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TOPOLOGICAL ∗-AUTONOMOUS CATEGORIES

MICHAEL BARR

Abstract. Given an additive equational category with a closed symmetric monoidal
structure and a potential dualizing object, we find sufficient conditions that the category
of topological objects over that category has a good notion of full subcategories of strong
and weakly topologized objects and show that each is equivalent to the chu category of
the original category with respect to the dualizing object.

1. Introduction

In [Mackey, 1945], Mackey introduced the category of pairs of vector spaces, equipped with
a bilinear pairing into the ground field. It is likely that he viewed this abstract duality as
a replacement for the topology. See also [Mackey, 1946], the review of the latter paper by
Dieudonné as well as Dieudonné’s review of [Arens, 1947], for a clear expression of this
point of view.

In [Barr, 2000] I showed that the full subcategory of the category of (real or complex)
topological vector spaces that consists of the Mackey spaces (defined in 3.3 below)is ∗-
autonomous and equivalent to both the full subcategory of weakly topologized topological
vector spaces and to the full subcategory of topological vector spaces topologized with the
strong, or Mackey topology. This means, first, that those subcategories can, in principle
at least, be studied without taking the topology onto consideration. Second it implies
that both of those categories are ∗-autonomous.

André Joyal recently raised the question whether there was a similar result for vector
spaces over the field Qp of p-adic rationals. Thinking about this question, I realized that
there is a useful general theorem that answers this question for any locally compact field
and also for locally compact abelian groups. In the process, it emerges for the categories
of vector spaces over a locally compact field that the structure of these categories, as
categories, does not depend in any way on the topology of the ground field which we may
as well suppose discrete.

1.1. Terminology. We assume that all topological objects are Hausdorff. As we will see,
each of the categories contains an object K with special properties. It will be convenient
to call a morphism T // K a functional on T . In the case of abelian groups, the
word “character” would be more appropriate, but it is convenient to have one word. In a
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similar vein, we may refer to a mapping of topological abelian groups as “linear” to mean
additive. We will be dealing with topological objects in categories of topological vector
spaces and abelian groups. If T is such an object, we will denote by |T | the underlying
vector space or group.

If K is a topological field, we will say that a vector space is linearly discrete if it is
a categorical sum of copies of the field.

2. An adjoint interlude

Before turning to the main results, there are some generalities on adjoints that we need.
Suppose we have the situation

Vw

I //oo
S

V
T //oo
J

Vm

in which S I and J T . We also suppose that I and J are full inclusions so that
SI ∼= Id and TJ ∼= Id. Let σ = IS and τ = JT so that σ and τ are idempotent
endofunctors of V . Till now there is no connection between the two full subcategories Vw

and Vm of V . The connection we make is that τ σ, which is equivalent to a natural
isomorphism

Hom(T (V ), T (V ′)) ∼= Hom(S(V ), S(V ′))

for all V, V ′ ∈ V .
It is clear that SJ TI.

2.1. Proposition. JTI S.

Proof. We have that

Hom(JTI(V ), V ′) ∼= Hom(TI(V ), T (V ′)) ∼= Hom(SI(V ), S(V ′)) ∼= Hom(V, S(V ′))

Notice that since I, the right adjoint of S, is full and faithful, so is its left adjoint JTI.

Another simple observation is that if A
P //oo
Q

Vw are inverse equivalences, then

JTIP QS IP .

3. The strong and weak topologies

3.1. Theorem. Suppose A is an additive equational closed symmetric monoidal category
and T is the category of topological A-algebras. Let S be a full subcategory of T that
is closed under finite products and closed subobjects and V be the subobject and product
closure of S in T . Assume that S contains an object K for which

1. K is injective with respect to topological embeddings in S ;

2. K is a cogenerator in S ;
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3. there is a neighbourhood U of 0 in K such that

(a) U is compact;

(b) U contains no non-zero subobject;

(c) whenever ϕ : T // K is such that ϕ−1(U) is open, then ϕ is continuous.

Then K is injective with respect to topological embeddings in V .

