arises from the process described
in this paper. The idempotent (F, ϕ) is in this case the reflection of the category Cat of
all categories into the category of indiscrete categories.

As M. Gran pointed out to me, Proposition 5.1 applies to the reflection Grpd(S) →
EqRel(S) between internal groupoids and equivalence relations, for any regular category
S. This is exactly the reflection Cat(S) → Preord(S) in the case S is a (regular)
Mal’cev category (i.e., a category with finite limits in which the internal equivalence
relations coincide with the reflexive relations, EqRel(S) = RRel(S)), simply because
Cat(S) = Grpd(S) and Preord(S) = EqRel(S) in that case. In fact, for each internal



188 JOÃO J. XAREZ

groupoid G in S, there is an internal functor (σ, d1) : Eq(d0) → G, with σ = γ(1G1 × s),
as shown in the following diagram

G1 ×G0 G1
�γ

G1

�	 s

�

�

�d1

i

d0

G0 .

σ × σ σ d1

� � �

G1 ×G0 G1 ×G0 G1
�p1 × p2

G1 ×G0 G1

�

�

�p1

< 1, 1 >

p2

G1

The internal functor (σ, d1) is an effective descent morphism in the category Grpd(S) of
internal groupoids in S. This is so because σ < 1G1 , id0 >= 1G1 and d1i = 1G0 .

Hence, being S a regular Mal’cev category, we conclude from Proposition 5.1 that
there is a monotone-light factorization associated to the reflection (I, η). This is of course
the case when S is a Mal’cev variety of universal algebras. In particular, if S = Grp the
category of groups, the coequalizer of the kernel pair process produces a reflection with
stable units and monotone-light factorization for crossed modules. Since Cat(Grp) =
Grpd(Grp) is equivalent to the category CrossMod of crossed modules.

6. The monotone-light factorization for simplicial sets via ordered simpli-
cial complexes

The category of ordered simplicial complexes in S will be denoted by OSmC(S); obviously
we can simply define it as Mono(F, ϕ), where F and ϕ are as in Example 3.5. The following
proposition gives an equivalent reformulation; although the readers familiar with simplicial
objects will find it straightforward, we will recall the proof.

6.1. Proposition. For a regular category S, a simplicial object A in Smp(S) is in
its full reflective subcategory OSmC(S) if and only if its face maps dA

i : Aj+1 → Aj,
0 ≤ i ≤ j + 1, are jointly monic, for each j ≥ 0.

Proof. Consider the commutative diagram

Aj+1
�

�

dA
i

d
F (A)
i

Aj

�
Aj+2

0

ϕj+1 ϕj

�
Aj+1

0 , (6.1)

associated to the pointed endofunctor (F, ϕ) of Example 3.5. We know from Proposition
3.1 that the simplicial object A belongs to OSmC(S) = Fix(I, η) if and only if ϕj : Aj →
Aj+1

0 is a monomorphism for every j ≥ 0, i.e., it belongs to Mono(F, ϕ).
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We are going to suppose first that ϕj : Aj → Aj+1
0 is a monomorphism for every

j ≥ 0. Let dA
i f = dA

i g, for every 0 ≤ i ≤ j + 1. Then, ϕjd
A
i f = ϕjd

A
i g, which implies

by the commutativity of the diagram just above that d
F (A)
i ϕj+1f = d

F (A)
i ϕj+1g, having

0 ≤ i ≤ j + 1. This last equality and the fact that the face maps (of any fixed dimension)
of F (A) are jointly monic imply that ϕj+1f = ϕj+1g. Hence, we have just proved that
every object in Smp(S) of the form I(A) does have jointly monic face maps.

We have to prove the converse now. Suppose that the face maps dA
i : Aj+1 → Aj,

0 ≤ i ≤ j + 1, are jointly monic, for each j ≥ 0. Under such an assumption, one has to
show that if ϕj is a monomorphism (induction hypothesis) then so is ϕj+1, since ϕ0 is the

identity morphism of A0. In this way, if ϕj+1f = ϕj+1g then d
F (A)
i ϕj+1f = d

F (A)
i ϕj+1g,

having 0 ≤ i ≤ j + 1, and ϕjd
A
i f = ϕjd

A
i g by the commutativity of diagram 6.1. Hence,

dA
i f = dA

i g, having 0 ≤ i ≤ j+1, since ϕj is a monomorphism by the induction hypothesis.
It follows that ϕ is a monomorphism provided the morphisms dA

i are jointly monic, 0 ≤
i ≤ j + 1.

