
Theory and Applications of Categories, Vol. 16, No. 29, 2006, pp. 785–854.

CATEGORIFIED ALGEBRA AND QUANTUM MECHANICS

JEFFREY MORTON

Abstract. The process some call ‘categorification’ consists of interpreting set-theoretic
structures in mathematics as derived from category-theoretic structures. Examples in-
clude the interpretation of � as the Burnside rig of the category of finite sets with
product and coproduct, and of �[x] in terms the category of combinatorial species.
This has interesting applications to quantum mechanics, and in particular the quantum
harmonic oscillator, via Joyal’s ‘combinatorial species’, and a new generalization called
‘stuff types’ described by Baez and Dolan, which are a special case of Kelly’s “clubs”.
Operators between stuff types be represented as rudimentary Feynman diagrams for the
oscillator. In quantum mechanics, we want to represent states in an algebra over the
complex numbers, and also want our Feynman diagrams to carry more structure than
these ‘stuff operators’ can do, and these turn out to be closely related. We will describe
a categorification of the quantum harmonic oscillator in which the group of “phases” -
that is, U(1), the circle group - plays a special role. We describe a general notion of
‘M -stuff types’ for any monoid M , and see that the case M = U(1) provides an inter-
pretation of time evolution in the combinatorial setting, as well as recovering the usual
Feynman rules for the quantum harmonic oscillator.

1. Introduction

One reason for the success of category theory has been its ability to describe relations
between seemingly separate areas of mathematics. Here, we will describe how category
theory can be used to see relationships between enumerative combinatorics and quantum
mechanics. Specifically, we examine an approach to understanding the quantum harmonic
oscillator by “categorifying” the Fock representation of the Weyl algebra - which is the
algebra of operators on states of the oscillator. This builds on work described by Baez
and Dolan[1]. Since we do not expect readers to be expert in both quantum mechanics
and category theory, we have tried to make this paper as self-contained as possible. Many
definitions and explanations will be well-known to the experts in each field, and are
arranged by section as much as possible to allow readers to skip familiar material.

Categorification is best understood as the reverse of “decategorification”. This is a
process which begins with some category, and produces a structure for which isomorphisms
in the original category appear as equations between objects instead. Categorification is
the reverse process, replacing equations in some mathematical setting with isomorphisms
in some category in a consistent - but possibly non-unique - way. One example is the way
we can treat the category of finite sets as a categorification of the natural numbers �. The

Received by the editors 2006-01-22 and, in revised form, 2006-11-17.
Transmitted by Ross Street. Published on 2006-11-20.
2000 Mathematics Subject Classification: 81P05, 05A15, 18D10, 18B40.
c© Jeffrey Morton, 2006. Permission to copy for private use granted.

785



786 JEFFREY MORTON

set � can be seen as a set of cardinalities indexing isomorphism classes of finite sets, and
which get their addition and multiplication from the categorical coproduct and product
on the category of finite sets. We will see further examples of a connection between
decategorification and cardinality.

Joyal [12] has described the category of structure types, which can be seen as the
categorification of a certain ring of power series. These structure types play an impor-
tant role in enumerative combinatorics, in which “generating functions” of given types of
structures can be used in a purely algebraic way to count the number of such structures of
various sizes. These generating functions are “decategorified” versions of structure types
- or, equivalently, cardinalities of them. In section 2, we describe how this works in more
detail, and give some examples.

This leads, in section 3, to the application to quantum mechanics. In that section,
we describe briefly the quantum harmonic oscillator. It has a Hilbert space of states,
and the Weyl algebra is the algebra of operators on this space. The Weyl algebra has a
representation as operators on Fock space - the space of formal power series in one variable
with a certain inner product. Here, it is generated by two operators - the creation and
annihilation operators. We show how this algebra can be categorified using the category
of structure types as a replacement for Fock space, and a certain class of functors as the
operators.

In section 4, we find that structure types do not have a rich enough structure to
capture all properties of power series. In particular, they do not provide a natural way
to treat power series as functions which can be evaluated or composed in a way which is
compatible with the idea of cardinality for structure types. To properly categorify these
ideas, one can extend the notion of structure type to a so-called “stuff type”. This makes
use of the fact that there are two ways of seeing structure types as functors. One is
as a functor taking each finite set to the set of structures of a certain type which can
be placed on them - the functor gives “coefficients” associated to finite sets. The other
point of view treats structure types as “bundles” over the category of finite sets, whose
projections take structured sets to their underlying sets. The latter point of view allows a
larger class of “total spaces” for the bundle - in fact, it can be any groupoid. We describe
a classification of functors, and show how dropping the requirement of faithfulness on the
projection functor for the bundle leads to stuff types. In appendix B we provide more
details, showing how stuff types form a category of “groupoids over finite sets”.

Section 5 examines operations on stuff types which are useful to the program of cate-
gorifying quantum mechanics. The category of stuff types naturally gets an “inner prod-
uct” on objects by means of a pullback construction. We then show this is a categorifica-
tion of the usual inner product on Fock space. Then we describe the equivalent of linear
operators on Fock space - “stuff operators”, and show how they can be seen directly as
categorified matrices. These can act on stuff types by a construction similar to the inner
product, as one might expect. We then develop some particular examples of stuff opera-
tors, namely the equivalent of the creation and annihilation operators. These provide a
connection to Feynman diagrams.



CATEGORIFIED ALGEBRA AND QUANTUM MECHANICS 787

Then, in 6, we introduce the idea of “sets over M”, labelled with elements of a general
monoid M , extend this from sets to general groupoids, and describe an idea of cardinality
for these. Of special interest for quantum mechanics is the group U(1), the group of
phases. We see that it is possible, by “colouring” sets (interpreted as sets of quanta) with
these phases, to recover more features of the quantum harmonic oscillator. In particular,
we describe an M-stuff operator which corresponds to time evolution of a state without
interactions. We also demonstrate a connection between stuff operators and Feynman
diagrams.

Finally, we summarize the results, and suggest directions in which this work could be
extended.

2. Structure Types

2.1. Categorification of � and �[[z]]. Before we can study structure types, we need
to see how a category with products and coproducts gives rise to a rig, which is to say
an object like a ring , possibly without negatives (see Appendix A for a more precise
definition). A simple example is the free rig on no generators - that is, � (generated
by the nonzero element 1 under addition, this has no extra generators or relations, so
it has a natural homomorphism into any rig). Natural numbers are called by this name
because they arise naturally as counting numbers - namely, numbers we use to give the
cardinality of some finite set of things. Bijections between finite sets are what make
counting possible (for example, bijections of fingers and sheep), so these cardinalities are
actually equivalence classes of finite sets under an equivalence relation given by bijections.

This suggests looking at the category of finite sets, with a cardinality map given by
taking sets to their isomorphism classes. The cardinality map turns this category into a
rig. Since its decategorification is a rig, we say this category is an example of a 2-rig - a
category with a monoidal operation like multiplication, and a coproduct structure giving
addition (for a more precise definition, see Appendix A). The cartesian product of sets
gives the multiplication in �, and disjoint union gives addition. An analogous process
makes sense for any 2-rig, but a reverse process, starting with any rig, is more difficult.

For a more involved example, consider the problem of categorifying the free rig on one
generator , �[[z]] (the rig of polynomials in z with natural number coefficients). We can
think of this as a rig of functions from � to � in at least two different ways. One treats
an element f ∈ �[[z]] as the map taking n to the natural number f(n). The second takes
n to the coefficient of the nth power of z in f(z), denoted fn. It is interesting to compare
how multiplication of these formal power series is represented in each representation. In
the first case, we have pointwise multiplication:

fg(n) = f(n)g(n)

In the other, multiplication looks like convolution:

(fg)n =

n∑
k=0

fkgn−k. (1)



788 JEFFREY MORTON

We’ll return to the first way of looking at them later when we study “stuff types”.
The second representation will be better for now, because it treats power series as purely
formal, rather than as functions. To categorify the rig �[z] seen as the rig of functions
f : �→ �, we naturally expect to look at a corresponding 2-rig of functors (see appendix
A for more on 2-rigs):

2.2. Definition. A structure type is a functor from the category FinSet0 whose objects
are finite sets, and whose morphisms are the bijections1, into the category Set:

F : FinSet0 → Set

These functors naturally form a category whose morphisms are the natural transformations
α : F → F ′. We denote this category by Set[Z].

We say that the image of a set S is the set of all “structures of type F” which can
be placed on S. Now recall that structure types can be seen as categorified formal power
series. The “coefficients” are in the category of sets and maps rather than the groupoid
of finite sets and bijections (though, since all maps in FinSet0 are bijections, so are
their images). Since we allow the possibility of infinite sets as coefficients, these are more
general than power series. There is no loss in adopting this approach, except when it
comes to taking cardinalities - an issue we will consider when we discuss stuff types (in
section 4.13.1).

An example of a structure type is the type of “graphs on finite sets of vertices”. So
then the image of a given finite set S is just the set of all such graphs on S. The morphisms
in FinSet0, f : S → S ′ give F (f) : F (S) → F (S ′), which are maps of the structures
(graphs) on S to those on S ′. These maps are compatible with the given bijection of
underlying elements: they amount to consistent relabellings of all the vertices in all the
graphs according to the bijection F . In particular, permutations of S give automorphisms
of F (S).

To take the cardinality of a structure type, let Fn be the set of F -structures on the
finite set n (we will elide the difference of notation between a set and its cardinality).
Then the cardinality of the structure type F is the formal power series

|F | =
∞∑

n=0

|Fn|zn

n!
(2)

where |Fn| is just the usual set cardinality of Fn. We will see later how this formula for
the cardinality is a manifestation of “groupoid cardinality”, but note for now that the
formula for |F | given above is known as the “generating function” for F -structures. This
is a well known and useful idea in combinatorics (and generalizes considerably beyond
this example - see, e.g. [16] and [3] for more on the whole subject).

1FinSet0 is Joyal’s B (for “bijection”). It makes no difference from which universe we take these sets
- a skeletal version of FinSet0 consisting of only pure sets, one per cardinality, will do as well as any
other for our purposes.



CATEGORIFIED ALGEBRA AND QUANTUM MECHANICS 789

2.3. Example. The simplest example is for the type Z, which we call “being a one-
element set”. This structure can be put on a one-element set in just one way, and in no
ways on any other. The set of all Z-structures on S contains just S itself if S has exactly
one element, and is empty otherwise. The cardinality of the type Z is easily seen to be
just z.

Similarly, we have the type “being an n-element set”, denoted by Zn

n!
, since it has

cardinality zn

n!
.

Generating functions (cardinalities of structure types) can be used to find cardinalities
of types defined in terms of simpler types. We make this more precise with the following
definition and theorem:

2.4. Definition. Given two structure types F and G, there are sum and product structure
types F +G and F ·G, defined as follows. Putting an F +G-structure on a set S consists
of making a choice of F or G, and putting a structure of that type on S. Putting an
F · G-structure on S consists of splitting S into an ordered pair of disjoint subsets, then
putting an F -structure on the first part and a G-structure on the second part.

Conceptually, we associate addition with “or” (an F -structure or a G-structure), and
we associate multiplication with “and” (a splitting into an F -structure and a G-structure).
This is similar to the categorified notions of addition and multiplication for � as disjoint
unions and cartesian products in Set. This reappears when we look at functors from
FinSet0 to Set, and allows us to categorify the algebraic operations on the rig �[[z]] as
well.

2.5. Theorem. If F and G are two structure types, then |F + G| = |F | + |G| and
|F ·G| = |F | · |G|

Proof. To see that |F +G| = |F |+ |G|, just note that the set of F +G-structures on the
set n consists of the disjoint union of the set of F -structures and the set of G-structures,
since by definition such a structure consists of a choice of F or G together with a structure
of the chosen type. Thus, the set cardinalities satisfy |(F +G)n| = |Fn|+ |Gn|, from which
the result follows from the definition by linearity.



790 JEFFREY MORTON

Now, as for |F ·G|, we have that

|F ·G|(z) =

∞∑
n=0

|(F ·G)n|zn

n!
(3)

=

∞∑
n=0

n∑
k=0

zn

n!

(
n

k

)
|Fk| · |Gn−k|

=

∞∑
n=0

n∑
k=0

zn

n!

n!

k!(n− k)! |Fk| · |Gn−k|

=
∞∑

n=0

n∑
k=0

|Fk|zk

k!
· |Gn−k|zn−k

(n− k)!
= |F |(z) · |G|(z)

This follows directly from the fact that the number of F · G-structures on an n-element
set is a sum over all k from 0 to n of a choice of a k-element subset of n, multiplied by
the number of F -structures on the chosen k-element subset and of G-structures on the
remaining (n− k)-element set.

These facts suffice to prove that the functor category Set[Z] is a 2-rig (in fact, it is
the free 2-rig on one generator),

2.6. Theorem. The category Set[Z] is a 2-rig whose monoidal operation ⊗ is the product
· defined above.

Proof. See Appendix A.

The 2-rig structure of Set[Z] lets us find useful information about types of structure
defined in terms of simpler types using the sum and product operations we have defined,
such as many recursively-defined structures. In particular, it makes sense of many cal-
culations done with generating functions in combinatorics. A simple example shows that
the factor of 1

n!
in the cardinality formula is due to the fact that we do not think of the

set n as ordered.

2.7. Example. Define the type Zn using the product operation in terms of the type
Z, “being a one-element set”. In particular, we say Z1 = Z, and recursively define
Zn = Z × Zn−1. Then by theorem 2.5, we have |Zn| = zn. Now we observe that we can
interpret Zn as the type of “total orderings on an n-element set”. Since a structure in the
product Z × Zn−1 involves a choice of two distinguishable subsets, we can find a unique
total ordering on the set n by assuming one to precede the other, and defining the total
order recursively. So in fact a Zn structure can be seen as just a total order. And, indeed,
there are n! total orderings, so the type of the cardinality is n!zn

n!
= zn.

Now note that the structure “being a finite set” is the sum over all n of the types
“being an n-element set”:

∑
n

Zn

n!
. Since each coefficient is 1, the cardinality of this type

is ez, so we denote the type by EZ .



CATEGORIFIED ALGEBRA AND QUANTUM MECHANICS 791

If T is the structure “being a totally ordered set” (that is, an T structure on S is a
total ordering on S), then |Tn| = n! so that:

|T | =
∞∑

n=0

n!

n!
zn =

1

1− z (4)

In [3], it is shown that many tree-like structures can be defined using the operations
on structure types we have described. Binary trees provide an elementary example.

2.8. Example. An example of a structure-type is the type Binary trees, which we denote
B. To put a B-structure on a finite set S is to make S into the set of leaves of a binary
tree. This is a recursively-defined tree structure, which is either a bare node (leaf), or a
node with two branches, where each branch is another binary tree. That is:

B ∼= Z +B2

since the structure type Z is the type ”being a one-element set” (a leaf), and B2 is the type
which, put on some set of elements, divides them into two subsets and puts a B-structure
on each one. Some typical binary trees are shown in figure 1

n=4 n=5

Figure 1: Some Binary Trees with n Leaves

This highlights the close relationship between structure types and power series, since
solving this recursive formula directly (for instance, by repeated substitution of the def-
inition of B into the B2 term in the definition (or by solving the quadratic equation for
B!) shows that B is isomorphic to a structure type which we can write as the analog of
a power series, beginning:

B ∼= Z + Z2 + 2Z3 + 5Z4 + . . .

where the coefficients are the Catalan numbers. This enumerates binary trees of each size:
B is equivalent to a direct sum over all sizes n of sets of some number of copies of the
structure “being an n-element set”. Specifically, this number is n! times the nth Catalan
number: the number of labellings of the leaves of an n-leaf binary tree by the elements of
some given n-element set S.



792 JEFFREY MORTON

3. Structure Types and the Harmonic Oscillator

We have defined structure types as functors of a certain kind (faithful functors F :
FinSet0 → Set, and made the analogy between these and formal power series. Just
as a single formal power series is really only of interest in the setting of the space of all
formal power series, so too a given structure type acquires more meaning when we think
of it in the setting of all such functors. In particular, one thing we are interested in for
the purposes of categorifying quantum mechanics are the categorified versions of algebras
of operators on this space.

To see why this is so, we will first describe the Weyl algebra - an algebra of operators
on the Hilbert space of states of the quantum harmonic oscillator - then see how to use
structure types to categorify it. Readers who are familiar with quantum mechanics may
wish to skip to section 3.6

3.1. The Quantum Harmonic Oscillator.

3.1.1. The Weyl Algebra and its Representations. States of the quantum har-
monic oscillator can be represented as formal power series with coefficients in �, where
the state zn corresponds to the pure state with energy n, and a power series represents
a superposition (linear combination) of these pure states with given complex amplitudes.
We will study the harmonic oscillator using the Weyl algebra, which consists of operators
on the space of states, and is generated by two operators satisfying certain commutation
relations. There are two important representations of the Weyl algebra, which are easy
to describe in terms of generators. These are the Fock and Schrödinger representations.

3.2. Definition. The Weyl algebra is the complex algebra generated by the ladder
operators, namely the creation operator a∗ and the annihilation operator a. These
satisfy the relations [a, a∗] = aa∗ − a∗a = 1. The Fock representation of the Weyl
algebra on the vector space of formal power series in z is determined by the effect of these
generators:

af(z) =
df(z)

dz
(5)

and
a∗f(z) = zf(z) (6)

In other words, a = ∂z, the derivative operator, and a∗ = Mz, the operator “multi-
plication by z”. It should be clear that these satisfy the defining commutation relations,
since [a, a∗](zk) = aa∗(zk) − a∗a(zk) = d

dz
(zk+1) − z(kzk−1) = zk. These operators do

not correspond to quantum-mechanical observables (which must be self-adjoint); instead,
these are operators which add or remove a quantum of energy to a state.

We can build many operators from just a and a∗. One which often appears is the
operator

φ = a + a∗ (7)

called the “field operator”, which produces a superposition of the states in which the
system has lost one quantum or gained one quantum of energy (in some interaction).



CATEGORIFIED ALGEBRA AND QUANTUM MECHANICS 793

Another important operator is the number operator , denoted N , which is just

N = a∗a (8)

This is related to the energy of the system - which is the Hamiltonian for the evolution of
the oscillator. It should be clear that the eigenvalues of N are just the natural numbers
�, and an eigenstate corresponding to the eigenvalue n is the state zn (a pure state with
energy n). These ladder operators give us the key to seeing the Weyl algebra in the
categorified setting, when we pass from formal power series to structure types.

The other representation mentioned was the Schrödinger representation. Here we
think of the Weyl algebra as generated by a different pair of generators:

3.3. Definition. Two generators p and q of the Weyl algebra are given in terms of a
and a∗ by

q = a+a∗√
2

and p = a−a∗√
2i

(9)

or equivalently,
a = q+ip√

2
and a∗ = q−ip√

2
(10)

Physically, p is the momentum operator, whose eigenstates are pure states with definite
momenta which are the eigenvalues of p, and q is the position operator, whose eigenstates
have position given by the corresponding eigenvalues. We can take these as the defining
generators of the Weyl algebra, since these generate everything in it (given either pair of
generators, the other is uniquely defined). Moreover, they satisfy the relations:

[p, q] = pq − qp = −i (11)

We could have taken this as the definition of the Weyl algebra, instead.