Proof. If V ⊆ V ′ and V ′ ⊆
∏

i∈I Si with each Si ∈ S , it is sufficient to show that every
functional on V extends to the product. Suppose ϕ : V // K is given. Then there is a
finite subset of I, that we will pretend is the set {1, . . . , n} and neighbourhoods Ui ⊆ Si

of 0 for i = 1, . . . , n such that if J = I − {1, . . . , n}, then

ϕ−1(U) ⊇ τV ∩

(
U1 × · · · × Un ×

∏
i∈J

Si

)

It follows that

ϕ

(
0× · · · × 0×

∏
i∈J

Si

)
⊆ U

and, since the left hand side is a subobject contained in U , it must be 0. Let

V0 =
V

V ∩
(
0× · · · × 0×

∏
i∈J Si

)
topologized as a subobject of S1 × · · · × Sn. Algebraically, ϕ induces a map ψ on V0 and
ψ−1(U) ⊇ V ′∩ (U1×· · ·×Un) which is open in the subspace topology and our hypothesis
on U implies that ψ is continuous. Since U is compact, the set of all translates of U is
a neighbourhood cover of K by compact sets, so that K is complete. Since continuous
homomorphisms are uniformly continuous, it follows that ψ extends to the closure of V0

which lies in S and, by injectivity, it extends to S1 × · · · × Sn and therefore ϕ extends to∏
i∈I Si.

3.2. Theorem. Under the same hypotheses, for every object V of V , there are continuous
linear bijections τV //V //σV with the property that σV has the coarsest topology that
has the same functionals as V and τV has the finest topology that has same functionals
as V .

Proof. The argument for σ is standard. Simply retopologize V as a subspace of
KHom(V,K). To say that an objects V and V ′ have the same functionals is to say that

there is an isomorphism |V | // |V ′| that induces σV
∼= // σV ′. It is evident that σ is
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left adjoint to the inclusion of weakly topologized objects into V . Let {Vi | i ∈ I} range
over isomorphism classes of such objects. We define τV as the pullback in

σV (σV )I//

τV

σV
��

τV
∏
Vi

//
∏
Vi

(σV )I
��

The bottom map is the diagonal and is a topological embedding so that the top map is too.
We must show that every functional on τV is continuous on V . Suppose ϕ : τV // K
is given. Using the same argument as in the preceding proof, we see that there is a finite
subset, say {1, . . . , n} of I such that ϕ factors through ψ on V1 × · · · × Vn and then a
functional on σ(V1 × · · · × Vn). Since the category is additive and finite products are also
sums, the fact that σ is a left adjoint implies that σ commutes with products and hence
ψ is continuous on σ(V )n which implies it is continuous on σ(V ) and therefore on V .

3.3. Remark. We will call the topologies on σV and τV the weak and strong topologies,
respectively. They are the coarsest and finest topology that have the same underlying A
structure and the same functionals as V . The strong topology is also called the Mackey
topology.

3.4. Theorem. The following are examples in which the hypotheses of Theorem 3.1 are
satisfied.

A K S
Real vector spaces R normed spaces

Complex vector spaces C normed spaces
K-vector spaces K linearly discrete spaces
Abelian groups R/Z locally compact abelian groups

Notice that the first two examples are not special cases of the third since the subcat-
egory S is different. The locally compact fields have been completely classified: discrete
fields, R, C and finite algebraic extensions of Qp, and finite extensions of Sp, the field
of Laurent series in one variable over the finite field Z/pZ. See the German edition of
[Pontrjagin, 1957, 1958] for details (the chapter on topological fields was omitted from
the English translation, but was included in the German. Of course, the original Russian
is definitive.) In any case, I have not been able to consult either one, so cannot provide
a more detailed citation.

Proof. Most of this is well known. The Hahn-Banach theorem provides the injectivity
of K in the first two cases and Pontrjagin duality in the last. A locally compact field has
a compact neighbourhood of 0 and this contains no non-zero subspace. For the real or
complex numbers, let U be the unit disk. We choose U as the ring of p-adic integers in Qp
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and in Sp we choose the ring of formal power series over Z/pZ. In all cases, the set of all
sets of the form aU as a ranges over the non-zero elements of the field is a neighbourhood
base at 0. Thus if ϕ : V // K is an algebraic homomorphism such that ϕ−1(U) is a
neighbourhood of 0 in V , we see that ϕ−1(aU) = aϕ−1(U) is also a neighbourhood of 0
by the continuity of scalar multiplication, in this case by a−1.

The argument is a bit different for abelian groups. In this case, any sufficiently small
neighbourhood U of 0 is such that if 2x ∈ U , then either x ∈ U/2 or x + 1

2
∈ U/2. The

fact that a map ϕ : V // K is continuous as soon as ϕ−1(U) is a neighbourhood of 0
follows from the easily seen fact that if you define U1 = U and let Un be a neighbourhood
of 0 such that Un ⊆ Un−1 and Un +Un ⊆ Un−1, the sequence so defined is a neighbourhood
base at 0.

Say that an abstract homomorphism V // V ′ is weakly continuous if the induced
σV //σV ′ is continuous. This is equivalent to saying that for every functional V ′ //K,
the composite V // V ′ // K is a functional on V .