According to Proposition 5.1, there is a monotone-light factorization associated with
the reflection Smp → OSmC of simplicial sets into ordered simplicial complexes, pro-
vided there is an effective descent morphism εB : E → B such that E is in OSmC, for
each simplicial set B in Smp.

Indeed, we may choose εB to be the B-component of the counit of the adjunction
(−) · ω � Smp(ω,−) : Smp → Set, where ω is the first infinite ordinal considered as
a simplicial set via the usual nerve functor. That is, εB : Smp(ω,B) · ω → B is the
canonical morphism from the coproduct of “sufficiently many” copies of ω to B.

In fact, as Smp = Set∆op

is a presheaf category, a morphism of simplicial sets is
an effective descent morphism if it is an epimorphism. Every counit morphism εB :
Smp(ω,B) · ω → B, of the adjunction Smp → Set, is an effective descent morphism if
and only if the right adjoint Smp(ω,−) is a faithful functor. As this latter statement
is easy to check, we have guaranteed the existence of a monotone-light factorization for
simplicial sets via ordered simplicial complexes.

Note also that, as will see below, such a monotone-light factorization (E′, M∗) is a
non-trivial one, i.e., it does not coincide with the reflective factorization (E, M).

For each n ≥ 0, the reflection Smpn(S) → OSmCn(S), of the presheaf category of n-
truncated simplicial objects to n-truncated ordered simplicial complexes in S, is induced
by the reflection Smp(S) → OSmC(S). For the case S = Set, there is a monotone-
light factorization associated to each reflection Smpn → OSmCn, n ≥ 0, which is a
straightforward restriction of the one for Smp. In these cases one can replace ω by the
ordinal number [n], when displaying the suitable effective descent morphisms for each
object B in Smpn.

In particular, having n = 1, the reflection Smp1 → OSmC1 is just the reflection
RGrphs → RRel of reflexive graphs into reflexive relations, which has a non-trivial
monotone-light factorization

(E′, M∗) = (Bijections on V ertices and Surjections on Arrows, “Faithful”),
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similar to the one for Cat → Preord. This gives the desired conclusion of non-triviality
for all monotone-light factorizations above except the case n = 0, where the reflection
itself is trivial, i.e., it is the identity functor of the category of sets.

7. Geometric morphisms and monotone-light factorizations

In last Section 6, we have started with the reflection of the presheaf category Smp =
Set∆op

into its full subcategory in which the objects are the nerves of indiscrete categories,
F0 : Smp → Smp0 = Set∆op

0 (� Set). This can be generalized to the reflections Fn :

Smp → Smpn = Set∆op
n , n ≥ 0, which truncate each simplicial set right after the object

of n-simplices:

A �−→ An

�� ... � · · · A1

�� � A0 (7.1)

(Note that for the obvious localizations

F k
n : Smpk → Smpn, k ≥ n ≥ 0,

we could copy all the results obtained below for the adjunctions 7.1).

Given a functor K : B → A, let S be a regular and complete category. Then, the
induced functor

SK : SA → SB

is continuous, i.e., preserves all limits, and has a right adjoint, since every object T :
B → S of the presheaves category SB does have a right Kan extension along K : B → A.
Furthermore, it is known that if K is fully faithful then the right adjoint of SK is also so.
Hence, one can apply Corollary 4.4 factorizing the localization SK : SA → SB through a
reflection with stable units. Remark that we could just ask for finitely completeness of
S, provided B were a finite category and A had finite hom-sets, as is the case for the full
inclusion ∆op

n ⊂ ∆op, n ≥ 0 (see Theorem 1 in [8, X.3]: right Kan extension as a point-wise
limit).

The localizations Fn : Smp → Smpn(n ≥ 0) are in fact examples of essential geo-
metric morphisms, between elementary topoi, which are also embeddings. We shall call
geometric morphism to any adjunction between finitely-complete categories such that the
left adjoint preserves finite limits; it is called an embedding when the right adjoint is fully
faithful; it is called essential if the left adjoint is also a right adjoint of some other functor.