3.4. Definition. A Schrödinger representation of the Weyl algebra is a representation on
a space of functions ψ : �→ �, with the position operator q and momentum operator
p represented as

pψ(x) = −iψ′(x) and qψ(x) = x · ψ(x) (12)

The space of functions on which the p and q operators act is commonly taken to be
the Schwartz functions. These are smooth functions all of whose derivatives (including
the functions themselves) decay to zero faster than the reciprocal of any polynomial (so
in particular they are L2 functions).

We can note that these p and q satisfy the commutation relations above, by exactly
the same argument as used for the ladder operators in the Fock representation. It is
interesting, but potentially confusing, that in both representations the generators can be
represented as multiplication and differentiation. In fact, every representation of the Weyl
algebra has such a form, but the variables in which power series are expanded will have
different interpretations. The variable x of functions in the Schrödinger representation is
literally the position variable for the oscillator, whereas z in the Fock representation is
simply a marker, whose exponent represents the energy of a state.



794 JEFFREY MORTON

In fact, we will focus entirely on the Fock representation, and will see that it has a
natural combinatorial interpretation, which we will describe in terms of the generators a
and a∗, and involving structure types. We can think of this interpretation as a categori-
fication of the Fock representation of the Weyl algebra. Developed further, it will show
close connections to the theory of Feynman Diagrams, as we shall see in section 5.7.

3.4.1. The Inner Product on Fock Space. Now, we should remark here that in
representing the quantum harmonic oscillator, like any quantum system, the two essential
formal entities we need are a Hilbert space and an algebra of operators on this space,
including self-adjoint operators corresponding to the physical observables of the system.
We have described the Weyl algebra as its acts on the Hilbert space of power series, but
we haven’t completely described this space, since to make it a Hilbert space, we need an
inner product. Clearly, as a vector space, H is spanned by {zk|k ∈ �}, but there are
many ways to put an inner product on this - and from each one, we get a Hilbert space
from the subset �[z] consisting of the elements with finite norm. So we need to choose
the physically significant inner product in order to specify the Hilbert space of states of
the oscillator.

The inner product represents the complex amplitude, whose squared norm is a prob-
ability, for some combination of a state-preparation process and a measurement process
(a “costate”). The inner product of two states 〈ψ, φ〉 is a “transition amplitude” the
amplitude for finding a system set up in state φ to be in state ψ on measurement. If the
system undergoes a change of state between set-up and measurement, there will be an
operator applied to one side. Self-adjoint operators correspond to observable quantities,
whose eigenvalues are the possible values which can be observed.

For physical reasons, we say that the inner product of two states having different
energy should be zero: 〈zn, zm〉 = 0 if n �= m. That is, the probability of setting up a
state with energy m and observing the state to have a different energy n should be zero
by conservation of energy, if there are no intermediate interactions.

Since position and momentum are observable quantities, we want the corresponding
operators p and q we described along with the Schrödinger representation - to be self-
adjoint. But then we must have a∗ = a†: i.e. the ladder operators must be adjoints. A
straightforward calculation then reveals:

〈zn, zn〉 = 〈a∗zn−1, zn〉
= 〈zn−1, azn〉
= 〈zn−1, n · zn−1〉
= n · 〈zn−1, zn−1〉

(13)

Normalizing so that 〈1, 1〉 = 1 (here, the vector 1 represents the vacuum, or ground, state,
where there are no quanta of energy present), we get that the physically meaningful inner
product on power series is the following:

3.5. Definition. The inner product on �[z] is defined by its operation on the basis {zn}
by 〈zn, zm〉 = δn,mn!. The space of states of the harmonic oscillator consists of all power
series with finite norm according to this inner product.



CATEGORIFIED ALGEBRA AND QUANTUM MECHANICS 795

The particular form of this inner product turns out to be closely involved with the
connection between this quantum system and structure types, and in fact this inner
product will turn out to have a natural categorification in the setting of “stuff types”,
which we see in section 4.13.1.

A standard question one may ask about the quantum harmonic oscillator is to find an
“expectation value” like

〈
zn, φkzm

〉
, representing the amplitude to find the oscillator with

n quanta after setting it up with m and allowing the field operator to act k times. Recall
that the field operator φ takes a state ψ and gives a superposition of states in which it
has gained and lost one quantum of energy. Thus, the expectation value may be nonzero,
so long as k is at least as large as the difference between n and m. This is the kind of
value which can be calculated by means of Feynman diagrams.

What we mean to show now is that the categorified expectation value above has a
direct interpretation in terms of a groupoid whose objects look like Feynman diagrams.
To see this, we first start with a description of a categorified Weyl algebra.

3.6. Structure Types and the Weyl Algebra. We have said already that structure
types are a categorified version of formal power series (with natural number coefficients).
We want to use them to help us categorify the Weyl algebra, which is generated by
a = ∂

∂z
and a∗ = Mz in the algebra of operators on such series. To do this, we must

develop operators on structure types (that is, natural transformations between functors)
which correspond to these in the decategorified form.

This amounts to finding a combinatorial interpretation of the operators a and a∗,
since a structure type is a combinatorial entity: it identifies a kind of structure which
can be put on a finite set, and decategorifying it gives a “generating series” for those
sorts of structures. The coefficients of this series count the number of such structures,
which is the cardinality - and thus decategorification - of the set of such structures. The
combinatorial flavour of structure types is made clearer, for example, when we can define
them recursively, or otherwise show some relationships between the structures on different
sets. These properties can sometimes be expressed as algebraic or differential equations
involving the generating series.

A pure state with n quanta of energy, in the representation of the Weyl algebra de-
scribed above, corresponds to the state zn. The categorified version of this state, Zn, in
the structure-type setting, is the structure “being a finite set with n elements” (that is,
this is the structure which can be put in exactly one way on an n element set and no
ways on any other set). It seems natural to identify the elements of the sets on which we
put our structures with quanta of energy of the quantum harmonic oscillator, and this is
what we will do. A categorified state Φ is a structure type - a type of structure which can
be put on some set of quanta of energy, which we can express in the basis {Zn} of the
2-Hilbert space of states (Set[Z]). It is characterized by the set of Φ-structures on each
size of finite set, and the ways those structures transform as we relabel the underlying set
of quanta.

We want to define two operators on structure types, A and A∗, which correspond to
differentiation with respect to z and multiplication by z in the Fock representation of the



796 JEFFREY MORTON

Weyl algebra. In fact, these are just the “insertion” and “removal” operators, familiar in
combinatorics:

3.7. Definition. The structure-type operator A acts on a structure type F to give a
structure type AF , for which putting an AF -structure on a set S is to adjoin a new
element, which we denote �, to S and then put an F -structure on S ∪ {�}. The adjoint
operator, A∗ is the one which acts on a structure type F by giving a structure type A∗F
for which putting an A∗F -structure on a set S is the same as removing an element from
S and putting an F -structure on the resulting set.

It should be clear that A acts like differentiation, by seeing how it acts on Zn, since
A(Zn) is the structure which, to put it on a set, means putting the structure of “being a
totally ordered n-element set” on S ∪ {�}. There are n ways to do this, provided S is an
n− 1 element set (one for each position � might take in the total ordering), so A(Zn) is
equivalent to putting the structure of “being a totally ordered (n− 1)-element set” on S
and also choosing one of n positions:

A(Zn) ∼= n · Zn−1 (14)

And in general, A acts like differentiation on structure types (we can extend the above
property linearly).

Now to see how A∗ acts, note that since an A∗F -structure on S is equivalent to a
way of splitting S into two parts, putting an F structure on one, and the structure
of being a 1-element set on the other, we can see even more directly that A∗ acts as
(categorified) multiplication by Z. The commutation relation aa∗ − a∗a = 1 now can be
seen as a decategorification of the corresponding property of the operators A and A∗. To
summarize:

3.8. Theorem. The structure type operators A and A∗ satisfy

A ◦ A∗ = A∗ ◦ A+ 1 (15)

and

|AF | = d

dz
|F | (16)

and
|A∗F | = z|F | (17)

To see these ideas more concretely, consider the following examples:

3.9. Example. A categorified state is just a structure type. One such type is “being a
finite set”, which we can denote EZ (E from the French “ensemble”, but also appropriate
in light of the generating series for this type). Then putting an A(EZ)-structure on a finite
set S is the same as putting an EZ structure on S∪�, and there is exactly one way to put
an EZ-structure on ANY finite set, hence exactly one way to put an A(EZ)-structure on
S as well. That is, A(EZ) = EZ . This makes sense, since |EZ | = ez, and so this equation
becomes ∂

∂z
ez = ez when we take its cardinality.



CATEGORIFIED ALGEBRA AND QUANTUM MECHANICS 797

3.10. Example. Consider the structure type O, “being a totally ordered finite set” (or
“of total orderings on a finite set”). There are n! such structures on a finite set n, so we
can see this type as isomorphic to

1

1− Z =

∞∑
n=0

Zn (18)

(since Zn is the type of totally ordered n-element sets). Here, the sum is to be understood
as a coproduct. Then to put anA(O)-structure on a set S, one puts a total order on S∪{�}:
this amounts to splitting S into two (ordered) parts and putting a total order on each
part. That is, an A(O)-structure is the same as an O2-structure, which is a combinatorial
interpretation of the algebraic fact that ∂z

1
1−z

= 1
(1−z)2

. Extending this further, an A2(O)-
structure on S consists of putting a total order on S with two extra elements adjoined -
thereby dividing S into three parts (in order) and totally ordering these. There are two
ways to build such a structure with O- and A(O)-structures: to divide S in two and put
an A(O)-structure (equivalently, O2-structure) on the first part and an O-structure on the
second, or to do this in the reverse order. Thus, A2(O) ∼= A(O) ·O+O ·A(O) ∼= O3 +O3

- a combinatorial interpretation of the fact that ∂2
z (

1
1−z

) = 2
(1−z)3

. This pattern continues

for general An(O).

This representation of the Weyl algebra in terms of these operators on structure types
gives us a model in which the ladder operators have immediate meaning in terms of
adding and removing elements to sets, and the states of the system are given as kinds
of structures which can be put on those sets. The sets in question are sets of quanta of
energy in the system. A categorified state consists of a type of structure which can be
put on these quanta. The number of such structures for each number of quanta is related
to the amplitude for the state to have that energy by means of the inner product on the
Hilbert space given in equation 13. We shall see a combinatorial interpretation for this
inner product in a later section, and see that it has a direct relationship to Feynman
diagrams for energy quanta in the harmonic oscillator. This suggests what we must do
next: we have recovered the basic structure of the Weyl algebra in a categorified form,
but so far we are missing some concepts which, though quite natural in the decategorified
setting, are difficult to see in this combinatorial picture. These are evaluation of power
series at particular points, and the inner product of the Hilbert space (which will become
a 2-Hilbert space in the categorified setting, once we have described the inner product).
To describe these adequately, we shall examine a generalization of structure types, which
we call “stuff types”.

4. Stuff Types

We have described a structure type as a functor F ∈ Set[Z], where the image of each
finite set S is the set of structures “of type F” which can be put on S, but it should
be obvious that the category Set is rather larger than we need, since for most sorts of



798 JEFFREY MORTON

structures we can think of, almost all sets will not appear in the image at all - most are
not sets of F structures on an n-element set for any F or n. If we think of a category
X whose objects are precisely the structures of type F , and whose morphisms are those
maps which arise from bijections of the underlying sets, we have a category better suited
to F . This category is, in fact, a groupoid (i.e. a category in which all morphisms are
iso), since FinSet0 is.

If we do this, however, we now have not sets of F structures as objects, but F -
structures themselves, and there are many such structures corresponding to each n. So
now it is more natural to think of F as a functor:

F : X→ FinSet0

where each object of X is taken to its underlying set, and each morphism to the underlying
bijection of sets. So every morphism in the image, FinSet0, then comes from morphisms
in X under this F . A functor with this property is called faithful.

Why should we make this changed to the definition of a structure type? There are at
least two good reasons to take this approach. One is that, while the previous definition
fit well with the view of formal power series in which we are interested in finding the
coefficient of the nth power of z, this definition allows us to think of F as corresponding to
a power series which we evaluate at various (positive) real numbers to get other (positive)
real numbers. To see how this works, we first remark that it will make sense to think of a
structure type F being evaluated at a groupoid , and so we need some useful facts about
these.

4.1. Groupoids. To begin with, we recall what kind of category we are dealing with
here:

4.2. Definition. A groupoid is a category in which all morphisms are invertible.

A group is a special example of a groupoid, with only one object - then the elements of
the group correspond to morphisms of the groupoid. Another special case of a groupoid
is a groupoid which has only one (identity) morphism per object - such a groupoid is just
equivalent to the set of its objects. General groupoids are different from either extreme
case, since they can have many objects and many morphisms. However, the idea that a
set may have a cardinality leads us to try to extend this idea to more general groupoids.

4.2.1. Groupoid Cardinality. There indeed is a notion of cardinality for any groupoid
(due to Baez and Dolan, in [1]), which in general can give any positive real number
(though it may also be divergent). The notion of cardinality is closely related to the
idea of “decategorification”. This is a process which takes a category and gives the set of
isomorphism classes of objects. Similarly, there is a notion of cardinality which takes a set
and gives a number, one which takes a structure type and gives a formal power series, and
one which takes a monoidal category and gives a monoid (a category with extra structure
producing a set with extra structure).



CATEGORIFIED ALGEBRA AND QUANTUM MECHANICS 799

4.3. Definition. The groupoid cardinality of a groupoid G is

|G| =
∑
[x]∈G

1

|Aut(x)| (19)

where G is the set of isomorphism classes of objects of G. We call a groupoid tame if this
sum converges.

That is, each isomorphism class of objects of G contributes a term inversely propor-
tional to the size of the automorphism group of a typical element. Note that groupoid
cardinalities of finite groupoids are just positive rational numbers - a finite sum of recip-
rocals of the sizes of finite groups. However, since a general groupoid may be infinite, its
cardinality may be an infinite sum. Thus, groupoid cardinalities can be any nonnegative
real number (including infinity). It is worth noting that, as with sets, this idea of cardi-
nality agrees with two natural operations we can perform on groupoids. These are the
disjoint union (sum) and product, in the following sense:

4.4. Theorem. If G and G ′ are tame groupoids, then so are G + G′ and G × G′, and we
have |G + G ′| = |G|+ |G′| and |G × G′| = |G| × |G′|. If G and G′ are equivalent, |G| = |G′|.
Proof. The groupoid G + G ′ is the category whose set of objects is the disjoint union of
the sets of objects of G and G ′, and since all morphisms are internal to these groupoids,
so is the set of isomorphism classes of objects. So the fact that |G+G ′| = |G|+ |G′| follows
directly from the definition.

The groupoid G × G′ has objects which are ordered pairs of objects from G and G ′,
and morphisms likewise ordered pairs of morphisms, which are iso precisely when both
elements of the pair are iso. So the isomorphism classes of objects are again ordered pairs
of isomorphism classes of objects from G and G ′. The automorphism group of any object
(g, g′) ∈ G × G′ is the direct product Aut(g)× Aut(g′), so

|G × G′| =
∑

[(g,g′)]∈G×G′

1

|Aut(g, g′)| (20)

=
∑
[g]∈G

∑
[g′]∈G′

1

|Aut(g)×Aut(g′)|

=

∑
[g]∈G

1

|Aut(g)|

×
∑

[g′]∈G′

1

|Aut(g′)|


= |G| × |G′|

To see that cardinality is preserved under equivalence, just note that there is a 1-1 cor-
respondence between isomorphism classes of their objects, and equivalent objects have
isomorphic automorphism groups, since an equivalence is a full, faithful, and essentially
surjective functor.



800 JEFFREY MORTON

This allows us to begin to elide the distinction between groupoids and their cardinal-
ities, passing back and forth as convenient (part of the intent of categorification, just as
when we conflate � and FinSet0).

We can make an analogy with sets here: in a set seen as a category with only identity
morphisms, an element of the set is exactly the same as an isomorphism class of objects, so
we might think of these classes as “elements” of a groupoid G. In this case, the cardinality
function (decategorification) which we have described gives us potentially fractional values
for each “element” of a groupoid G, so we can think of a groupoid as a way of getting
a “fractional” set - at least from the point of view of this cardinality function. So we
can think of a groupoid as an entity whose cardinality is a nonnegative extended real
number (given by a possibly infinite sum of positive rationals), and so if a structure type
is an entity whose cardinality is a formal power series with natural number coefficients, it
should not be too surprising that we can view this structure type as a function which takes
a groupoid and produces another groupoid, just as a power series can be evaluated at a
real number and yields another real number. Moreover, although groupoid cardinalities
can diverge, creating a problem of well-definedness, by passing to the categorified setting,
we can eliminate this problem, and deal directly with the groupoids instead. The way we
do this is to define

F (Z0) =
∑
n∈�

(Fn × Zn
0 )//Sn (21)

where the sum is interpreted as a coproduct, Fn is the groupoid whose object set is
the nth coefficient of F (as a set of structures) and whose morphisms are as above (the
groupoid of F -structured finite sets is a direct sum of groupoids Fn, of structures whose
underlying sets have size n). In this definition, Zn

0 is a product of n copies of Z0, and
Sn is the permutation group on n elements. The quotient which appears inside the sum
(coproduct) is a weak quotient of the groupoid Fn × Zn

0 by the group Sn. This requires
some explanation. First we will describe groupoid-coloured sets, then we will describe the
construction of a weak quotient.

4.4.1. Groupoid-Coloured Sets. For any groupoid Z0, we can speak of “Z0-coloured”
sets. It is easier to understand what these are if we think of sets as groupoids themselves.
In particular, given a set S, we can think of it as a groupoid whose objects are the elements
of S, and the only morphisms present are the identity morphisms (which must exist by
definition). This is clearly a groupoid. Then a map from a set into a groupoid is just a
functor. So:

4.5. Definition. A Z0-coloured set is a set S equipped with a colouring map c : S →
Z0. Maps of Z0-coloured sets in hom((S, c), (S ′, c′)) are bijections σ : S → S ′ together
with, for each x ∈ S, a morphism fx ∈ hom(c(x), c′(σ(x)). That is,

S
σ ��

c
��

S ′

c′
��

Z0 {fx}
�� Z0

(22)



CATEGORIFIED ALGEBRA AND QUANTUM MECHANICS 801

We can think of these as sets having each element x ∈ S “coloured” by an object of
Z0, namely its image under the map f , which is a functor between two groupoids. The
general form of such a thing is shown in (23), and an illustration of a coloured set is shown
in figure 2.

Z0 • · · · •
f

�� (23)

g1 g2 g3 g4 g5

Figure 2: A Z0-Coloured Set

Morphisms of Z0-coloured sets can be seen as bijections α of the underlying sets
where “strands” of the bijections are labelled by morphisms of Z0 between the Z0-objects
colouring the elements of S and S ′ they connect, as shown in figure 3, where all the gi

and g′i are in G, and fi ∈ hom(gi, g
′
i).

Z0

{fi}
��

• · · · •c
��

α

��
Z0 • · · · •

c′
��

(24)

f4

f5

f3

f1f2

g1 g 2 g3 g4 g5

g’2 g’4 g’5 g’1 g’3

Figure 3: A Morphism of G-Coloured Sets

4.6. Theorem. The collection of Z0-coloured finite sets forms the object set of a category
Z0-Set whose morphisms are as described. Moreover, Z0-Set is a groupoid.