3.5. Theorem. Suppose that S is such that any weakly continuous S //S ′ is continuous.
Then τS = S for every S ∈ S .

Proof. Suppose S // V is a weakly continuous bijection. By assumption, there is an
embedding S //

∏
Si with each Si ∈ S . But then each composite S // V // Si is

weakly continuous and, by hypothesis, continuous. Hence S // V is continuous. Since
the topology on τS is the coarsest for which all the weakly continuous bijections are
continuous, we see that that topology is that of S.

For topological vector spaces, this is automatically satisfied by Mackey spaces. Since
every map out of a linearly discrete space is continuous, it is satisfied there too. Finally,
it follows from [Glicksberg, 1962, Theorem 1.1], that it is satisfied by locally compact
groups.

4. Chu and chu

We briefly review the categories Chu(A , K) and chu(A , K). The first has a objects pairs
(A,X) of objects of A equipped with a “pairing” 〈−,−〉 : A ⊗ X // K. A morphism
(f, g) : (A,X) // (B, Y ) consists of a map f : A // B and a map g : Y // X such
that

A⊗X K
〈−,−〉

//

A⊗ Y

A⊗X

A⊗g

��

A⊗ Y B ⊗ Y
f⊗Y // B ⊗ Y

K

〈−,−〉

��

commutes. This says that 〈fa, y〉 = 〈a, gy〉 for all a ∈ A and y ∈ Y . This can be
enriched over A by internalizing this definition as follows. Note first that the map
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A ⊗ X // K induces, by exponential transpose, a map X // A−◦K. This gives
a map Y −◦X // Y −◦ (A−◦K) ∼= A ⊗ Y −◦K. There is a similarly defined arrow
A−◦B // A⊗ Y −◦K. Define [(A,X), (B, Y )] so that

Y −◦X A⊗ Y −◦K//

[(A,X), (B, Y )]

Y −◦X
��

[(A,X), (B, Y )] A−◦B// A−◦B

A⊗ Y −◦K
��

is a pullback. Then define

(A,X)−◦ (B, Y ) = ([(A,X), (B, Y )], A⊗ Y )

with 〈(f, g), a⊗ y〉 = 〈fa, y〉 = 〈a, gy〉 and

(A,X)⊗ (B, Y ) = (A⊗B, [(A,X), (Y,B)])

with pairing 〈a ⊗ b, (f, g)〉 = 〈b, fa〉 = 〈a, gb〉. The duality is given by (A,X)∗ =
(X,A) ∼= (A,X)−◦ (K,>) where > is the tensor unit of A . Incidentally, the tensor
unit of Chu(A , K) is (>, K).

The category Chu(A , K) is complete (and, of course, cocomplete). The limit of a
diagram is calculated using the limit of the first coordinate and the colimit of the second.
The full subcategory chu(A , K) ⊆ Chu(A , K) consists of those objects (A,X) for which
the two transposes of A⊗X //K are injective homomorphisms. When A // //X −◦K,
the pair is called separated and when X // // A−◦K, it is called extensional. In the
general case, one must choose a factorization system and assume that the exponential
of an epic is monic, but here we are dealing with actual injective maps. The separated
pairs form a reflective subcategory and the extensional ones a coreflective subcategory.
The reflector and coreflector commute so that chu(A , K) is complete and cocomplete.
We know that when (A,X) and (B, Y ) are separated and extensional, (A,X)−◦ (B, Y )
is separated but not necessarily extensional and, dually, (A,X) ⊗ (B, Y ) is extensional,
but not necessarily separated. Thus we must apply the reflector to the hom and the
coreflector to the tensor, but everything works out and chu(A , K) is also ∗-autonomous.
See [Barr, 1998] for details.

In the chu category, one sees immediately that in a map (f, g) : (A,X) // (B, Y ),
f and g determine each other uniquely. So a map could just as well be described as an
f : A // B such that x.ỹ ∈ X for every y ∈ Y . Here ỹ : B // K is the evaluation at
y ∈ Y of the exponential transpose Y // B−◦K.

Although the situation in the category of abelian groups is as described, in the case
of vector spaces over a field, the hom and tensor of two separated extensional pairs turns
out to be separated and extensional ([Barr, 1996]).
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5. The main theorem

5.1. Theorem. Under the hypotheses of Theorem 3.2, the categories of weak spaces and
strong spaces are equivalent to each other and to chu(A , K) and are thus ∗-autonomous.