We will now prove that all these localizations Fn : Smp → Smpn, besides giving rise
to reflections In : Smp → Mono(Fn) with stable units, by applying the coequalizer of
the kernel pair process, produce in addition monotone-light factorizations, as for the case
n = 0 already worked out in last Section 6. According to Proposition 5.1, we still need
to exhibit an effective descent morphism p : E → B (i.e. an epimorphism, since Smp
is a topos) for each simplicial set B, and such that ϕn

E : E → Fn(E) is monic in Smp,
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i.e., E ∈ Mono(Fn) = Fix(In) (ϕn is of course the unit of the adjunction associated to
Fn). We have already shown in Section 6 that there exists an effective descent morphism
p : E → B with E in Smp0 for every simplicial set B; therefore one can state Conclusion
7.2.

Alternatively, we are going to give a more general argument, which also provides the
needed effective descent morphisms p : E → B with E in Smpn, for each simplicial set B.
We care to do so since the proof of the following Proposition 7.3 is a simple generalisation
of the considerations below.

It is known that every B ∈ Smp = Set∆op

is a colimit of representable functors.
Hence, there is a canonical presentation of B,

E ′ �q

�r �E
p

B , (7.2)

where p = ker(q, r) is the coequalizer in Smp of q and r, and E is the coproduct of a
family of representable functors.

7.1. Lemma. Consider the reflection Fn : Smp → Smpn given in diagram 7.1, whose
unit morphism is ϕn.

Every unit morphism of any representable functor

ϕn
∆(−,[p]) : ∆(−, [p]) → Fn(∆(−, [p])), p ≥ 0,

is a monomorphism in Smp = Set∆op

.

Proof. First, note that the face maps

di : ∆([j + 1], [p]) → ∆([j], [p]), 0 ≤ i ≤ j + 1,

of the simplicial set ∆(−, [p]) are jointly monic for each j ≥ 0. This is so because ∆(−, [p])
is the nerve of the ordinal number [p] considered as a category.

The fact that the face maps are jointly monic implies that any two simplicial mor-
phisms f and g from any simplicial set A into ∆(−, [p]) are equal if and only if their two
0-components f0, g0 : A0 → ∆([0], [p]) are equal.

Hence, ϕn
∆(−,[p]) is a monomorphism if and only if its 0-component is an injection:

ϕn
∆(−,[p]) is a monomorphism if and only if each of its components is an injection; the

converse is also easy to prove,

ϕn
∆(−,[p])f = ϕn

∆(−,[p])g ⇒ (ϕn
∆(−,[p]))0f0 = (ϕn

∆(−,[p]))0g0

⇒ f0 = g0, because (ϕn
∆(−,[p]))0 is an injection by hypothesis

⇒ f = g, because two morphisms into a representable functor are completely deter-
mined by their 0-components.

Indeed, the 0-component (ϕn
∆(−,[p]))0 is always the identity function, since the reflection

ϕn
A : A → Fn(A) does not change the first n objects of simplices Ai, 0 ≤ i ≤ n.
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If F � G : X → C is a generic adjunction with unit ϕ, then
∐

i∈I ϕCi
= ϕ∐

i∈I Ci
for any

family {Ci ∈ C | i ∈ I} such that its coproduct does exist. Therefore, E =
∐

i∈I ∆(−, [ni])
belongs to Mono(Fn) if and only if ϕ∐

i∈I ∆(−,[ni]) =
∐

i∈I ϕ∆(−,[ni]) is a monomorphism.
That is so because Lemma 7.1 tells us that each ϕ∆(−,[ni]) is injective componentwise,
which implies that

∐
i∈I ϕ∆(−,[ni]) is injective componentwise, i.e., a monomorphism.

7.2. Conclusion. There is a monotone-light factorization for each of the reflections
obtained through the coequalizer of the kernel pair process from (Fn, ϕ

n), n ≥ 0.

7.3. Proposition. Let F : E → F be a geometric morphism between regular categories,
F ∗ � F∗ : E → F , which is an embedding.

Then, the reflection I : F → Mono(F ∗), obtained from the localization F ∗ : F → E
through the coequalizer of the kernel pair process, does have stable units. Moreover, there
is a monotone-light factorization associated to the reflection I : F → Mono(F ∗) provided
the following four conditions also hold:

1. the category F is cocomplete;

2. the full subcategory Mono(F ∗) is dense in F , i.e., every object of F is a colimit of
objects of Mono(F ∗).

3. in F the coproduct of monomorphisms is a monomorphism;

4. regular epis are effective descent morphisms in F .
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