Proof. The morphisms described can be composed in the obvious way - composing
bijections of the sets, and labelling strands of the result with the composites of the Z0-



802 JEFFREY MORTON

morphisms labelling each strand:

S
σ ��

c
��

σ;σ′

��
S ′ σ′

��

c′
��

S ′′

c′′
��

Z0
{fx} ��

{fx;f ′
x′}

��Z0
{f ′

x} �� Z0

(25)

This notion of composition is well defined since if the strand σ(x) = x′ is labelled by f ∈
hom(x, x′) and σ′(x′) = x′′ by f ′ ∈ hom(x′, x′′), the strand in the composite σ′σ(x) = x′′

can be labelled by f ′f since these are composable. This composition rule inherits all the
usual properties (e.g. associativity) from bijections in Set and morphisms in Z0.

The identity morphism from a Z0-coloured set to itself is clearly the morphism with
identity bijection whose strands are labelled by identity morphisms on the labels - again,
properties of the identity are inherited from Set and Z0. So in fact Z0-Set is a category.

Moreover all morphisms of this kind are invertible, since both bijections σ and all
morphisms from Z0 labelling strands are invertible (i.e. Z0-Set inherits the property of
being a groupoid from the fact that both Z0 and Set are.

In short, Z0-Set is a groupoid of sets labelled by objects of Z0 in a way compatible
with the groupoid structure of Z0.

4.7. Remark. In the special case where Z0 is a trivial groupoid with only identity mor-
phisms, (which can be seen as a set) the definition of a morphism reduces to bijections
compatible with the colourings, that is σ : S → S ′ gives a morphism between the Z0-
coloured sets c : S → Z0 and c′ : S ′ → Z0 provided φ ◦ c′ = c), i.e. that:

S

c
��

σ �� S ′

c′����
��

��
�

Z0

(26)

commutes.

This is an example of an “over category”, also known as a “slice” category. See
appendix B for more comments on this.

Having constructed a groupoid Z0-Set from Z0, it makes sense to ask about its cardi-
nality. However, this is a special case of what we really wish to do: given a stuff type Φ,
find the cardinality of Φ-stuffed, Z0-coloured finite sets. In particular, if Φ is the stuff type
(in fact, structure type) “being a finite set”, then this is exactly the cardinality of Z0-Set.
To describe the general case, we need to understand the weak quotient of groupoids by
groups, which will account for the effect of the permutations σ in the above construction.



CATEGORIFIED ALGEBRA AND QUANTUM MECHANICS 803

4.7.1. Weak Quotients of Groupoids by Groups. We want to define the weak
quotient of any groupoid G by a group G which acts on it, giving a groupoid G/G. This
will be particularly nice in the special case where G is just a trivial groupoid - i.e. a set
S, seen as a category - and in this case we can also speak of the quotient of a set by a
group, which will be a groupoid S/G.

4.8. Definition. A strict action of a group G on a category C is a map A which for
every g ∈ G gives a functor A(g) : C → C such that A(gh) = A(g)A(h) and A(1) = IdC.
If there is such a strict action, then the strict quotient of C by G is a category C/G
together with a quotient functor j : C → C/G such that j ◦A(g) = j for all g ∈ G.

Clearly, in the special case where G is a groupoid, so is G//G, since all morphisms
are generated, by composition, from invertible morphisms. Moreover, when C is a trivial
groupoid - i.e., a set - the definition of a strict action of G on C is identical to the
usual definition of a group action on a set, but when there are nontrivial morphisms, it
carries more information because A(g) must be functorial. A strict quotient agrees with
the usual intuition of how a quotient should work on objects, in that if there is a group
element taking an object x ∈ C to y ∈ C, then j(x) = j(y): the objects of C/G are just
equivalence classes of objects in C which are equivalent if they lie in the same orbit under
the action A. Also, the fact that A and j are functorial means that morphisms of C are
taken to morphisms of C/G compatibly with composition.

This strict action, and strict quotient, require too much to be very useful. More
generally, it is not necessary that j ◦ A(g) actually be equal to j, so long as they are
isomorphic in a reasonable way.

4.9. Definition. A weak quotient of a category C by a group G, acting on C by an
action A (as above), is a groupoid C//G whose objects are objects of C. Its morphisms
are generated by composition from morphisms in C with morphisms of the form A(h, g) :
g → g′, whenever A(h)(g) = g′, where g, g′ ∈ C, h ∈ G. Any relations which hold in C
hold in C//G, together with relations: A(h′, g′)◦A(h, g) = A(h′h, g) whenever A(h)g = g′;
and A(h)f ◦ A(h, g′′) = A(h, g) ◦ f for all f : g′′ → g (the action A is functorial).

Notice that all the morphisms added by the group action are invertible, since h ∈ G
is invertible. Now we illustrate the weak quotent C//G showing a few representative
morphisms:

•g

A(h,g)

		
•g′′f



A(h)f◦A(h,g′′)=A(h,g)◦f
��

A(h,g′′)

�� •
A(h)f

• •g′ (27)

4.10. Remark. It is possible to describe a weak quotient by means of a (weak) universal
property. It will be a groupoid C//G together with a quotient functor j : C → C//G such
that there is a natural isomorphism τ(g) : j ◦ A(g)

∼−→ j for all g ∈ G. We require that
the natural isomorphism satisfy the coherence condition τ(gh) = τ(g)◦τ(h), and that the



804 JEFFREY MORTON

weak quotient should be “weakly initial” among all groupoids with these properties. We
will not describe this in detail here, however, since we have a concrete construction.

Once we have this concept of the weak quotient of a groupoid by a group, we naturally
want to find its groupoid cardinality; this will generally be smaller than |G| since we have
added new isomorphisms, hence potentially increased |Aut(x)| for some objects x. In
fact, we have a better result:

4.11. Theorem. The cardinality of the weak quotient of a groupoid G by a group G
satisfies

|G//G| = |G||G| (28)

Proof. We have by definition that

|G//G| =
 ∑

[g]∈G//G

1

|Aut(g)| · | Stab(g)|

 (29)

where Stab(g) is the stabilizer subgroup of a representative g in G. This is since the
isomorphism classes in G//G are given by considering the isomorphism classes in G and
identifying any which are related by the action of G. For each of these isomorphism
classes, the automorphism group consists of transformations taking one equivalent object
to another. Any given object [g] in such a class will have as automorphism group the
product of the automorphism of a corresponding object in G with its stabilizer subgroup
Stab([g]) in G. So each isomorphism class contributes a term 1

|Aut(g)|·| Stab(g)| .
On the other hand,

|G|
|G| =

1

|G|
∑
g∈G

1

|Aut(g)| (30)

Here the isomorphism classes are in G: for each isomorphism class in G//G, there will
be |G|/| Stab(g)| isomorphism classes in G, since each object g ∈ G is acted on by each
element of G and taken to one of these classes. So in fact this is the same as |G//G|.
4.12. Remark. It is worth noting what happens in the special case where G is just a
discrete groupoid (i.e. a set, whose groupoid cardinality is just its set cardinality). If
the group action happens to be free, this result just says that the number of orbits is the
cardinality of the set divided by the size of the group - but the result holds even when
the action is not free, as in this picture illustrating a Z2 action on a 3-element set, giving
a groupoid with cardinality 3

2
:

• �� ��

id

�� •
id

��
�� �� •

id

�� (31)



CATEGORIFIED ALGEBRA AND QUANTUM MECHANICS 805

4.13. Stuff Types as a Generalization of Structure Types. We are now ready
to describe stuff types and some of their properties.

4.13.1. Stuff Types. We have already described structure types as functors

F : FinSet0 → Set

and also as special functors (in particular, faithful ones)

F̃ : X→ FinSet0

where X is the groupoid of F -structures on finite sets, and the functor F̃ takes each to
its underlying set. Faithfulness means that we do not have two distinct morphisms in X
with the same image in FinSet0 - that is, that a map between structures is completely
determined by its effects on the underlying set. So we say that we have “forgotten
structure” - since there may be morphisms in FinSet0 which do not correspond to any
in X (because they do not “preserve F -structure”). In section 4.23, we describe in more
detail what is meant by saying that a functor forgets properties, structure, and stuff.
For the moment, we extend the notion of structure types, and describe property types,
structure types, and stuff types, all of which are functors from some groupoid X to
FinSet0 which forget the given sort of information.

4.14. Definition. A stuff type is a functor Φ : X→ FinSet0, where X is a groupoid.
If Φ is faithful but perhaps not full or essentially surjective (forgets structure) we say it is
a structure type; if it is full and faithful, but perhaps not essentially surjective (forgets
properties) it is a property type; if it is an equivalence (forgets nothing), it is a vacuous
property type.

We think of these functors as giving the “underlying sets” of the stuff type in question.
We can think of a stuff type Φ : X→ FinSet0 as a “groupoid over FinSet0”, so that
any object of the groupoid X has an underlying set in FinSet0, and by analogy with the
terminology “F -structured finite set”, we will describe it as a “Φ-stuffed finite set”. This
should suggest the idea that a stuff type gives us a collection of objects which correspond
to finite sets S, but which possibly have extra information associated with them (the
“stuff” forgotten by Φ).

Returning to our connection with the quantum harmonic oscillator, if we view stuff
types this way, and think of the dual entity, Φ∗ : FinSet0 → Set, taking each finite set
n to the set of ways of putting “Φ-stuff” on it - in this context, this represents the set
of ways for a state with energy n to occur in X, the groupoid associated with the state
(which, however, we just denote Φ).

We can see how this connection develops in two steps. First, we replace a function
ψ : � → � function ψ : � → Set: that is, a structure type described as a map giving,
for any finite set, the set of all Ψ-structures on it. The category of sets takes the role
of the complex numbers (in the first stage), which we understand in the following way.
The complex values ψn, which in quantum mechanics represent the “amplitude” for the



806 JEFFREY MORTON

particular pure state with energy n to occur are replaced in this first stage by sets of
Ψ-structures on a particular finite set S of size n. We can think of these as “the set of
ways for possibility n to occur”. (In section 6 we will see how amplitudes arise).

The net step is to replace the natural numbers � by the groupoid FinSet0, so that
stuff types get a richer structure - in particular, we can describe them as functors, since
FinSet0 is a groupoid rather than merely a set. Now we can think of these in several
ways, including as bundles over the groupoid FinSet0. In this setting, a “point” in the
type Φ is an object of X together with its underlying set - the base point in the bundle.
We can also think of the “point” as a finite set with extra “Ψ-stuff”, depicted in figure 4
as a label x attached to Ψ(x).

xΨ

Figure 4: Example Object of a Stuff Type Ψ

If Ψ is a structure type, this label can be seen as some structure put on the set Ψ(x),
but in general this will not be the case - the label could, for example, be other sets in a
tuple of which Ψ(x) is one part (this is example 4.28). To be general, we will not specify
what this label contains, and simply say that it contains “stuff”.

A morphism f in X is invertible, since X is a groupoid: this gives a bijection Ψ(f) of
underlying sets in FinSet0. Together, this data is a morphism in Ψ, show generally in
(32) and illustrated by the example in figure 5.

• · · · •
Ψ(f) �

��

��������x
f �
��

Ψ
��

• · · · • 	
�����x′Ψ
��

(32)

Ψ x’

Ψ x

Ψ(f) f

Figure 5: Morphism In the Groupoid of Stuff Type Ψ

4.15. Example. We’ve seen that the structure type “being a finite set” can be represented
as EZ , since there is exactly one way to put this structure on any finite set S (in fact,
it is the “vacuous property type”). We might ask if there is a structure type “EEZ

” -



CATEGORIFIED ALGEBRA AND QUANTUM MECHANICS 807

shorthand for “being a finite set of finite sets”. But, in fact, this is impossible. Certainly,
this will not have cardinality eez

, since there are an infinite number of ways of putting
this structure on a given finite set S - that is, taking a finite set of (disjoint) finite sets
such that their union is S. In particular, any number of copies of the empty set may be in
an “EEZ

-structure” on S. A worse problem is that there are distinct morphisms of such
structure, differing only in their effect on these empty sets, which correspond to the same
morphism on the underlying set S. So these empty sets constitute extra “stuff”, and this
EEZ

must be a stuff type which is not a structure type.

This example, EEZ
, highlights two points which we should address about stuff types.

First, it is a special case of something we would like to be able to do more generally,
namely given two types F and G, to find a type F ◦G which is in some reasonable sense
the composite of F and G. In this example, both F and G are the vacuous property type
EZ , yet even in this elementary case, their composite already needs to be a stuff type.
The second issue is cardinality: our concept of composition should include the fact that
when we take cardinalities, we should have that |F ◦G| = |F | ◦ |G|. This does not work
with the cardinality operation we have developed for structure types - at least when we
try to generalize it naively. The stuff type we are optimistically calling F ◦ G = EEZ

is
well defined, for any finite set S, but the set of these structures has infinite cardinality, so
the corresponding generating function is not eez

. So we need a new concept of cardinality
for stuff types, which should be consistent with the old definition in the special case where
they are structure types. We will deal with this issue first.

4.15.1. Cardinality of Stuff Types. We have said that a stuff type is a groupoid
over FinSet0. By analogy with the situation for structure types, then, we can define a
notion of cardinality for stuff types. For structure types, we had a notion of cardinality
for which

|F | =
∑

n∈FinSet0

|Fn|
n!

zn (33)

Here, as before, FinSet0 is the set of isomorphism classes of FinSet0 (that is, �), and |Fn|
is the cardinality of the set of F -structures on n - where this is now the usual cardinality
function on sets. The use of a common notation for both cardinality operators emphasizes
that any notion of cardinality | · | is in some sense a decategorification operation. For
simplicity, we will replace FinSet0 with �, but we should remember that it derives from
the original groupoid FinSet0.

In the same way, we can define the cardinality of a stuff type:

4.16. Definition. Given a stuff type Φ : X→ FinSet0, we define its cardinality by

|Φ| =
∑
n∈�
|Φn|zn (34)

where |Φn| is the groupoid cardinality of the preimage of n under Φ.



808 JEFFREY MORTON

4.17. Remark. Note that this really only makes sense if we are working with a “skeletal”
version of FinSet0, so that the preimage of a set of size n is well defined. This is a category
which is equivalent as a category to the standard version of FinSet0 from set theory -
that is, there are functors between them whose composites are naturally isomorphic to the
identities. However, the skeletal version of FinSet0 has only one object per isomorphism
class - that is, per finite cardinal number. We will assume FinSet0 is skeletal whenever
convenient.

4.18. Remark. Definition (4.16) is consistent with the definition of structure types, since
if we think of a structure type as a groupoid over FinSet0, its morphisms all arise from
permutations of the underlying sets, and so the groupoid cardinality of the preimage
of n is precisely |Φn|/n!, since the groupoid is equivalent to the weak quotient Φn//Sn.
Just as structure types had cardinalities which were power series whose nth coefficients
were integers divided by n!, stuff types have cardinalities which are power series with
nonnegative real coefficients.

An example shows that stuff types significantly generalize structure types, at least
as concerns the kinds of generating functions (power series) which can appear as their
cardinalities:

4.19. Example. The stuff type “being the first of a k-tuple of equal-sized finite sets”, for
any value k > 1, is a stuff type which is not a structure type. This can be represented as
a functor Φ : X→ FinSet0, where X is the groupoid whose objects are k-tuples of finite
sets of the same size, and whose morphisms are k-tuples of bijections. The components
of X are Xn, which are the groupoids of k-tuples of n-element sets. The cardinality of Φ
is

|Φ| =
∑
n∈�
|Xn|zn (35)

=
∑
n∈�
|1//Sn|kzn

=
∑
n∈�

(
1

n!

)k

zn

This cardinality cannot appear as that of any structure type, since the coefficients of zn

in such power series must be of the form an

n!
for an ∈ �, which is not the case here unless

k = 1.

4.20. Stuff Types As Power Series. Once we have the mechanics of groupoids, stuff
types, and their cardinalities, it becomes possible to extend the analogy with formal power
series which began structure types. Although for the purposes of quantum mechanics, we
are mainly interested in the Hilbert space structure of formal power series, it is worth
pointing out that more of the algebraic and arithmetical properties of power series can
also be recovered. In particular, we will next see that the cardinality maps for stuff types



CATEGORIFIED ALGEBRA AND QUANTUM MECHANICS 809

and groupoids lets us find analogs of the evaluation of a power series at a real number -
and, by extension, the composition of two power series. These could not, in general, be
done with just structure types.

In section 5 we return to features specially relevant to quantum mechanics.

4.20.1. Evaluation of Stuff Types. One useful fact about stuff types is that we can
define a sensible notion of evaluation, which brings us back to the fact that we had two
ways of looking at power series as functions: either by the evaluation map z �→ f(z) or by
the map picking out coefficients in the power series expansion, n �→ fn. Structure types
have given us a good categorified way of looking at the latter, but with stuff types we will
be able to do the former as well. This also lets us talk sensibly about the composition of
types, just as we might talk about composition of functions. Since this is one motivation
for passing from structure types to stuff types, let’s consider an example of an algebraic
operation with power series which can’t be extended to the setting of structure types in
a way which is compatible with the correspondence between structure types and power
series:

This example of a stuff type suggests the way we speak of evaluating stuff types at
groupoids - by “colouring” elements of a set with objects of the groupoid. That is:

4.21. Definition. Given a groupoid Z0 and a stuff type Φ : X → FinSet0, the eval-
uation of Φ at Z0 is the groupoid Φ(Z0) of Φ-stuffed, Z0-coloured finite sets, whose
objects are pairs (φ, z0) ∈ Φn × Zn

0 , where φ is a way of equipping an n-element set with
Φ-stuff, and z0 is a map f : n→Z0 equipping each element of n with an object of Z0. The
morphisms of Φ(Z0) are bijections of the underlying n-element sets with strands labelled
by morphisms in Z0 between the objects labelling corresponding elements.

Notice that there is an action of Sn on the objects of Φ(Z0)n - the ways of putting Φ-
stuff on a set of size n, together with a Z0-colouring of this set - which comes immediately
from the action of Sn on the underlying set.

In the case where Φ is a structure type F , the groupoid F (Z0)n is just a weak quotient
(Fn×Zn

0 )//Sn. That is, its objects consist of pairs: F -structures which can be put on an
n-element set, together with colourings of an n-element set by Z0 objects. These have an
action of the permutation group on the underlying set (two such objects are isomorphic
by reindexing the sets in in the F -structure and the colouring in the same way). So then
the groupoid cardinality of F (Z0) is

|
∞∑

n=0

(Fn × Zn
0 )//Sn| =

∞∑
n=0

|Fn||Z0|n
n!

= |F |(|Z0|) (36)

where the first “sum” is a categorical coproduct. This formula is consistent with the
formula for the generating function of a structure type which we’ve seen before in equation
(2). The analogous fact is true for any stuff type, though recall that in that case we will
not explicitly refer to the action of Sn on the groupoid. However, just as above, we have

|Φ(Z0)| = |Φ|(|Z0|) (37)



810 JEFFREY MORTON

4.22. Example. Take a groupoid G, and say X is the groupoid of G-coloured finite sets,
and consider this groupoid as the stuff type

Φ : X→ FinSet0

where Φ is the forgetful functor which takes a G-coloured finite set to its underlying set.
An object in Xn (the preimage of n in X) consists of n objects from G, and morphisms of
Xn are n-tuples of morphisms in G composed with permutations of the n elements. Thus,
Xn � Gn

0/Sn, the weak quotient by the action we have described. Taking its cardinality,
we find that

|Φ| =
∑
n∈�
|Xn|zn (38)

=
∑
n∈�
|Gn//Sn|zn

=
∑
n∈�

|G|n
n!

zn

= e|G|z

This follows since groupoid cardinalities are compatible with both powers and weak quo-
tients.