Proof. Define F : V // chu by F (V ) = (|V |,Hom(V,K)) with evaluation as pairing.
We first define the right adjoint R of F . Let R(A,X) be the object A, topologized as a
subobject of KX . Since it is already inside a power of K, it has the weak topology. Let
f : |V | //A be a homomorphism such that for all x ∈ X, x̃.f ∈ Hom(V,K). This just

means that the composite V // R(A,X) // KX πx // K is continuous for all x ∈ X,
exactly what is required for the map into R(A,X) to be continuous. The uniqueness of
f is clear and this establishes the right adjunction.

We next claim that FR ∼= Id. That is equivalent to showing that Hom(R(A,X), K) =
X. The argument is very similar to the proof that τV and V have the same maps to K.
Every map R(A,X) // K extends to a map KX // K. By continuity, it passes to a
finite power, meaning it is represented by a finite sum of elements of X, but that finite
sum restricted to R(A,X) is a single element of X. In particular, R is full and faithful.
A similar argument shows that the image of R consists of the weakly topologized spaces,
which is thereby a ∗-autonomous category.

Now we let L = τR. If f : (A,X) // F (V ) = (|V |,Hom(V,K)) is a map in chu,
then f is a homomorphism in A with the property that when ϕ : V //K is continuous,
then f.ϕ = x̃ for some x ∈ X. This implies that L(A,X) // σV is continuous and so is
L(A,X) = τL(A,X) //τV which, together with the continuity of τV //V shows that
L(A,X) // V is continuous. Again the uniqueness of f is clear. Obviously FL ∼= Id.
If V = τV is strongly topologized, then RF (V )σV and LF (V ) = τσV = τV = V so
the image of L consists of the strongly topologized objects, so that category is also ∗-
autonomous.

The fact that the categories of weak and Mackey spaces are equivalent was shown,
for the case of B (Banach) spaces in [Dunford & Schwartz, 1958, Theorem 15, p. 422].
Presumably, the general case has also been long known, but I am not aware of a reference.

6. Concluding remarks

There is a curious conclusion to be drawn from all this. Consider, for example, the case of
real vector spaces. We could treat this using for S the category of normed vector spaces.
Or we could use the category of finite dimensional vector spaces with the usual Euclidean
topology. Or we could just treat R as an abstract field with the discrete topology. For
each choice we get strong and weak topologies. This gives us six distinct ∗-autonomous
categories (at least, there may be other possibilities). But all of them are equivalent,
because they are all equivalent to chu(V ,R), where V is the category of real vector
spaces. In other words, the topology of the reals and of various vector spaces plays no
role in the structure of these categories, qua categories. The same thing happens with the
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complex numbers and with the other locally compact fields. There are also some choices
with topological abelian groups (see [Barr & Kleisli, 2001]) that all lead to chu(Ab, K).

Pairs equipped with a bilinear map were originally introduced by Mackey [Mackey,
1945]. Although his motivation is not entirely clear, it is at least plausible that in a pair
(E,E ′) he thought of E ′ not so much as a set of continuous linear functionals with respect
to a topology on E (although he did think of them that way) but perhaps even more as
embodying a replacement for the very idea of a topology. However, he appears never to
have defined what he would mean by a continuous homomorphism in this setting, although
it is clear enough what it would have to be. Even less did he suggest any thought of a
space of such transformations between two such spaces or of a tensor product of them.

6.1. Interpretation of the dual of an internal hom. These remarks are espe-
cially relevant to the vector spaces, although they are appropriate to the other examples.
The fact that (U −◦V )∗ ∼= U −◦V ∗ can be interpreted that the dual of U −◦V is a sub-
space of V −◦U , namely those linear transformations of finite rank. An element of the
form u⊗ v∗ acts as a linear transformation by the formula (u⊗ v∗)(v) = 〈v, v∗〉u. This is
a transformation of row rank 1. Sums of these elements is similarly an element of finite
rank.

This observation generalizes the fact that in the category of finite dimensional vec-
tor spaces, we have that (U −◦V )∗ ∼= V −◦U (such a category is called a compact ∗-
autonomous category). In fact, Halmos avoids the complications of the definition of
tensor products in that case by defining U ⊗ V as the dual of the space of bilinear forms
on U ⊕ V , which is quite clearly equivalent to the dual of U −◦V ∗ ∼= V −◦U∗ ([Halmos,
1958, Page 40]). (Incidentally, it might be somewhat pedantic to point out that Halmos’s
definition makes no sense since U ⊕ V is a vector space in its own right and a bilinear
form on a vector space is absurd. It would have been better to use the equivalent form
above or to define Bilin(U, V ).)

Since linear transformations of finite rank are probably not of much interest in the
theory of topological vector spaces, this may explain why the internal hom was not pur-
sued.
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