Both the parallel with the generating function e|G|z and the notion that F is the type of
“G-coloured finite sets” suggests that F should be seen as EG×Z - that is, composition of
the type E� (“finite sets of”) with G×Z (the product type whose objects are one-element
sets together with objects of G - i.e. G-coloured one-element sets).

Some interesting special cases of this example: when G is a groupoid which is just a
set k with only identity morphisms, we have a structure type of “k-coloured finite sets”;
G is a group G seen as a one-object groupoid, we have a notion of (1//G)-coloured sets.

Furthermore, the calculation above gives us the cardinality of the groupoid X of G-
colored finite sets itself (i.e. not as a stuff type) to be simply e|G| (since no powers of z
appear, but the calculation is otherwise the same). So we can see this groupoid as the
evaluation of E� at G.
4.22.1. Composition of Stuff Types. At last we can return to the question of how
to compose stuff types. We have seen how to evaluate stuff types at groupoids - given
a groupoid Z0, evaluating the stuff type Φ at it gives Φ(Z0), the groupoid of “Φ-stuffed
Z0-coloured finite sets”. Since evaluating a stuff type at a groupoid (whose cardinality
is a real number) yields another groupoid (whose cardinality is again a real number), we
should be able to repeat this process as many times as we like. In principle, for instance,
we should be able to describe Ψ ◦ Φ(Z0) as “Ψ-stuffed, Φ(Z0)-coloured finite sets” - a set
with G-stuff, whose elements are labelled by finite sets with F -stuff and elements labelled
with objects of Z0.

Since a stuff type Φ is itself a groupoid over finite sets, Φ : X → FinSet0, and we
have a way of evaluating a stuff type at a groupoid, we get a notion of composition for



CATEGORIFIED ALGEBRA AND QUANTUM MECHANICS 811

stuff-types. We have seen in section 4.4.1 that there is a groupoid of Z0-coloured finite
sets, whose morphisms are bijections of sets with strands labelled by morphisms in Z0.
We saw in (4.22) that its cardinality is e|Z0|.

We should think of this as an illustration of the above where F is the structure type,
in which we had the stuff type “being a finite set” composed with the type Z0 × Z -
Z0-coloured one-element sets, but we can generalize this to any stuff types F and G, to
obtain stuff types F ◦G = F (G) and in such a way that |F ◦G| = |F | ◦ |G|.

a 2 a 3a 1

A
b1 b2

B
c 1 c 2 c 3

C
F

X

Figure 6: An Object in a Composite Stuff Type

We can describe what we get here as a type which, evaluated at Z0, gives “F -stuffed
G(Z0)-labelled finite sets”. This has objects (as shown in figure 6) which consist of finite
sets equipped with F -stuff (say F : X→ S). The elements of F are labelled by objects of
G(Z0): that is, the labels themselves consist of finite sets labelled with G-stuff, denoted
by capital letters in the figure, whose elements are themselves labelled in turn by objects
from Z0, denoted by lower-case letters.

1h 2h
3h

c 1 c 2 c 3

C

c’1 c’3 c’2

C’

b1 b2

B

1g

2g

b’1 b’2

B’

f1 f3f2

a’3 a’1a’2

A’

a 2 a 3a 1

A

X
F

X’
F

Figure 7: A Morphism in a Composite Stuff Type

Morphisms in the groupoid of F -stuffed G(Z0)-coloured finite sets (illustrated in figure
7) consist of maps between the objects of F ’s groupoid of stuff, which project down to
morphisms of the underlying G(Z0)-coloured sets. This has its top level as a bijection
of the underlying sets. The strands of the top-level bijection are labelled by morphisms
of the groupoid of G(Z0)-coloured finite sets. These include morphisms of the objects



812 JEFFREY MORTON

associated to the G-stuffed Z0-coloured sets (the dotted lines), which are associated to
bijections of the Z0-coloured sets - with strands labelled by morphisms of Z0.

Clearly, we could in principle continue this sort of construction recursively, to define
the composite of any number of stuff types.

4.23. Forgetful Functors: Properties, Structure, and Stuff. Here we take
a detour through some ideas from category theory which apply directly to stuff types.
The first is a classification of functors by degrees of forgetfulness, which is the source
of the term “stuff” in “stuff type”. In fact, we want to explain the terms “structure”
and “stuff” which appear before the word “type” in our terminology. We began by
trying to categorify a certain rig, replacing it by a 2-rig of functors - and now we look
at a classification of functors to see how we generalized this process. In particular, we
are interested in functors which are, respectively: faithful; full and faithful; or full and
faithful and essentially surjective:

4.24. Definition. A functor F : C → D is essentially surjective if the images of
objects in C cover all objects of D in the sense that for any d ∈ Ob(D), there is some
c ∈ C with F (c) ∼= d. It is full if for any c, c′ ∈ C, the map between the sets of morphisms,
F : HomC(c, c′) → HomD(F (c), F (c′)), is surjective (in the set-theoretic sense). The
functor F is faithful if for any c, c′ ∈ C, the map between the sets of morphisms, F :
HomC(c, c′)→ HomD(F (c), F (c′)), is injective (in the set-theoretic sense).

Each of these can be seen as a form of surjectivity. The notion of essential surjectivity
is a version of onto for categories at the level of objects. Fullness means that a functor is
“onto for morphisms”; faithfulness is “onto for equations between morphisms” in the sense
that any equation between morphisms in HomD(F (c), F (c′)) comes from some equation
between the preimage morphisms in HomC(c, c′). That is, for morphisms in the image of
F , say F (f), F (f ′) ∈ HomD(F (c), F (c′)), we have F (f) = F (f ′)⇒ f = f ′ in HomC(c, c′).

We have a classification of functors, then, in terms of which of these it satisfies (which
we will attempt to explain next):

Functor Forgets
essentially surjective, full, faithful “nothing”

full, faithful “properties”
faithful “structure”

all “stuff”

When we move to the setting of n-categories, we have not only objects and morphisms,
and the possibility that morphisms may be equal, but also 2-morphisms between mor-
phisms (so that they may be 2-isomorphic, rather than merely equal, or indeed might
have non-iso 2-morphisms between them), and 3-morphisms between 2-morphisms, and
so on. Important to notice is that essential surjectivity involves a weakening (a functor
is essentially surjective if it is surjective onto isomorphism classes, but not necessarily
objects). This is because we should not distinguish between equivalent categories, and



CATEGORIFIED ALGEBRA AND QUANTUM MECHANICS 813

since every category is equivalent to a skeletal category with only one object in each
equivalence class. We will, in fact, want similarly weakened versions of full , faithful , and
their higher-dimensional counterparts, when we use n-categories.

For now, though, we will explain the second column of this table, and see how it
applies to structure types. The intuition begins with the commonplace fact that a map
between sets is an isomorphism if it is both injective and surjective. For functors between
categories, essential surjectivity is the natural analog of surjectivity, but full functors are
the natural analogs of injective maps. A map is injective if no two distinct objects have
the same image - that is, any equation of objects in the image comes from an equation in
the domain. A functor is full if every morphism between objects in the image comes from
a morphism in the domain, so injectivity of set maps is a special case, considering a set
as a category with only identity morphisms. In the case of this trivial sort of category,
every functor is faithful.

So a bijection between sets is a full, faithful, essentially surjective functor, and if such
a functor exists, we should treat the sets as “the same” - the functor has lost no important
information (of which there is very little, for a set), which is reflected in the fact that it is
invertible. If we have more general categories, with nontrivial morphisms, then in much
the same way, we have that a functor F : C → D, is an equivalence of C and D (i.e. there
is a functor F−1 which is an inverse to F up to natural isomorphism) if F is full, faithful,
and essentially surjective. Similar results are true for higher-dimensional categories (n-
categories, for any n), while functors which fail to have these properties are in various
senses “forgetful” - not being equivalences, they must forget information about the source
category. This gives a “periodic table” of grades of “stuff” forgotten by functors which
fail to be onto for objects, morphisms, 2-morphisms (between morphisms), 3-morphisms
(between 2-morphisms), and so on. We restrict our attention to the case n = 1, but note
that the pattern we will develop continues for higher n.

We see that these classes of functor can be used to talk about classes of “type”:
structure types and stuff types are functors from groupoids into the groupoid FinSet0 -
in fact, they are functors which forget “structure” and “stuff” respectively.

4.24.1. Examples of Forgetful Functors. Some examples illustrate the classes of
functors we have described. So for instance, if a functor F : C → D is not essentially
surjective, but is full and faithful, we have a subcategory of C in D, namely the image of
F , which is equivalent to C, but which does not exhaust the isomorphism classes of D:

4.25. Example. The functor
I : AbGrp→ Grp

embeds the category of abelian groups and their homomorphisms into the category of
all groups and homomorphisms. This functor has “forgotten a property”, namely the
property of being Abelian. The category Grp does not discriminate between objects
with and without this property, whereas AbGrp is distinguished by the fact that it does.

If a functor fails to be essentially surjective and fails to be full, we can have not only
the sort of situation above, but the target category can have morphisms which do not



814 JEFFREY MORTON

correspond to those in the source:

4.26. Example. The functor

I : OrdFinSet0 → FinSet0

takes any element in the groupoid OrdFinSet0 of totally ordered finite sets (whose mor-
phisms are order-preserving bijections) into FinSet0 - taking ordered sets and order-
preserving maps to the underlying sets and set-maps. This fails to be full since there
can be bijections between the underlying sets of two ordered sets which fail to preserve
order. This functor “forgets structure” - namely, that structure which must be preserved
by morphisms in OrdFinSet0, the total ordering on its objects.

Both of these examples are faithful functors, in the sense that each morphism in the
source category is sent to a distinct morphism in the target. There are functors which
lack this property as well:

4.27. Example. Consider the functor:

P1 : Vect2 → Vect

The objects and morphisms in Vect2 are ordered pairs of those in Vect, namely vector
spaces and linear transformations between them, while the functor P1 is just projection
onto the first component of these pairs. Clearly, this is not faithful, since there are
many pairs morphisms in Vect2 with the same first component. What this functor has
“forgotten” is, for each object, an entire vector space, and all the information about
morphisms associated to these. More than simply forgetting about properties shared
by all objects, or structure which must be preserved by morphisms, we say this functor
forgets “stuff” - parts of objects, in this case.

4.28. Example. Our previous example of a completely forgetful functor involved the
category of vector spaces, but similarly, there is an obvious class of stuff types associated
to the groupoid FinSet0

n, whose objects and morphisms are n-tuples of finite sets and
bijections:

Pj : FinSet0
n → FinSet0

where Pj is the projection onto the jth coordinate. The set in this entry is the “underlying
set”, and the “stuff” being forgotten consists of all the other sets in the tuple. This stuff
type is a completely forgetful functor.

5. Stuff Types And Quantum Mechanics

Now we will return to our original motivation - seeing stuff types as a categorification of
states of the quantum harmonic oscillator. We have already seen how stuff types can take
the role of formal power series, at least up to the level of linear structure. The space of
formal power series should be the Hilbert space of states of the quantum oscillator: so



CATEGORIFIED ALGEBRA AND QUANTUM MECHANICS 815

composition of stuff types, which we have explored, will not enter into this picture, though
the linear structure will. If stuff types are categorified power series, and the 2-category
StuffTypes is a categorified Fock space some of the basic structure for a Hilbert space2.
One difficulty is that we do not have additive inverses, and another is that we lack an inner
product (which any Hilbert space must have, and which we need to calculate probabilities
in a quantum system).

Interestingly, while the additive inverses are rather tricky to define, and will have to
wait until section 6 when we define M-stuff types, the inner product does not even need
to be defined as a special construction, or imposed as extra structure: a canonical one
arises directly from the categorified framework as a weak pullback (in part because, by
describing stuff types as functors into Set, we are in effect choosing an ordered basis for
this categorified equivalent of a Hilbert space). What is more, a Hilbert space should have
an algebra of linear operators - endofunctions - which acts on it. We need to see what
the equivalents of operators on stuff types are before we can use them to categorify the
oscillator. We will see that these are directly related to the inner product.

5.1. Inner Product of Stuff Types. The first feature of a Hilbert space we need to
recover is its inner product.

5.1.1. Inner Product as Pullback. When we were discussing the Hilbert space of
states of the quantum harmonic oscillator, we described the inner product on this Hilbert
space, which gave us, on the basis of pure states zk, the form 〈zn, zm〉 = δn,mn!. We
would like to give this a combinatorial, or categorified, interpretation in terms of our
categorified states - stuff types. The inner product for stuff types (now thought of as
categorified states) will turn out to satisfy the property that | 〈Φ,Ψ〉 | = 〈|Φ|, |Ψ|〉 just as
we saw for composition of types.

Previously we described the categorification of formal power series in two steps - first
replacing the complex numbers by some groupoid X, then replacing the natural numbers
by FinSet0. We follow the same two-step process to describe the categorified inner
product.

Now, in a quantum mechanical setting, the space of states of a system is a space of
L2 functions over some configuration space. In the case of the harmonic oscillator, the
configuration space is just a set of energy levels, equivalent to �, and so the space of
states can be seen as 	2, the space of square-summable sequences (of complex numbers).

In the categorified space of states, a natural way to get an inner product is to extend
the definition 〈ψ, φ〉 =

∑
n∈� ψnφn in the case of complex numbers to become

〈ψ, φ〉 =
∑
n∈�

ψn × φn (39)

where the sum is now a coproduct in Set (i.e. a disjoint union) and the multiplication
is the categorical (Cartesian) product. This way of looking at the inner product gives
a set, and the equivalent condition to square-summability is the finiteness of this set.

2A treatment of the construction of Hilbert spaces from structure types appears in [9].



816 JEFFREY MORTON

The cardinality operator gives us a notion of square-summability in the decategorified
setting: we can dispense with this condition in the categorified setting, just as we can
treat structure types with infinite sets as coefficients. In the case where the set we get is
finite, it should be clear that when we take cardinalities, we just get that the cardinality
| 〈ψ, φ〉 | is just 〈|ψ|, |φ|〉. So this is naturally seen as an inner product in the sense that
when we take cardinalities, we get a number which will be the inner product of the vectors
in the space of power series which are the cardinalities of the two types. In the finite case
these are just polynomials: this is as yet not very interesting since we are dealing with
sets, whose cardinalities are just integers. We will address this when we pass to the case
of a groupoid over FinSet0.

To see how this will work, note that, just as structure types and stuff types themselves,
we can treat the inner product as a “bundle over �”, with projection maps taking the
individual elements of this disjoint union of products down to � by the obvious projection
taking an element of ψn × φn to n (which is well defined, since all elements of the inner
product are of this form). So if we think of the two states ψ, φ as corresponding to two
bundles F : S → � and G : S ′ → � for S, S ′ ∈ Set we have, as we’ve seen:

〈F,G〉 =
∑
n∈�

ψn × φn =
∑
n∈�

F−1(n)×G−1(n) (40)

This can be understood in categorical terms as the fibre product of the two bundles,
also written as X ×� Y where the projection maps F,G of the bundles are understood.

Another way to say this is to describe it as a pullback of the two projections X
F→� G← Y ,

which is to say an object which is initial among objects of the form X
Px←O

Py→ Y making
the square

O
Px ��

Py

��

X

F
��

Y
G

�� �

(41)

commute. (That is, given any other such object O′ with maps into X and Y, there is a
unique map from O to O′ making the combined diagram commute.)

5.1.2. The Categorified Case: Inner Product As Weak Pullback. The next
level of categorification of this description will give us a definition of the inner product of
two stuff types as a groupoid - namely the pullback of the two functors from groupoids X
and Y into FinSet0. The inner product on this space is the same one we described when
talking about the harmonic oscillator (equation 13). To get this more fully categorified
inner product - now an inner product of stuff types - we should replace �, the “base
space” by FinSet0, which is the free symmetric monoidal category on one generator, just
as � is the free commutative monoid on one generator.

So suppose we have two stuff types, namely functors Ψ : X → FinSet0 and Φ : Y →
FinSet0, for some groupoids X,Y ∈ Gpd. We want to do the equivalent of taking the



CATEGORIFIED ALGEBRA AND QUANTUM MECHANICS 817

pullback of these two functors:

X
Ψ→FinSet0

Φ←Y

Since these are not just functions between sets, but functors between categories, the
pullback is in the 2-category Cat, or indeed in Gpd. So defining a pullback becomes
slightly more complicated - in fact, we can and should weaken the requirement that the
pullback square

〈Ψ,Φ〉
PX

�����������
PY



���������

Y

Φ �����
���

���
� X

Ψ

���
���

���
�

FinSet0

(42)

commutes exactly, and allow it to commute only up to a 2-isomorphism between the
two composite projections, so that what we want is the weak pullback (an example of a
“pseudo-limit” in a 2-category; see [15]) :

〈Ψ,Φ〉
PX

�����������
PY



���������

Y

Φ �����
���

���
� X

Ψ

���
���

���
�α

∼��

FinSet0

(43)

This is like the fibre product over � which we described above, and we can also
denote this by X ×FinSet0 Y, emphasizing the groupoids rather than the functors. Let’s
understand this weak pullback better by seeing what this groupoid actually looks like
internally, and then seeing that the groupoid cardinality of this inner product of stuff
types corresponds to the inner product of two states |Ψ| and |Φ|.
5.2. Definition. The groupoid 〈Ψ,Φ〉 = X×FinSet0Y has objects which are pairs (x, y) ∈
X × Y equipped with an isomorphism α(x,y) : Ψ(x)→̃Φ(y). A morphism in 〈Ψ,Φ〉 is a
morphism in X×Y, say (f, g) : (x, y)→ (x′, y′), such that

Ψ(x)
Ψ(f) ��

αx,y

��

Ψ(x′)

αx′,y′
��

Φ(y)
Φ(g)

�� Φ(y′)

(44)

commutes. That is, αx′,y′ ◦Ψ(f) = Φ(g) ◦ αx,y.



818 JEFFREY MORTON

The isomorphism α is from the definition of weak pullback; in a strict pullback, α(x,y)

would always be the identity - that is, we would require that Ψ(x) = Φ(y).

Now, what does this all mean? The isomorphism α is a bijection of underlying sets
- so an object of 〈Ψ,Φ〉 is a pair of objects (x, y), (Ψ- and Φ-stuff respectively on their
underlying sets), together with a bijection between the underlying sets, as shown generally
in (45) and illustrated in figure 8.

• · · · •
αx,y �

��

��������x
Ψ

��

• · · · • ��������y
Φ

��

(45)

Ψ x

yΦ

αx,y

Figure 8: Object of an Inner Product (Pullback) Groupoid

A morphism between two such objects includes morphisms of the form (32) between
the objects of Ψ and Φ; this gives bijections between the underlying sets which must be
compatible with those which are part of the 〈Ψ,Φ〉 objects (of the form (45)) themselves.
The general result is illustrated in (46) and an example appears in figure 9.

��������x
Ψ

����
��

��
��

��

f

∼ ��	
�����x′

Ψ
����

��
��

��
��

• · · · •

αx,y �

��

Ψ(f)

∼ �� • · · · •
αx′,y′�

��

��������y
Φ

����
��

��
��

��

g

∼ ��	
�����y′

Φ
����

��
��

��
��

• · · · • Φ(g)

∼ �� • · · · •

(46)

So the naturality square (44) means that the inner square of set bijections in (46)
commutes: in other words, that we have given a way to identify all these underlying sets.
We can see this in the figure as the fact that following strands of the set bijections (of
3-element sets) around the square reveals that there are exactly three complete squares
of strands.



CATEGORIFIED ALGEBRA AND QUANTUM MECHANICS 819

Ψ x

yΦ x’Ψ

y’Φ

αx,y

αx’,y’

f

g

Φ(g)

Ψ(f)

Figure 9: A Morphism in an Inner Product (Pullback) Groupoid

5.2.1. Stuff Type and Fock Space Inner Products Related. The key example
of the inner product which makes clear the connection with the inner product on Fock
space developed in section 3.4.1 is the inner product of stuff types Zn and Zm, which also
happen to be structure types. The stuff type (in fact, structure type) Zn is the type of
total orders on an n-element set , or “being a totally ordered n-element set”. An object
of the inner product groupoid 〈Zn, Zm〉 is thus a pair (x, y) which are n- and m-element
totally-ordered sets respectively, equipped with an isomorphism between the underlying
sets. We may think of these as the sets n = {0, . . . , n − 1} and m = {0, . . . , m − 1},
and the isomorphism is just any bijection α between these. If n �= m, there are no such
objects since there are no such bijections. If n = m, then there are n! such bijections,
given by the permutations of {1, . . . , n}. The morphisms of 〈Zn, Zm〉 are just the identity
morphisms on these objects, since the only morphisms in the groupoid of totally ordered
sets are order-preserving bijections - that is, objects have no nontrivial automorphisms.
Thus, we get:

〈Zn, Zm〉 = n!δn,m (47)

where n! is the groupoid with n! objects (one per permutation of n) and only identity
morphisms, and δn,m is analogous to the usual Kronecker delta, being a groupoid with no
objects if n �= m and with one object and one morphism if n = m. Thus,

| 〈Zn, Zm〉 | = 〈|Zn|, |Zm|〉 (48)

so that the inner product we found on Fock space is natural in this setting. This also
illustrates the reason for the factor n! which shows up in the nth term in the expansion
of a structure type, or the power series which is its generating function. This n! is the
cardinality of the group Sn, the group of permutations of the underlying n-element set.

5.3. Stuff Operators. So far we have described stuff types, and implied that they, as
extensions of structure types, are a useful way of categorifying functions - in the setting



820 JEFFREY MORTON

where these functions are seen as states of a certain quantum system. The inner product
defined in section 5.1 gives these some of the structure of a Hilbert space, and also makes a
connection to Feynman diagrams for energy quanta of a harmonic oscillator. We want to
describe more of the structure of the 2-rig of stuff types - in particular its linear structure,
demanding a definition for the equivalent of a linear operator. We call such a thing a stuff
operator . There will be a category of these, called StuffOps, with higher-dimensional
algebraic structure similar to that of the algebra of linear operators on a Hilbert space,
with an action on the category StuffTypes.

We need to describe this action: a stuff operator T , given a stuff type Ψ : X →
FinSet0, ought to produce another stuff type T (Ψ) : T (X) → FinSet0, using natural
category-theoretic operations, in a way that reflects the fact that T is the categorified
equivalent of a linear operator on a Hilbert space of states. One way to motivate our
approach to constructing this is to remember that for a Hilbert space H , a linear operator
T can be thought of as an element of the tensor product H ⊗H∗ of H with its dual, and
given a basis of H , T can be represented as a matrix (a two-index tensor). To put this
into the same framework as the stuff type Ψ, recall that this can be seen as a vector in a
space of states3, and the equivalent of resolving it in a basis arises by taking the preimages
of elements of FinSet0 as the components in the basis. In this setting, applying T to
a vector v (using the H∗ in the description in terms of H ⊗ H∗) amounts to applying
covectors in any decomposition of T to v, which (since H ∼= H∗) amounts to taking the
inner product of v with a vector in H . Since we have already seen a natural definition of
inner product for stuff types, we will use a similar construction.

A stuff type Ψ : X → FinSet0 can be variously seen as the projection map of a
groupoid-bundle on finite sets, and also as a way of picking out an index for some com-
ponent of a vector in a categorified equivalent of a Hilbert space. A stuff operator should
have two such maps, since it is to correspond to a linear operator. We should think of
this as “resolving T in the same basis”.

The analogy with matrices suggests that T acts on stuff types in the same way as the
inner product, just as matrices act on vectors (resolved in a basis) by way of the inner
product in each index. So indeed, TΨ is defined as a weak pullback:

5.4. Definition. A stuff operator is a groupoid T with two projection maps into
FinSet0:

T
p1



���
���

���
�

p2

�����
���

���
�

FinSet0 FinSet0

(49)

We have seen the internal picture of objects of Ψ in figure 4, so we next look at a
similar description for T . An object t ∈ T is somewhat similar to an object of Ψ, but this
object has not just one underlying set, but two possibly distinct ones, which we call p1(t)

3Strictly speaking, the “ground field” here is not� but rather the setting for cardinalities of groupoids,
�+, so we do not yet have a vector space. When we introduce M -stuff and get cardinalities in something
like �, we will really have a vector space.



CATEGORIFIED ALGEBRA AND QUANTUM MECHANICS 821

and p2(t), which in general need not have the same cardinality. We can think of this as
two sets sharing a common label, which we may think of as a “process” connecting p1(t)
with p2(t), where the label t contains stuff associated to this transition, shown generally
in (50) and illustrated in figure 10.

• · · · • ��������tp1

��
p2

�� ◦ · · · ◦ (50)

t

Figure 10: Object in the Groupoid of Stuff Operator T

We are not yet at the point of recovering Feynman diagrams, but we can already see
an object which contains some sort of label for a process connecting an n-element set of
“quanta” (in the convention we have already applied to the harmonic oscillator) to an
m-element set of “quanta”. First we should see how these act like linear operators.

We can define an algebraic structure of stuff operators, when we recall how the the
categorical product and coproduct work for groupoids X and Y in Gpd. The coproduct
X + Y is just the direct sum of groupoids, whose objects and morphisms are all objects
and morphisms of either X or Y (in a way which distinguishes where they came from).
Their categorical product has objects and morphisms both consisting of ordered pairs of
those from X and Y. We have seen that these operations are compatible with groupoid
cardinalities.

5.5. Definition. Given two stuff operators T , T ′ with projection operators p1, p2 and
p′1, p

′
2, respectively, the sum has groupoid T + T ′ whose projection functors pi + p′i act

like pi or p′i as appropriate. The product of T by a groupoid G, GT has objects is
the product groupoid G× T (with projection operators acting on the T component).

These naturally have the properties that (T+T ′)Ψ ∼= TΨ+T ′Ψ and (GT )Ψ ∼= G(TΨ)
in the sense of the sum and “scalar product” of stuff types, and thus the corresponding
facts hold “on the nose” (i.e. as equations) for cardinalities. On the other hand, if we think
of the stuff operators as the categorified equivalent of infinite matrices (with projection
operators the equivalent of indexing), we can think of these as the sum and scalar product
for matrices, defining the linear structure of the algebra of operators. We leave the proof
of this to the interested reader.

More interesting is its internal multiplication, and the action on our categorified
Hilbert space, the 2-category StuffTypes.



822 JEFFREY MORTON

5.6. Definition. There is also an action of T on a stuff type Ψ giving a stuff type
TΨ defined as a weak pullback:

TΨ
PT



����������
PX

������������
PT ;p1

��

T

p1


���

���
���

�

p2
�����

���
���

��� α
∼

X

Ψ

���
���

���
�

FinSet0 FinSet0

(51)

and a composite of T and T ′ defined similarly:

TT ′
PT



���
����

��� P ′
T

�����
���

���
�

PT ;p1

��

P ′
T ;p′2

��

T

p1


���

���
��

��

p2
����

���
��

���
��

α
∼

T ′

p′1

���
���

���
�

p′2 �����
���

���
�

FinSet0 FinSet0 FinSet0

(52)

Here, we note that (TT ′)Ψ ∼= T (T ′Ψ), which can be seen by considering the isomor-
phisms α of the weak pullbacks in the diagrams for these two constructs.

Now, the groupoid TΨ resulting from the action of T naturally becomes a stuff type
(a groupoid over FinSet0) by composition of the projections PT ; p2 = p2 ◦ PT , where PT

is the projection onto T from TΨ, which is the pullback of the functor Ψ from X onto
FinSet0 along the projection P from T to the same copy of FinSet0. To understand this
construction better, we should see what the objects and morphisms of the groupoid TΨ
are like internally.

The stuff type TΨ is a weak pullback of T and Ψ, over the copy of FinSet0 which is
the target of Ψ : X → FinSet0, and also of p2 : T → FinSet0. Its objects will be pairs
of objects x ∈ X and t ∈ T together with isomorphisms αx,t : Ψ(x) → p2(t). These are
isomorphisms of the underlying sets, so in particular they only exist if these sets have the
same cardinality. Thus, an object of TΨ looks like an object of T connected by a bijection
of underlying sets to an object of Ψ (using the “right-hand” underlying set of T ). The
general form is shown in (53) and an example is illustrated in figure 11.

• · · · • ��������tp1
��

p2
�� ◦ · · · ◦

◦ · · · ◦
αx,t

��

��������x
Ψ

��

(53)

Since this is to be an object of TΨ, we should see it as a stuff type in its own right, over
the copy of FinSet0 mapped to under the projection p1 from T . That is, everything in
this picture - the t object, x object, and the specific bijection αx,t between the appropriate
underlying sets - can be regarded as “TΨ-stuff” attached to the underlying set p1(t).



CATEGORIFIED ALGEBRA AND QUANTUM MECHANICS 823

p
2

p
1

t

xΨ

Figure 11: Object of Stuff Type TΨ

Now as for the composite of T and T ′, similar reasoning holds except that we have
another stuff operator T ′ in place of Ψ, so the general form of an object of TT ′ is as shown
in (54), and an example is illustrated in figure 12.

• · · · • ��������tp1
��

p2
�� ◦ · · · ◦

◦ · · · ◦
αt,t′

��

��������t′
p′1

��
p′2 �� � · · · �

(54)

1
p

2
p

t

p’
1

t’
2

p’

Figure 12: Object of Stuff Type TT ′

The construction we have described for stuff operators is an example of a “span”:
in particular, as morphisms from FinSet0 to itself. The composition we have described
above, as well as being analogous to matrix multiplication of linear operators, satisfies the
axioms for composition of morphisms. But in fact we have seen that these operators also
have an action on the category StuffTypes, derived from the fact that it is a category



824 JEFFREY MORTON

over FinSet0. In fact, we can interpret stuff operators as endofunctors of StuffTypes,
just as linear operators are endofunctions of a vector space. We describe this in more
detail in appendix B.1.

5.7. Feynman Diagrams and Stuff Operators. From a quantum mechanical point
of view, we are often interested in finding inner products such as 〈Φ, TΨ〉, and finding
these inner products can be done by means of Feynman diagrams. That is, in QM, the
“transition amplitude” between states Φ and TΨ is a sum of amplitudes associated to
Feynman diagrams, each showing one possible way of getting from state Φ to state Ψ by
process T . We will show how this idea can be recovered in the categorified setting, and
in fact is given by exactly the algebraic ideas we have defined. In general, the groupoid
〈Φ, TΨ〉 has objects as shown in figure 13

1
p

2
p

t

Ψ x 2

Φ X 1

αx1,t

αt,x2

Figure 13: Object of Groupoid 〈Ψ, TΦ〉

We will see that we can think of these as Feynman diagrams, and finding the sum over
their amplitudes is exactly the process of taking the groupoid cardinality of this inner
product of stuff types - that is, a sum over Feynman diagrams of some “amplitudes”.
At the moment, these amplitudes are all positive reals, rather than complex numbers
as is usual in quantum mechanics. When we discuss M-stuff types in section 6, and in
particular the case M = U(1) in section 6.17, we will see how this can be resolved by
introducing the quantum mechanical notion of phase.

Since we are motivated here by the use of the algebra of stuff types as a categorification
of the Weyl algebra, we examine the stuff operators A and A∗, the annihilation and
creation operators. The annihilation operator A can be realized in this form, with T =
FinSet0 with two projection functors to FinSet0, one of which is the identity, the other
of which is the functor whose action on objects is to take a set S and produce S + {�}:

FinSet0
1←−FinSet0

+{�}−→FinSet0 (55)

To see that this reduces to our previous definition for A (definition 3.7) on stuff types
which happen to be structure types, first recall that it said an AF -structure on a set S is



CATEGORIFIED ALGEBRA AND QUANTUM MECHANICS 825

an F -structure on the set S ∪ {�}. If our stuff type Ψ happens to be a structure type F
whose groupoid is just a set of F -structured finite sets, then we have:

AS
P1

�������������
P2

������������
AF=P1

��

FinSet0

1�������������

+{�} ��											
��

α
�� S

F

















FinSet0 FinSet0

(56)

Tracing the map in the new type AF from AS to FinSet0, we note that we can pass
through S so that AF = P2;α, in which case we see that since α must make the lower
triangle commute so that α; +{�} = F we get that the preimage of a given finite set S
under AF must correspond to the preimage of S + {�} under F . So indeed, putting an
AF -structure on S amounts to putting an F -structure on S + {�}.

Similar reasoning shows that A∗, the adjoint of A, can be realized in the same way,
with groupoid T ∗ = FinSet0 but with the projections reversed:

FinSet0
+{�}←−FinSet0

1−→FinSet0 (57)

Moreover, this acts like A∗, so that in the event that Ψ = F is a structure type, a A∗F -
structure on a finite set S amounts to choosing an element of S and putting an F structure
on what remains.

From the parallel with Fock space, one operator we should want to define is the field
operator A + A∗. As a stuff operator, this behaves as one might expect: the groupoid
in the stuff operator is just the groupoid sum T + T ∗ (i.e. two copies of FinSet0), and
the projections just act as the projections on T and T ∗ when applied to objects and
morphisms from each of the two copies. So, the objects of the groupoid Φ, following the
pattern we illustrated in (50), look like either objects of A or of A∗, as shown in figure 14.

A* Aor

Figure 14: Example Objects in the Categorified Field Operator

In our categorified setting, this is written nearly the same way,
〈
Zn,ΦkZm

〉
, but we

now have an interpretation of the inner product as a groupoid over FinSet0, obtained by



826 JEFFREY MORTON

a pullback - and indeed, of the stuff operator Φk as a composite of stuff operators, etc.
Now, this Φk has objects which are chains of objects of the form in figure 14, composed
as in figure 12. We can draw these in various ways (different drawing styles form objects
in equivalent categories), but for compactness, we will draw these in a style which omits
the “internal” bijections of the composite type, and also the bijections from the A and A∗

objects of Φ to FinSet0. Thus, each internal finite set would have previously been drawn
three times, with bijections between them. This compact style is illustrated in figure
15, which shows an object of Φ4. This one shows an object made from one annihilation
and three creation operators, in that order. All other permutations of four Φ-objects are
possible also.

B

A

C

D

Figure 15: Example Object From Φ4

For the sake of further compactness (and another drawing style depicting an equivalent
category), note that what we really have here is an operation in which k quanta of energy
either appear or disappear, and do so in a definite order. We could really draw this
with just a single “interaction” vertex, incident with k strands (all other strands passing
straight through the diagram, matching up a quantum in the top with a quantum in the
bottom). These incidences would have to be labelled with a total ordering, so that the
object shown in figure 15 would be drawn as in figure 16.

There is an action of the permutation group Sk on these objects, changing the order
in which we encounter objects from A and A∗ as we pass through Φk. That is, for every
object we get whose diagram has one order labelling the incidences, we will get objects
with all other possible orders exactly once through the action of the permutation group
Sk, also known as k!. So if we want to omit this labelling for clarity in the drawings, we can
do so as long as we remember that this means we are really drawing objects of the weak
quotient Φk//Sk (weak quotients are defined in definition 4.9). The objects of this weak
quotient are isomorphism classes of diagrams under permutations of labellings. These
permutations give the natural isomorphisms in the definition of weak quotient by taking
any labelled diagram to the same diagram with permuted labels. In this new category,
the cardinality of the groupoid is thus scaled by 1

k!
. We also need to keep in mind that an



CATEGORIFIED ALGEBRA AND QUANTUM MECHANICS 827

A

CD

B

Figure 16: Example Object From Φ4 (Alternate Style)

unlabelled diagram really stands in for possibly several different inequivalent labellings of
the incidences by distinct orderings.

All this is really a notational convenience: really, to calculate transition amplitude
between states ψ and φ for which we have a description as stuff types Ψ and Φ, when we put
the system through some process t which we describe as a stuff operator T , we only need
to find the groupoid cardinality | 〈Ψ, TΦ〉 |. Simplifying diagrams and finding convenient
conventions for labelling them is really a way for getting a calculational convenience out
of diagrams like figure 17, which shows an object from the groupoid Φ4//S4.

Figure 17: Example Object in Φ4//S4

Now, diagrams like this give vertices with k incidences. Taking polynomials in the
operators which give such diagrams gives operators which can be interpreted in terms of
diagrams having several such vertices. Such a diagram is shown in figure 18 - note that
here we continue the practice of omitting to draw the internal finite sets in the composite
stuff operator.

Given two stuff types Ψ1 : X1 → FinSet0 and Ψ2 : X2 → FinSet0, we can take
the inner product 〈Ψ1,Φ

nΨ2〉. This applies this operator to Ψ2 to give compound objects
involving objects of Φn and of X2. Taking the inner product with Ψ1 gives objects as
illustrated in figure 18. The groupoid cardinality of this inner product amounts to a sum
over all such diagrams, each with a weight related to the size of the symmetry group of
the diagram.

5.8. Example. We can use the above to show the categorical meaning of the usual
calculation of the expectation value of a power of the field operator. In particular, suppose



828 JEFFREY MORTON

Ψ2

x2

Ψ1

x1

Figure 18: An Object in 〈Ψ2, (Φ
3//S3)

6Ψ1〉

we want to calculate
〈
1, φ6

6!
1
〉
, the vacuum expectation value of the 6th power of the

(normalized) field operator.
To do this, we want to take a sum over objects which are equivalent to ways of matching

two empty sets with diagrams like figure 17, containing one vertex of valence 6. We begin
with the case where incidences are labelled (as in figure 16). Since the source and target
sets are empty, all edges must form loops touching the vertex at both ends. The number
of such diagrams is (

(
6
2

)(
4
2

)(
2
2

)
)/3! = 15 (choosing the endpoints of three edges, without

order). These give the objects of a groupoid one of which is shown in figure 19.

C
DE

F

A
B

Figure 19: Example Object in 〈1,Φ6//S61〉

The isomorphisms of this groupoid are given by permutations of the labels. Since this
permutation group is S6 with 720 elements, the groupoid cardinality should be 15

720
= 1

48
.

The automorphism group of any such diagram is of size 48: there are 6 ways to map
the set of loops to themselves, each with the same orientation, or reversed orientation.
Equivalently, we can think of the objects of the groupoid as diagrams like this, but without
labels. In this case, there is only one such diagram, with the automorphism group as just

described. So we have
〈
1, φ6

6!
1
〉

= | 〈1,Φ5//S61〉 | = 1
48

.



CATEGORIFIED ALGEBRA AND QUANTUM MECHANICS 829

Now, the transition amplitude between two states in a quantum harmonic oscillator
which undergoes an interaction described by a given operator in the Weyl algebra can be
calculated, in part using a sum over Feynman diagrams. We have now seen how, in this
categorified setting, we can find a direct combinatorial interpretation for this fact.

Unfortunately, some features of the diagrams used in quantum mechanics are missing
from this interpretation. In particular, we do not have any way to express the notion of
“phase”, or operators involving propagators without interactions. In quantum mechanics,
states exist in superpositions - linear combinations - having complex coefficients. Non-
interacting propagation in time involves the rotation of those coefficients by a phase - that
is, a unit complex number. Thus, both � and the group U(1) of phases are important.
We will see in section 6 how to incorporate this into our combinatorial picture. As we
shall see, this involves an explicit decomposition of complex numbers into amplitudes and
phases.

6. M -Stuff Types And Quantum Mechanics

We have described various entities under the heading types, namely stuff, structure, and
property types, and hinted at the possibility that this sequence of classifications will
continue as we move into the setting of increasingly higher-dimensional categories. For
physical purposes, though, we are still missing some essential properties which we would
like a categorified version of quantum mechanics to have. In particular, all of our cardi-
nalities, and hence coefficients of our types, lie in rigs, rather than rings - they can be
added and multiplied, but not subtracted and divided. It is possible to handle this in
the abstract setting of structure types by defining virtual structure types as equivalence
classes of formal differences of structure types (and similarly for stuff types) to make sub-
traction possible (see [3]). For quantum mechanics, however, the coefficients of the power
series which represent states are complex numbers, and the physical significance of phase
is of paramount importance, so we will still need something more. So for our purposes, it
makes more sense to treat the question in a different way.

6.1. M-Stuff Types. Now we will see an analog of a stuff type which can carry a
phase - or more generally, a weighting of some kind. To reproduce some of the features
of quantum mechanics which don’t appear in the picture of stuff types as “categorified
states”, we should consider what is missing. First, states of a quantum system should
form a Hilbert space, and in particular a vector space. Since we already have something
like an inner product, what is missing is the ability to take linear combinations of states.
For this, they need to have a notion of scalar product and of addition. If we allow the
categorified states to carry a weight, this weight can play the role of a scalar multiple,
but these weights need to form a monoid, which we think of as multiplicative.

This is the motivation for defining a notion of “M-Stuff Types” for some monoid
M , and in particular M = U(1), the group of phases. This is the case which is most
interesting for quantum mechanics. We’ll do this in general, since the construction does
not require M = U(1).



830 JEFFREY MORTON

6.1.1. M-Sets. Before we can talk about M-Stuff Types, we should start with a more
basic definition:

6.2. Definition. If M is a monoid, Set/M is the category of “sets over M”4, or
“sets/M”. Its objects are pairs (S, f), consisting of a set S ∈ Set and a function
f : S → M . Morphisms between two sets/M f1 : S1 → M and f2 : S2 → M are
maps g : S1 → S2 in Set giving commuting triangles:

S1

f1

��

g �� S2

f2����
��

��
��

M

(58)

By abuse of notation, we will sometimes call the object just S or just f if the meaning
is clear by context. A similar definition can be made for FinSet/M or FinSet0/M,
where the sets S lie in FinSet or FinSet0.

Note that for each set S of cardinality n, the set of all sets/M with “overlying set”
S is just MS , equivalent to Mn. The morphisms which make this into an over category
provide some extra structure, however.

We also note that this definition is similar to that for a Z0-coloured set for a groupoid
Z0 - in fact, the image one should have of an M-coloured set is just the same as figure 2.
One difference is that in this case, the picture we have for morphisms is different from that
for Z0-coloured sets: for M-Sets, morphisms are just set maps which are compatible with
the labelling. We could, of course, define a weak over category of sets “weakly over M”,
as we did with groupoid-coloured sets, for which strands of morphisms are also labelled
by elements of M , but as we shall see, this is not what we want to do. One result of this is
that we lose some of the desirable features of the category of sets, while retaining others.
For example, we have the following:

6.3. Theorem. Set/M is a category with all colimits (in particular, it has coproducts).

Proof. First, consider any diagram in Set/M, and take the underlying diagram in Set.
Since Set is a cocomplete category, every diagram, and in particular this one, has a colimit
S. The diagram in Set/M has a colimit provided we can construct a map from S to M
which is compatible with the set-maps from the objects of the diagram in Set/M. For
any given element in S, every element taken to it by one of the maps in Set must have the
same image in M under the map for the corresponding object in Set/M, since if there
is more than one, they must be taken to some common element by maps in the diagram.
Thus, we can consistently define f(s) for any element in the colimit to be equal to the
value for any preimage, and so all the maps in Set are compatible with the function into
M , and the colimit in Set becomes a colimit in Set/M.

4See appendix B for comments about such “over categories”. The usual definition applies here by
treating M as a set of elements, though we get some extra structure from the monoidal operation on M .



CATEGORIFIED ALGEBRA AND QUANTUM MECHANICS 831

Coproducts in Set/M can be interpreted as direct sums of sets/M - and this makes it
possible to define a cardinality for sets/M . We note that since M has only one monoidal
operation, we could consider two interesting kinds of cardinality, depending on whether
we want this operation to look like addition or multiplication.

For our purposes, it is better to think of M as a multiplicative monoid, since we will
later want to take M = U(1), thought of as a subgroup of �. So we would like to have
a notion of cardinality which gets along with multiplication in an analogous way. We
should define a notion of cardinality which reduces to set cardinality when we think of
M as multiplicative. Then we will find a “tensor product” compatible with this notion of
cardinality.

6.4. Definition. The cardinality of a set/M , S
f→M , is the element of �⊗M given

by

|S| =
∑
s∈S

f(s) (59)

where the sum is taken in �.

This cardinality operator is a kind of decategorification: it takes a set S labelled with
values in M , and gives a formal sum of values in M , each taken the number of times
it appears in S. Note that this is again not compatible with the cartesian product in
Set/M, by the same argument as for the additive cardinality. Instead, we should take
the following product:

6.5. Definition. The tensor product of two sets/M S
f→M and S ′ f ′→M is a set/M

S ⊗ S ′ has underlying set S × S ′ (the cartesian product of underlying sets in Set). The
map (f ⊗ f ′) : S × S ′ → M is given by (f ⊗ f ′)(s, s′) = f(s) · f ′(s′).

We remark that this is a well known tensor product (monoidal operation) for certain
over categories - namely those consisting of objects over M where M is a monoid object
in the original (monoidal) category. In this case, the original monoidal category is Set,
with the monoidal operation being just the Cartesian product.

6.6. Theorem. The tensor product of sets/M satisfies |S ⊗ S ′| = |S| × |S ′|. When M is
commutative, the tensor product is symmetric.

Proof.

|S ⊗ S ′| =
∑

(s,s′)∈S×S′
f(s)f ′(s′) (60)

=
(∑

s∈S

f(s)
)(∑

s′∈S′
f(s′)

)
= |S| × |S ′|

When M is commutative, there is an obvious isomorphism between S × S ′ and S ′ × S
taking (s, s′) to (s′, s); the labelling is unchanged, since f(s)f ′(s′) = f ′(s′)f(s).



832 JEFFREY MORTON

These constructions for sets can be extended to groupoids, where cardinalities start
to look like complex numbers.

6.6.1. M-Groupoids. We would like to extend these results about sets/M to a notion of
M-groupoids and their cardinalities which is compatible with cardinalities of sets/M and
of ordinary groupoids in the suitable special cases. Note that the notation is different,
simply because a “groupoid over M” suggests the notion of a groupoid with a functor into
M thought of as a category with one object. Rather, we want to suggest a groupoid with
objects labelled by elements of M . One way to see the correct approach to M-groupoids
is to take advantage of our existing idea of sets/M and a connection we already know
between sets and groupoids. This is the concept of a groupoid-coloured set. We define
groupoid-coloured sets/M by analogy with these. Recall from 4.4.1 that a set can be seen
as groupoid whose objects are the elements of the set, and with only identity morphisms5.
Then we have:

6.7. Definition. Given a groupoid Z0, a Z0-coloured set/M is a set/M S equipped
with a colouring map c : S → Z0. Maps of Z0-coloured sets/M are set/M bijections
σ : S → S ′ together with, for each x ∈ S), a morphism fx ∈ hom(c(x), c′(σ(x)). That is,

S
σ ��

c
��

S ′

c′
��

Z0 {fx}
�� Z0

(61)

This is essentially the same definition as appeared in 4.4.1, but we note that now σ
is a bijection of sets/M - that is, it is a set bijection which is compatible with the M-
labelling. But notice that groupoid-coloured sets/M are just sets with two maps, one into
a groupoid, and one into a monoid:

S
c

����
��

��
�

f

���
��

��
��

�

Z0 M

(62)

Since the elements of this Z0-coloured set/M are just elements of S labelled by both an
object of Z0 and an element of M , we would like to be able to think of this as a set
labelled by objects of an “M-groupoid”, which would look like objects of the groupoid
Z0 labelled by element of M . A consideration of what morphisms of Z0-coloured sets/M
must be reveals how to define this:

6.8. Definition. Given a monoid M , an M-groupoid is a groupoid G with a functor f
from G into the set M regarded as a groupoid. The cardinality of an M-groupoid GM is

5Since we are already thinking of sets as special kinds of categories here, this raises the question of
what happens if we categorify M . We return to this in section 7.1.2.



CATEGORIFIED ALGEBRA AND QUANTUM MECHANICS 833

an element of �+ ⊗M , where �+ and M are thought of as multiplicative monoids. The
cardinality of GM is given by the formal sum:

|GM | =
∑

[x]∈GM

f(x)

|Aut(x)| (63)

6.9. Remark. Note that �+⊗M consists of all formal �+-linear sums of formal products
r⊗m for r ∈ �+ and m ∈M , subject to the distributive law (r+r′)⊗m = r⊗m+r′⊗m.
It becomes a rig with the obvious multiplication (r ⊗m)(r′ ⊗m′) = (rr′ ⊗mm′).

Since we are thinking of M as a groupoid with only identity morphisms, functoriality
of f means that for any a and b in G and g ∈ hom(a, b), we have f ◦ g = f . That is, the
following diagram commutes:

a
g ��

f
��

b

f��





M

(64)

We see also that f(x) is well defined for elements of any given isomorphism, since any two
objects with an isomorphism between them will be sent under f to the same element of
M . It should be clear that in the case where the “overlying” groupoid of an M-groupoid
happens to be a set (i.e. groupoid with only trivial morphisms), this reduces to the
definition of a set/M and its cardinality. In the case where M is the trivial groupoid, this
cardinality reduces to the usual groupoid cardinality.

Given two M-groupoids, we define their product as with sets/M :

6.10. Definition. The tensor product of two M-groupoids X
f→M and X ′ f ′→M is

an M-groupoid X ⊗X ′ which has underlying groupoid X ×X ′ (the cartesian product of
underlying groupoids in Gpd). The map (f⊗f ′) : X×X ′ →M is given by (f⊗f ′)(x, x′) =
f(x) · f ′(x′).

As with sets/M , this product gets along with M-groupoid cardinalities. The proof is
essentially the same, except that cardinalities involve factors of |Aut(x)|. This depends
on the fact that the automorphism group of an object (x, x′) in X×X ′ is just the product
of the automorphism groups of x and x′.

6.10.1. M-Stuff Types and their Cardinalities. We begin with a definition:

6.11. Definition. An M-stuff type is an M-groupoid X
f→M equipped with a functor

Ψ : X→ FinSet0, where X ∈ Gpd.

Typically, we will just think of X as an object of MGpd and blur the details, but
this definition is what we always mean. So as with stuff types, we may think of M-stuff
types as functors from sets/M of “Ψ-stuffed finite sets” to their underlying finite sets. In
the case where Ψ is faithful we can say it is an M-structure type. Note that we are still
thinking of X as lying over FinSet0, not FinSet0/M - we will return to this shortly.



834 JEFFREY MORTON

Since stuff types (and M-stuff types) can be multiplied by groupoids, whose cardi-
nalities lie in �+, this action by M gives another version of multiplication. This will be
particularly interesting when we consider M = U(1) in section 6.17, but first we should
define the cardinality of an M-stuff type:

6.12. Definition. The cardinality of an M-stuff type Ψ : X→ FinSet0 is

|Ψ| =
∑

n∈FinSet0

|Ψn|zn (65)

where |Ψn| is now the M-groupoid cardinality of the preimage of n under Ψ.

(As with a stuff type, this definition requires us to take FinSet0 to be skeletal to be
well defined - or else to consider only the essential preimage. We will do the former.) This
cardinality is an element of (�+ ⊗M)[[z]]: a formal power series in z whose coefficients
are formal combinations of pairs of groupoid cardinalities and elements of M .

6.13. Theorem. There are natural left and right actions of the monoid M on the M-stuff
type Ψ. If M is abelian, these are the same action, which satisfies

|mΨ|(z) = m|Ψ|(z) (66)

Proof. We define the map (m,Ψ) �→ mΨ, where mΨ : mX → FinSet0 acts as follows.
If x ∈ X is an object of X whose weight is f(x), then the corresponding element mx in
mX has weight m · f(x). Then mΨ(mx) = Ψ(x). This is a left action on stuff types
because it is a left action on M-groupoids together with a compatible map to FinSet0.
The right action of M is defined similarly.

If M is abelian, a left and right action are the same, and the result follows by direct
calculation.

6.13.1. M-Stuff Type Inner Product and M-Stuff Operators. Once we de-
fined sets/M and hence M-groupoids, it was possible to define M-stuff types simply by
substituting these for groupoids in the original definition of stuff types. The only proper-
ties of FinSet0 which were used in the original construction of stuff types and operators
was that it should be a groupoid: groupoids X with one or two functors into it were
stuff types and operators respectively. Morphisms between the objects of a stuff type
were morphisms in X together with compatible bijections of sets (recall figure 5), but this
depended only on the fact that these were isomorphisms in the groupoid FinSet0. So, in
the same way, a morphism in the groupoid of an M-stuff type consists of a morphism in
its M-groupoid, together with a compatible bijection of underlying sets, as illustrated in
figure 20. Notice that the objects x and x′ are labelled by the same element, m1 ∈ M ,
since f is an isomorphism in X.

Now, the inner product of stuff types Ψ : X → FinSet0 and Φ : Y → FinSet0 was
defined to be a weak pullback, as described in (43). The same definition will apply if we
let these be M-stuff types, allowing X and Y to be M-groupoids.



CATEGORIFIED ALGEBRA AND QUANTUM MECHANICS 835

Ψ(f)

Ψ x m1

f

Ψ 1mx’

Figure 20: A Morphism in the Groupoid of an M-Stuff Type

So we have a weak pullback of Ψ along Φ, which gives a groupoid 〈Ψ,Φ〉, and can
define canonical projection maps to X and Y. The groupoid is the fibrewise product
X ×FinSet0 Y, where we must use the tensor product of M-groupoids rather than the
cartesian product of groupoids to assign elements of M to its objects.

6.14. Definition. The given two M-stuff-types Ψ : X → FinSet0, and Φ : Y →
FinSet0, the M-groupoid 〈Ψ,Φ〉 = X ⊗FinSet0 Y is the weak pullback of Ψ and Φ over
FinSet0. It has objects which are pairs (x, y) ∈ X ⊗ Y equipped with an isomorphism
α(x,y) : Ψ(x)→̃Φ(y). A morphism in 〈Ψ,Φ〉 is a morphism in X⊗Y, say (f, g) : (x, y)→
(x′, y′), such that

Ψ(x)
Ψ(f) ��

αx,y

��

Ψ(x′)

αx′,y′
��

Φ(y)
Φ(g)

�� Φ(y′)

(67)

commutes. That is, αx′,y′ ◦Ψ(f) = Φ(g) ◦ αx,y.

An object in the inner product groupoid looks like figure 21, where mi are elements
of M . This figure is analogous to the previous inner product (figure 8). Note that, in
contrast to the case in figure 20, the objects x ∈ X and y ∈ Y are not in the same
groupoid, hence not related by any morphism, so there is no requirement that m1 and
m2 should be equal. The object illustrated is labelled be the element m1 ·m2 ∈ M (as
highlighted).

αx,y

Φ y m2

Ψ x m1

Figure 21: An Object In the Inner Product of two M-Stuff Types

Similar changes apply to the other constructions defined using the weak pullback, so
that we have nearly identical categorical diagrams defining morphisms in the inner prod-



836 JEFFREY MORTON

uct, as well as the action of an M-stuff operator on an M-stuff type and the composition
of two M-stuff operators, as in definition 5.6. The sole change at this level is the replace-
ment of groupoids with M-groupoids, and thus in figures 11 and 12, we have labels in M
on every groupoid object, preserved under every isomorphism.

6.15. Definition. An M-stuff operator is an M-groupoid T with two functors from
the underlying groupoid of T into FinSet0:

T
p1



���
���

���
�

p2

�����
���

���
�

FinSet0 FinSet0

(68)

It acts on an M-stuff type to give another M-stuff type by weak pullback over one copy of
FinSet0.

Just as with the former constructions, we have:

6.16. Theorem. If Ψ and Φ are two M-stuff types, then | 〈Ψ,Φ〉 | = 〈|Ψ|, |Φ|〉.
Proof. At the level of the underlying sets and groupoids, every product over a finite
set in the (skeletal version of) FinSet0 in the fibrewise product looks just the same as
for regular stuff types. Each of these products is a product of M-groupoids, which are
compatible with cardinality. So the result holds.

6.17. Quantum Mechanics: M = U(1). As remarked earlier, the notion of a phase is
crucial in quantum mechanics. Stuff types, and in particular stuff operators and the inner
product of stuff types, proved in the last section to have a close connection to entities
which resemble Feynman diagrams, but the only notion of cardinality we had for these
was groupoid cardinality, which yields positive real values. We would like to be able to do
more, since in quantum mechanics, these diagrams should have not a real cardinality, but
a complex amplitude, which has both a magnitude and a phase. This leads us to the idea
of U(1)-stuff types, since U(1) is the group of phases, corresponding to the unit circle in
�.

6.17.1. U(1)-Stuff Types. From here on, we take M = U(1) - an abelian monoid,
and in fact an abelian group - we know that U(1)-stuff types exist, and that they have
cardinalities in (�+ ⊗ U(1))[[z]], which has the obvious homomorphism into �[[z]]. As we
have seen, the cardinalities of sets/M for an abelian monoid M lie in M , which we can
think of ; cardinalities for M-groupoids lie in �+ ⊗M ; cardinalities for M-stuff types lie
in (�+ ⊗M)[[z]]. When M = U(1), this gives �+ ⊗ U(1), which has a homomorphism
onto �

h : �+ ⊗ U(1)→ � (69)

We should note that this description of � in terms of �+ ⊗ U(1) explicitly sepa-
rates complex numbers into a magnitude and a phase, and while it has a multiplication
resembling that for �, but it fails to capture the addition, which is formal. However,



CATEGORIFIED ALGEBRA AND QUANTUM MECHANICS 837

the homomorphism h just imposes the relations which define complex addition. The
derived rig homomorphism h : (�+⊗U(1))[[z]] → �[[z]] behaves similarly. This homomor-
phism loses information, just as the process of taking cardinalities does, so in fact, when
M = U(1), we can define a new cardinality operator:

6.18. Definition. If X is a U(1)-groupoid and Ψ : X→ FinSet0 a U(1)-stuff type, the
complex cardinality of Ψ is h applied to the usual M-stuff-type cardinality:

|Ψ|� = h

(∑
S∈�
|Ψn|zn

)
=
∑
S∈�

h|Ψn|zn (70)

where |Ψn| is the usual M-stuff cardinality, h is the above homomorphism, and addition
is in �.

The complex cardinality is a map which takes a U(1)-stuff type and yields a power
series in �[[z]], namely Fock space. When dealing with U(1)-stuff types, we will write |Ψ|�
as |Ψ|, unless otherwise noted.

6.19. Remark. Note that a type which consists of two states over U(1)-sets of the same
set cardinality but opposite phase will have a cardinality in (�+⊗U(1))[[z]] which contains
a formal linear combination which is in the kernel of h. This is the critical fact that when
we represent states in Fock space, there can be interference between states with opposite
phases. In particular, the amplitude for a (categorified) state containing only those two
objects will be zero.

6.19.1. Conjugation and The Inner Product. There is a property of U(1)-stuff
types which is not generally shared by M-stuff types for arbitrary M , resulting from the
fact that it is an Abelian group. This follows from the fact that there is a nontrivial monoid
isomorphism between U(1) and itself, taking each element of U(1) to its multiplicative
inverse. There will be such an isomorphism whenever M is an Abelian group. Viewing
U(1) as the unit complex numbers, however, allows us to see this as complex conjugation,
which is how we will think of it. Thus, there is an operation special to U(1)-stuff types:

6.20. Definition. If X is a groupoid with U(1) labelling f : X → U(1), its conjugate
groupoid is the U(1) groupoid whose groupoid is labelling is f , given by f(x) = f(x). When
we write X for the U(1)-groupoid, we write the conjugate as X. If Ψ : X → FinSet0

is a U(1)-stuff type, its conjugate Ψ is the type which acts like Ψ on the objects of the
underlying groupoid of X.

This allows us to define a variant of the inner product which has the conjugate-linearity
of the usual complex inner product on Fock space. To distinguish this from the (bilinear)
inner product 〈Ψ,Φ〉, and call it 〈Ψ|Φ〉, also a more familiar notation to physicists:

6.21. Definition. The Fock space inner product is given by

〈Ψ|Φ〉 =
〈
Ψ,Φ

〉
(71)



838 JEFFREY MORTON

6.22. Theorem. The Fock space inner product, for U(1)-stuff types Ψ and Φ satisfies
| 〈Ψ|Φ〉 | = 〈|Ψ|||Φ|〉, giving the usual conjugate-linear inner product on �[[z]].

Proof.

| 〈Ψ|Φ〉 | =
∑
n∈�
| 〈Ψ|Φ〉n | (72)

=
∑
n∈�
|Ψn| · |Φn|

= 〈 |Ψ| | |Φ| 〉

So for U(1)-stuff types, we might want to define a new inner product given in terms
of the usual M-stuff type inner product as 〈Ψ|Φ〉. We will discuss briefly in section 7.1.1
how to interpret this seemingly arbitrary innovation.

It is worth noting here that the inner product between two states of a U(1)-stuff type
may be zero. Of course, this can happen with stuff types in any case: for instance, if Ψ
is the stuff type for which there is one object in X over every even-cardinality set, with
automorphism group the same as that of the set, and no others; and Φ is similar, but has
objects over odd-cardinality sets. These have cardinalities (generating functions) cosh(z)
and sinh(z) respectively. They are examples of what we called “property types” in section
4.23 - namely, these types can be interpreted as the properties “being an even set” and
“being an odd set”. These two stuff types are orthogonal in the sense that their inner
product is zero. Here, the interpretation is that there are no sets having both properties,
and so the stuff-type inner product is the empty groupoid.

However, the situation with U(1)-types is more subtle: we may have a nonempty
inner product groupoid whose U(1)-groupoid cardinality happens to be zero. This arises
because we may now have negative (and indeed complex) contributions to the sum giving
this cardinality. This is related to the quantum mechanical phenomenon of “destructive
interference” between states. In our formalism, this interference occurs when we apply
the homomorphism h : �+ ⊗ U(1)→ � and its derived variants.

We interpret the cardinality of the groupoid inner product as the usual inner product
in quantum-mechanics. This is the amplitude for finding our system in a given state Φ
after setting it up in a state Ψ, so this says this amplitude (and hence the probability) is
zero.

So the transition amplitudes between some of the “pure” (decategorified) states of
which ψ and φ are superpositions may be nonzero, but the phases with which they ap-
pear may allow the transition between ψ and φ to have zero amplitude. Thus, introducing
phases allows destructive interference which makes otherwise feasible transitions impos-
sible. We will see in the next section that this issue of phase is closely related to the
concept of time evolution in quantum mechanics, and the propagator.

In particular, in the harmonic oscillator, the phase of a state changes over time, with a
frequency proportional to the energy of that state. This is the effect of the free propagator



CATEGORIFIED ALGEBRA AND QUANTUM MECHANICS 839

for a system, and it is an operator. So we must describe U(1)-stuff operators next, and
this propagator in particular.

6.22.1. U(1)-Stuff Operators and Time. We have already noted that M-stuff oper-
ators act on M-stuff types just like ordinary stuff operators acting on stuff types, except
that the groupoids are now replaced by M-groupoids. The groupoid TΨ for an M-stuff
operator T and type Ψ then consists of pairs of objects t ∈ T and x ∈ X together with
a bijection of their underlying sets. As with the product groupoid, this object is labelled
by an element in M given by the product of the labels on t and x. This is well defined
when M is Abelian, as in the case when M = U(1).

One class of U(1)-stuff operators which is particularly relevant to quantum mechanics
is that of the time evolution operators. These are operators which, when applied to an
M-stuff type Ψ, produce an M-stuff type Ψ′ for which the M-labels on the elements of
the underlying sets have labels multiplied by a fixed phase in U(1). An example of an
object in such an operator, designated θ, is shown in figure 22. Here, we are showing the
operator ET , “time evolution by T”. We show an object which will evolve a state with
three quanta of energy. Here, eiT is the change of phase corresponding to time evolution
of a one-energy-quantum state by T . A state with three energy quanta changes phase by
e3iT .

1
p

2
p

3iTet

Figure 22: An Object in The U(1)-Stuff Operator ET

Any object in ET has two projections - each to an underlying set of the same size. This
corresponds to the fact that in unperturbed time evolution no interactions are occurring
which would change the energy level of the system. An object t in the groupoid of ET ,
lying over sets with k quanta of energy. There will be just one such object in ET for each
finite set. It is labelled by the phase by which a state with k quanta will change in time
T . The operator ET acts on any U(1)-stuff type (categorified state) to give state to which
this has evolved after a time T . An object of the resulting stuff type is shown in figure
23.

The object in the groupoid of ET Ψ is the entire ensemble associated to the finite set
p2(t). It includes the object t ∈ ET itself, as well as x ∈ X, their underlying sets and
the bijection αx,t between them, and also their associated labels e3iθ and eiθ1 . This is an
object in a product U(1)-groupoid: U(1)Gpd is a bicategory (or weak 2-category - see B)
with (weak) products, of which this is an example. This object in the product groupoid



840 JEFFREY MORTON

1
p

2
p

θ3t

x,tα
Ψ x 1θ

Figure 23: An Object in The U(1)-Stuff Type ET Ψ

ET ×X is labelled by the product of the labels on t and x, namely eiθ1e3iθ.

Suppose the U(1)-stuff type in question happens to just be Zk - the categorified state
with just k quanta of energy and no phase angle, or the property type “being a k-element
finite set labelled by 1 ∈ U(1)”. Then we get ET (Zk) ∼= (eiθZ)k, and the same fact holds
as an equation for the complex cardinalities. So the U(1)-cardinality of a k-element U(1)-
set changes by eikθ in time T , since each quantum picks up a phase rotation of eiθ in time
T . In particular, the phase of an object in a categorified state changes with a frequency
proportional to its energy (the size of the underlying set).

Choosing time units so that θ = T , we get a phase change of eiTk on a state of energy
k. We can write this as ET = eiTN , where N is the number operator. To prove this
equality at the categorified level (using a categorification of the exponential such as we
have already discussed) would require a fully categorified version of the complex numbers.
However, for now we can observe that this will be true at the level of cardinalities, and take
it as a definition. This arises physically from the Hamiltonian formulation of quantum
mechanics. We will not enter into this in detail, but note that the free Hamiltonian is
just H0 = N , the number operator in the exponent of the propagator, which measures
the energy of a state.

Since eiTN has exactly one object for each cardinality, the product groupoid eiTNΨ is
equivalent to the groupoid whose objects are the same as those of X, but whose U(1)-
labellings have been multiplied by phases eiTk, for an object with underlying set k. This
is the groupoid of the state Ψ, time-evolved by T . Note that time-evolution by −T will
be given by a similar operator E−T = e−iTN : all the object-labels are the inverses of those
of ET . We will return to this point in section 7.1.1.

In any case, using these propagators, and the U(1) version of inner product groupoids
whose objects resemble Feynman diagram for interactions, we recover a combinatorial
interpretation for many of the standard features of the quantum mechanics of the harmonic
oscillator.

6.22.2. Feynman Diagrams And Perturbation. Having found a categorification of
the quantum harmonic oscillator, we know that transition amplitudes such as

〈
ψ, p(φn

n!
)ψ′〉



CATEGORIFIED ALGEBRA AND QUANTUM MECHANICS 841

as a sum over Feynman diagrams. In physically realistic settings, this sort of amplitude
often arises when we consider the time-evolution of an oscillator which is perturbed. The
free oscillator evolves in time according to the operator ET = e−iTN described above.
The perturbed oscillator, on the other hand, describes a situation where the energy of the
oscillator is modified by another term: it only approximately matches the description of
the free oscillator we have been using. Physically, this represents a potential in which
the oscillator is moving. This means that the energy of the oscillator is changed by the
addition of an extra term V , which is some function of position, which we think of as a
potential energy, in addition to the energy in the oscillator proper.

In this case, time evolution can be calculated using the new energy, H = H0 + V . If
V is a function of position, then since the position is proportional to a + a∗ = φ, we have
V = f(φ), for some function f . We will consider the case where f = p is some polynomial
(though naturally any analytic function can be approximated this way to some degree,
so we can obtain successive approximations by taking a sequence of pk converging to f).
Since the energy for the free oscillator is already quadratic in position, we assume that f
has minimum degree at least 3. In this case, at the decategorified level, the amplitudes
for time evolution by time t associated to the Hamiltonian H = N + V , are:

〈
Zk|e−iTHZ l

〉
=

∞∑
n=0

∫
0≤t1≤···≤tn≤T

〈
Zk|e−i(T−tn)NV e−i(tn−tn−1)NV . . . V e−it1NZ l

〉
(73)

To avoid considering questions of convergence, we think of this purely as a statement
about power series in T . It would take us too far afield to derive this standard quantum-
mechanical fact in full detail, though background can be found in [4], and one derivation
of this equation in our setting can be found in [2]. However, we will point out here that it
follows from the fact that the evolution of a state is governed by the Schrödinger equation,
which amounts to:

∂tψ = −i(eitH0V e−itH0) (74)

Integrating this equation over time, we get

ψ(t) = −i
∫ t

0

(eitH0V e−itH0)ψ(t0)dt0 + ψ(0) (75)

and by repeated substitution of this expression for ψ(t) into the integral, we get the sum
of integrals which appear in the expression above. Taking the inner product with this
operator, we finally get the whole expression.

Ideally, we would like to derive this equation entirely at the categorified level. How-
ever this would require a more complete understanding of the categorified version of the
complex numbers than we have constructed here. To recover time evolution by a phase
from an expression of the form eitH0 , we would need to see that the result is indeed a
phase in U(1).

However, knowing that the equation holds at the decategorified level allows us to give
a simple interpretation for the formula.



842 JEFFREY MORTON

6.23. Theorem. The transition amplitude
〈
zk|e−iTHzl

〉
for the perturbed harmonic os-

cillator with potential V = f(φ) is given by a sum over all Feynman diagrams given as
composites of those associated with V , from a state with k quanta to one with l quanta.
The sum is of an integral over all labellings of the edges of the diagrams such that the
total phase along all paths is e−iT .

Proof. This transition amplitude is the U(1)-groupoid cardinality of the inner product〈
Zk|EiTHZ l

〉
, and given by 73. Consider the operator in that equation,

O = e−i(T−tn)NV e−i(tn−tn−1)NV . . . V e−it1N

We know that the terms e−i(ti−ti−1)N are just free propagators, which contribute a phase of
e−i() for each quantum of energy. We can think of these operators as having objects given
by any number of “strands”, one for each quantum, and each strand labelled by a phase
e−i(ti−ti−1), the total number giving the total phase change associated to that energy.

Now consider the U(1)-stuff operators V . Each of these operators has a groupoid
whose objects are naturally identified with Feynman diagrams of the sort associated with
V . These do not affect phases.

Composing the operators together, we get all possible composites of Feynman diagrams
of the type associated to V , connected by diagrams whose effect is to label strands by
phases associated to the time intervals between interactions. To find the total phase
associated to such a composite, we multiply all phases. This is clearly equivalent to
multiplying the phases on any labelled edges which are joined by the composition to get
a phase on the resulting edge, then multiplying the product of all edges thus produced.

The transition amplitude we want to recover is:

∞∑
n=0

∫
0≤t1≤···≤tn≤T

〈
Zk|OZ l

〉
The sum taken over all n simply means that we are taking a groupoid containing all
possible n-fold composites of this form. The integral over all n-part partitions of the
interval [0, T ] means each such diagram contributes a phase found by integrating over all
possible ways of dividing the interval into free and interaction parts. This contribution is
weighted by the size of the symmetry group, since the inner product inside the integral
is just a U(1)-groupoid cardinality.

This proves the statement.

This recovers the usual Feynman rules for calculating transition amplitudes in the
oscillator.

7. Conclusions

Here we summarize what we have shown, and suggest directions in which this work could
be carried further.



CATEGORIFIED ALGEBRA AND QUANTUM MECHANICS 843

7.1. Categorified Quantum Mechanics. We began by describing the quantum har-
monic oscillator and the Weyl algebra, the algebra of linear operators on its space of states
which correspond to observables and interactions of the oscillator system. We saw how
this could be related - by the Fock representation of the Weyl algebra - to formal power
series with complex coefficients with exponents counting quanta of energy.

Our aim at the outset was to categorify this aspect of quantum mechanics. Categori-
fication of concepts such as “group”, “vector-space”, and indeed “category” itself have
proved interesting within mathematics, and the resulting 2-groups, 2-vector-spaces, and
2-categories arise naturally in surprising ways. The idea here was that categorification
could be applied in a physically relevant setting, and could reveal something useful about
the mathematical structures involved. Here, we began with the Hilbert space of states
of a quantum mechanical system, and the relevant algebra of operators acting on it. We
have produced category-theoretic equivalents of these: the 2-categories of stuff types and
of stuff operators can be seen as a categorified Hilbert space and a categorified algebra.

These are connected to the original setting by concepts of decategorification which
go by the name “cardinality”. We have shown that when we take the cardinalities of all
our entities involving “stuff”, we recover much of the structure of the Weyl algebra. By
introducing the idea of sets/M , and attendant ideas of entities labelled with “phases”
from some monoid, we have improved this resemblance to quantum mechanics.

Stuff types - groupoids over FinSet0 - have creation and annihilation operators which
give a purely combinatorial construction which categorified many features of the Weyl
algebra. They also have a natural inner product which, in conjunction with these creation
and annihilation operators, allows us to interpret transition amplitudes as sums over
Feynman diagrams.

However, what these categorify is not Fock space, since it only has scalar multiplication
over �+, rather than �, and cardinalities in �+[[z]], rather than �[[z]]. Our U(1)-stuff
types are a better categorification of Fock space, and these have cardinalities in (�+ ⊗
U(1))[[z]], which we can map to �[[z]]. This map h is not one-to-one, and this fact is
responsible for the phenomenon of interference of states with different phases.

The problem of categorifying quantum mechanics is much more general than the simple
case of a harmonic oscillator we have discussed. Another approach to bringing category
theory to quantum mechanics is [5]. That paper provides good description of a simple
“picture calculus” for quite general quantum mechanics which uses a background of cat-
egory theory. This is not a categorification in our sense, but together with some of the
structure described in appendix B may suggest a broader framework for dealing with the
question.

Although we have confined ourselves to the harmonic oscillator in this paper, we can
suggest various directions in which these ideas could be taken further. One is to look at
the inner product through a more category-theoretic lens.

7.1.1. Conjugate-Linearity and the Inner Product. Recall that the inner prod-
uct for M-stuff types had to be modified somewhat in order to agree with the usual inner
product on the Hilbert space �[[z]] in the case when M = U(1). The nontrivial isomor-



844 JEFFREY MORTON

phism of U(1) with itself provides a notion of complex conjugation. But how should we
interpret the inner product for U(1)-stuff types?

In fact, it makes more sense when we adopt the interpretation of the inner product
〈φ|ψ〉 as pairing a state vector with a costate covector. So the (conjugate-linear) inner
product 〈ψ|Tφ〉 gives the amplitude to find a system set up in state φ and evolving
according to the operator T to be measured in state ψ. This suggests we should think of
observing a system in a certain state as a time-reversed version of setting the system up
in that state.

But if time evolution by T is given by an operator ET , time-evolution by −T is
described by an operator E−T . This has groupoid and projections to FinSet0 the same
as those for ET , but the groupoid has objects labels by inverses of the labels on the objects
of ET . In U(1), this inverse is the same as the complex conjugate, so that E−T = ET . This
suggests an interpretation of the complex conjugate Φ as a time-reversal of the original
stuff type, consistent with our interpretation of a measurement process.

7.1.2. Categorifying M . The operation hom takes two objects in a category and
yields the set of morphisms between them. In an enriched category, this can be replaced
by some other kind of collection of morphisms - a vector space, for instance. In the case
that this collection is always an object of the same category as the original objects, we
have a “hom-object”. In any case hom(−,−) becomes a functor into the category in
which hom-objects are found.

Moreover, the functor hom(−, B) is a covariant functor, while hom(A,−) is contravari-
ant - that is, a (covariant) functor to Bop. This seems closely analogous to the conjugate-
linearity in the complex inner product on a Hilbert space. We may ask whether the inner
product on a Hilbert space comes from some hom? In particular, in order to make a
category where morphisms are spans (see appendix B), we need to look at the opposite
category of a U(1)-groupoid. A groupoid is indistinguishable from its opposite category
after taking cardinality - but what about an M-groupoid?

To make sense of this idea, we could replace a monoid M with a monoidal category,
M. A groupoid with objects labelled in the monoid - that is, with a function from its
set of objects to M , would be replaced by a groupoid X with a functor into the monoidal
categoryM - so in particular, we would have labellings of morphisms of X with morphisms
of M. This combination of groupoid and functor can be interpreted as an object in the
category of “groupoids over M”.

Given a categorification of U(1), we could ask whether this new setting more naturally
produces the inner product we want for quantum mechanics. So far, though, we have
not considered how to categorify the group of phases in order to accomplish this most
naturally.

7.1.3. Non-Counting Measures and M-Groupoid Cardinality. We saw in equa-
tion (73) and what followed that the transition amplitudes for the perturbed harmonic
oscillator are given in terms of a sum and integral over all Feynman diagrams with edges
weighted by phases. To do this, we had to accept the equation at the equational level



CATEGORIFIED ALGEBRA AND QUANTUM MECHANICS 845

and then give it an interpretation in terms of U(1)-stuff types, since we have, to date,
not given any categorified meaning for the integrals. We can observe, however, that our
notion of cardinality for M-groupoids, and by extension M-stuff types, used only the
groupoid cardinality derived from counting measure on sets, weights from the monoid M .

To give a categorified interpretation of the integral directly, we might wish to use the
fact that when M = U(1), there is a measure other than counting measure on M itself.
In this case, the natural choice is the Haar measure on the Lie group U(1) - though for
other choices of M there may be other natural choices. Then a cardinality operator for
an M-groupoid would involve an integral involving both M and the groupoid structure.
In the case where the measure on M is just set cardinality, this should reduce to the
more combinatorial definition given here. We could hope that such a notion of cardinality
would let us give a direct categorified interpretation of equations such as (73).

7.2. Other Generalizations.

7.2.1. Higher-Valence Stuff Operators. We have described stuff types and oper-
ators in terms of quantum mechanics, but it should be clear that they also have an inde-
pendent interest as algebraic objects in their own right. Stuff types form a categorified
Hilbert space, but also a categorified algebra, since they have a concept of multiplication
in the space.

The key fact behind our approach has been that stuff types and stuff operators form
2-categories of groupoids over either one or two copies of FinSet0. Stuff operators have
an action which are the equivalent of linear operators on this 2-Hilbert space. This action
arises because of the fact that taking a pullback over one copy of FinSet0 under both
a stuff type and an operator removes two of the maps to this underlying FinSet0, and
gives an object with one such map.

In fact, there is no reason why we must restrict ourselves to groupoids with either one
or two maps to FinSet0 - the categorified versions of vectors or matrices. We have done
so because these are the most directly relevant to quantum mechanics, but for categorified
algebra, it makes sense to generalize to look at the equivalent of “p-forms”, or “p-index
tensors” (the natural inner product obscures the difference between vectors and covectors
in this setting). These would be groupoids with projections into p copies of FinSet0.
Contraction of two tensors over some pair of indices would amount to identifying the
corresponding copies of FinSet0 and taking a pullback of the two projections into this
copy.

The categorified p-forms could be seen as p-sort types: types of structure (or stuff)
which could be put on p underlying sets of different “sorts” of objects.

The notion of a club described by Max Kelly in [8] can be seen as a significant gen-
eralization of this setup, where the categories involved need not be groupoids. There is
a body of results about these which may bear on the ideas above, and turn out to be
relevant to other physical situations.

7.2.2. Multisort Species and QFT. In appendix C.1 we refer to a description of
generalized species as functor categories between !� and �̂ for groupoids � and �.



846 JEFFREY MORTON

“Species”, which we have called “structure types” here, correspond to the case where both
groupoids are 1, the one-element groupoid, in which case !1 = FinSet0 and 1̂ = Set.
These correspond to functors from finite sets to sets of structures which can be put on
them. We also mentioned the 2-rig !̂n, a.k.a Set[Z1, . . . , Zn], the 2-rig of n-sort structure
types: these correspond to functors from collections finite sets of n “sorts” (i.e. n copies
of FinSet0) to sets of structures which can be put on these.

We could reverse this point of view in the case of structure types, to view them as
faithful functors from groupoids of structures into the groupoid of finite sets (giving the
“underlying” set of a structure) and then weaken the requirement that the functor be
faithful to get the more general “stuff types”, so too we can reverse our point of view of
multisort structure types, to view them as faithful functors from a groupoid of “n-sort
structures” down to FinSet0

n, giving the n underlying sets of each sort. These functors
will be faithful for the same reason as in the case n = 1. Weakening this requirement
would give us a notion of stuff type corresponding to functions of more than one variable.
Defining creation and annihilation operators on each sort of element would let us define
a Weyl algebra for n sorts of particles - that is, the algebra of operators for n quantum
harmonic oscillators. This is interesting, since a quantum field theory may be represented
as a collection of harmonic oscillators.

Replacing the various sorts of finite sets with finite sets over monoids - in particular,
over U(1), as in our discussion of U(1)-stuff types - we may find an elementary categorical
description of a simple QFT. Further research in this direction may prove fruitful.

7.2.3. Beyond FinSet0. We have described the 2-Hilbert space of categorified states
(stuff types) and 2-algebra of operators (stuff operators) for the categorified quantum
harmonic oscillator in terms of some over categories. The 2-category StuffTypes is the
slice category of Gpd over the groupoid FinSet0, while the 2-category StuffOps is the
slice category of Gpd over FinSet0

2.
The groupoid FinSet0 appears in both of these cases, in the fact that it does allows

stuff operators to act on stuff types by means of pullbacks. But the 2-Hilbert space
structure of StuffTypes does not depend on the fact that the groupoid it lies over is
FinSet0: the linear structure is inherited entirely from the direct sums of groupoids, and
the inner product depends only on the fact that any two stuff types Ψ and Φ are groupoids
over the same groupoid G, and thus that we can find a groupoid 〈Ψ,Φ〉 by taking a weak
pullback over G.

Similarly, the algebraic properties of StuffOps - its linear structure, composition, and
action on StuffTypes - derive from Gpd and the possibility of forming pullbacks. We
could derive the same structures for the 2-category of groupoids over G2 for any groupoid
G. What’s more, just as not all matrices need to be square, and linear transforma-
tions needn’t be endofunctions on some single vector space, we could take two different
groupoids G and G’, and take the 2-category of groupoids over G×G’. We could com-
pose these in the obvious way, treating them as “spans” between G and G’ - and also
as functors between categories of groupoids over G and G’ just as stuff operators are
endofunctors of groupoids over FinSet0.



CATEGORIFIED ALGEBRA AND QUANTUM MECHANICS 847

Why did we choose the specific groupoid FinSet0 (or its M-coloured counterpart) for
the constructions we actually studied? Because its decategorification is �, which is the
spectrum of the number operator for the quantum harmonic oscillator. This may suggest
how to find other groupoids G for which these constructions have some particular phys-
ical interest. Indeed, as remarked before, Kelly’s theory of “clubs” ([8]) generalizes our
framework by, among other things, allowing categories which are not groupoids. Perhaps
phenomena related to groupoids can be found which can be given a treatment like the
one we have given for the oscillator.

8. Acknowledgements

This work grew out of the regular Quantum Gravity seminar taught by John Baez at
UCR, notes for which are available online as [2]. I would like to acknowledge his work on
this subject (some published as [1]), excellent teaching, and helpful advice and discussions
in preparing this paper. Other students in the seminar, especially Toby Bartels, Miguel
Carrion-Alvarez, Alissa Crans, and Derek Wise also provided many useful discussions.

A. A Little Higher-Dimensional Algebra

A.1. Definition. A rig, or semiring, is a set R with two operations, which we cus-
tomarily denote by + and ·, referred to as addition and multiplication respectively, such
that (R,+) is a commutative monoid with identity 0, (R, ·) is a monoid with identity 1.
We also require that multiplication distributes over addition on the left and right, and 0
is fixed under multiplication by any a ∈ R.

A.2. Definition. A monoidal category Mis a category equipped with a functor ⊗ :
M×M→M, a unit object 1 ∈ M, and natural isomorphisms α, λ, ρ with components
αA,B,C : (A⊗B)⊗C → A⊗ (B⊗C) (the associator), λA : 1⊗A→ A (the left unit),
and ρA : A ⊗ 1 → A (the right unit), satisfying coherence conditions6. A 2-rig is a
monoidal cocomplete category: a monoidal category C which has all colimits, such that
the functors X ⊗− : C → C and −⊗X : C → C preserve colimits for all objects X ∈ C.

A.3. Theorem. The category Set[Z] is a 2-rig whose monoidal operation ⊗ is the product
· of structure types.

Proof. To see that · is a monoidal operation, note that the unit object is 1, which
can only be put on the empty set, in exactly one way. Putting a (1 · F )-structure or
(F · 1)-structure on a set S means taking S = S � {}, putting an F -structure on S and a
1-structure on {}. This is equivalent to putting an F -structure on S, so we have left and

6See, for instance, Mac Lane [13]. This definition includes slightly more than the definition of a rig
because we here explain the generalization of associativity for the monoidal operation. Also, we extend
the “addition” operation to general colimits - of which coproducts, the equivalent of binary sums, are an
example. Otherwise, the two definitions have the same form.



848 JEFFREY MORTON

right units. The associator αF,F ′,F ′′ : (F ·F ′)·F ′′ → F ·(F ′ ·F ′′) is the natural isomorphism
induced by the set isomorphism between (A+B) + Cand A+ (B + C). Splitting S into
A + B + C in these two ways, and putting an F -structure on A, F ′-structure on B and
F ′′-structure on C can been seen as a way of putting an (F +F ′)-structure on (A+B) and
an F ′′-structure on C, but also as putting an F -structure on A and an (F ′+F ′′)-structure
on (B +C). In fact this α is a natural isomorphism, so · is indeed a monoidal operation.

To see that Set[Z] is cocomplete - contains all colimits - note that Set is cocomplete.
Moreover, by taking colimits of the sets of structures on each n, we can find arbitrary
colimits of objects of Set[Z].

To see that Set[Z] is monoidal cocomplete, we now only have to have that the mul-
tiplication functors F · − and − · F preserve colimits for all structure types F (i.e. the
“product” distributes over “sum”).

B. Slice Categories and 2-Categories

We saw that in the special case where the groupoid Z0 of colourings was a set, the
category of groupoid-coloured sets had objects which were maps from sets S into Z0, and
morphisms were commuting diagrams like this:

S

c
��

σ �� S ′

c′����
��

��
�

Z0

(76)

commutes.

This is an example of an “over category”. These are categories of objects “over” some
given object. In general, an over category can be constructed from any categories C and
object c ∈ C by taking objects to be maps f : a → c (for a ∈ C) and morphisms to be
commuting triangles. We will encounter this sort of construction again when we define
sets/M and M-stuff types for a monoid M . This sort of construction is often called a
“slice category”. We will prefer the slightly more illustrative terminology “over category”.
For more details, see e.g. [13] or [14].

In general, however, groupoid-coloured sets have colours taken from a groupoid, which
is not an object in Set, so we have something somewhat weaker. One way to say it is
that we only have a forgetful functor from Z0-Set to Set where Z0-sets are taken to the
underlying set, and morphisms are taken to their underlying set bijections. It is worth
pointing out the relationship between this and the change of perspective between our
original way of defining structure types as functions from underlying sets to the “bundle”
viewpoint, with structured sets lying “over” their underlying sets.

Another way to say what we have with Z0-Set is that it is a over bicategory, when
we think of the sets S and S ′ as trivial groupoids, hence σ, c and c′ functors. These are
defined like over categories, but instead of morphisms amounting to commuting triangles,



CATEGORIFIED ALGEBRA AND QUANTUM MECHANICS 849

morphisms consist of natural isomorphisms α with:

S

c
��

σ �� S ′

c′����
��

��
�

Z0

�

α �������

�������

(77)

This is exactly the definition we gave above, where the morphisms coming from α give
the labels on the strands of σ.

The formulation of over bicategories is particularly relevant to stuff types, as we shall
see. First, however, we need to fill in some more infrastructure.

B.1. Bicategories of Stuff Types and Stuff Operators. The second - the
notion of bicategories - is just a preliminary stage of a still unfinished subject of higher-
dimensional categories. However, it turns out to be a crucial idea when we want to describe
the connection between stuff types and the quantum harmonic oscillator. Groupoids
and stuff types naturally form a bicategory, and in section 5, we use the structure of
this bicategory to show how the inner product on the space of categorified states of the
oscillator arises naturally. Here we will show that they do form bicategories.

Structure types F : FinSet0 → Set formed a functor category whose morphisms were
natural transformations. This was the “coefficient” viewpoint, but for stuff types we had
to take the “bundle” viewpoint, and defined them as functors F : X→ FinSet0, for some
groupoid X. Since a groupoid is already a category, we will see that all such objects can
naturally be formed into something more than a category. In particular, what we will get
is a bicategory:

B.2. Definition. A bicategory C consists of the following: a collection of objects, and
for every pair of objects x and y, a category hom(x, y) whose objects are called mor-
phisms of C and whose morphisms are called 2-morphisms of C. There must be func-

tors hom(x, y) × hom(y, z)
mx,y,z−→ hom(x, z) giving composition (f, g) �→ g ◦ f . There are

identity morphisms 1x ∈ hom(x, x) with unit laws which are 2-isomorphisms λ, ρ from
1y ◦ f and f ◦ 1x to f for f ∈ hom(x, y). There is an associator, a 2-isomorphism
αf,g,h : (h ◦ g) ◦ f → h ◦ (g ◦ f). These satisfy coherence conditions. If the associators and
unit laws are identity 2-morphisms, C is a 2-category.

We are omitting here any discussion the coherence conditions. Readers wanting these
details can consult [13] for more details.

(A terminological note: the term “bicategory”, introduced by Jean Bénabou, who
defined the concept, generalizes the notion of a 2-category , which we could more explicitly
call a strict 2-category , where the associator and unit laws are identities. By contrast, we
could say that a bicategory is a weak 2-category , which we might prefer on the grounds
that this nomenclature generalizes more readily to weak n-categories. The non-strict case
seems to be the more generally useful one, since it occurs more naturally (for instance,



850 JEFFREY MORTON

in homotopy theory), and since the strict form can be derived from it as a special case.
However, to avoid confusion, we use the standard term bicategory.)

Now, we can make the following observation:

B.3. Theorem. The collection of all categories, Cat, naturally forms a (strict) 2-category
whose morphisms are functors between categories, and whose 2-morphisms are natural
transformations between functors. The collection of groupoids, Gpd, is a full sub-2-
category of Cat (which is thus also strict).

This sets up a helpful way of looking at stuff types: we have described them as
“groupoids over FinSet0” - that is, functors from groupoids X to the groupoid FinSet0.
In particular, since groupoids form a 2-category, of which FinSet0 is an object, we can
describe a (strict) 2-category of stuff types, namely that of groupoids over FinSet0. This
is a 2-categorical version of an “over category”. This sort of structure is explained in
further detail in appendix B.

We have just described stuff types as functors into FinSet0 in Gpd, so it is natural
to ask whether other functors in Gpd are also of interest as further generalizations of
structure types. In section C.1, we briefly describe some work in this direction.

B.4. Definition. The 2-category StuffTypes has as objects diagrams in Gpd of the

form X
Ψ→FinSet0 (Denoted (X,Ψ), or just X or Ψ for short whenever the meaning is

clear). Given two objects (X1,Ψ1) and (X1,Ψ1), hom(Ψ1,Ψ2) has as morphisms functors
F : X1 → X2 together with a natural isomorphism α such that the diagram

X1

Ψ1

��

F �� X2

Ψ2

���������

FinSet0

 �
α ����������

����������

(78)

commutes up to α. Given a pair F and G of such morphisms between X1 and X2, the
2-morphisms between them are the natural transformations ν between the functors F and
G for which the resulting diagram commutes.

B.5. Theorem. The construction given for StuffTypes gives a well-defined (strict) 2-
category.

Proof. The collections hom(Ψ1,Ψ2) involve functors from X1 to X2 in Gpd. These
are closed under composition. A morphism in StuffTypes also includes a natural trans-
formation α, and these are again closed under composition. If two composable functors
F1 and F2 between groupoids make the triangles over FinSet0 commute up to natural
isomorphisms α1 and α2, then F2 ◦ F1 does the same, up to α1 ◦ α2. So in particular, the
obvious notion of composition is well defined, and in fact the hom(Ψ1,Ψ2) are categories.



CATEGORIFIED ALGEBRA AND QUANTUM MECHANICS 851

Identity morphisms are inherited from Gpd, and obviously make the corresponding
triangles commute. The unit laws and associator are just these identity 2-morphisms, so
we have a (strict) 2-category.

The construction for stuff operators is similar:

B.6. Definition. The 2-category StuffOps has as objects diagrams in Gpd of the form
FinSet0

p1← T
p2→FinSet0) (Denoted (T, p1, p2), or just T , for short). Given two objects

T and T ′, hom(T, T ′) has as morphisms functors F : T → T ′ making the diagram

T

p1

�� p2 ��												
F �� T ′

p′1��������������

p′2
��

FinSet0 FinSet0

(79)

commute up to two natural isomorphisms. The 2-morphisms are the natural transforma-
tions ν between such functors F and G which make the resulting diagram commute.

Where we have omitted the detailed diagram for the naturality squares. It is substan-
tially similar to that for stuff types, in section 4.13.1. We also get a result similar to that
for stuff types:

B.7. Theorem. The construction given for StuffOps gives a well-defined (strict) 2-
category.

Proof. The proof that this is a 2-category is similar to that for stuff types.

The algebraic structure of StuffOps is of interest. It is, in fact, the equivalent of an
algebra - having addition, scalar multiplication (by groupoids) and internal multiplication
in the form of composites. But since groupoids do not have cardanilities in a field, we will
just point out that if we ignore 2-morphisms, it is a category, and in fact:

B.8. Theorem. The category StuffOps (disregarding 2-morphisms) is a 2-rig, where the
monoidal operation is composition.

Proof. First, the StuffOps is cocomplete because Gpd is, and so any colimit in Gpd
becomes one in StuffOps. The monoidal operation given by composition gets all the
required natural isomorphisms from those in the weak pullback.

We have only sketched the main ideas of these proofs, of course (in particular, we have
not even stated the necessary coherence conditions, let alone proved they are satisfied).
We leave these details for the interested reader. However, this finally gives us a clear
description of the categorified version of the algebra of operators on formal power series.

Analogous results hold for M-stuff types.



852 JEFFREY MORTON

C. Categorical Approaches to Generalizing Species

We have chosen in this paper to generalize Joyal’s notion of structure types in a way which
makes use of the classification of functors and their levels of forgetfulness. By saying
that a structure type is a possibly forgetful functor which forgets at most structure, and
possibly only properties, or nothing, we find that it is possible to generalize this to a stuff
type, described in section 4.13.1. This also hints at further generalizations which will be
possible if we allow ourselves to consider functors between higher dimensional categories,
as described in section 4.23, so that there are more possible degrees of forgetfulness of
functors, and therefore a hierarchy of “types” given by functors which forget “meta-stuff”
of various degrees. However, this is not the only possible direction in which to take the
notion of structure type. We describe here another direction.

C.1. Generalized Species. A generalization of structure types is described in Fiore,
Gambino, and Hyland [7] sheds some light on the choice of categories we have made in
defining structure types. In that paper, conventional structure types are referred to as
species, and a generalization is developed to (�,�)-species for arbitrary small groupoids
� and �, which provides, for finite sequences of�-objects , an �-variable set of structures
over them. Structure types are then (1, 1)-species, where 1 is the groupoid with one object
and identity morphism.

To explain this generalization, we need some terminology.

C.2. Definition. Suppose � is a small groupoid. Then !�, the free symmetric
monoidal completion of �, is the smallest symmetric monoidal groupoid containing �.
We define �̂, the free cocompletion of � is the smallest cocomplete category containing
�.

Now, we can make an analogy between the creation of a 2-rig from a category using
these constructions and the creation of a rig from a set using the operation of taking a
free abelian group on a set, and the operation of taking the free monoid on a set. If we
start with a set of generators S, and then take the free Abelian group on S, �[S], and
then take the free monoid on �[S], we get a rig, and this is isomorphic to the rig we get
if we take these freely generated structures in the reverse order. In particular, if S = φ,
the rig we get is �, if S = {x}, we get �[x], the free rig on one generator, and so on. A
similar construction is possible for groupoids (and indeed categories).

To see how this applies to species, we first note that the free symmetric monoidal
completion of a groupoid consists of “families” of �-objects, whose objects are tuples of
objects from � and whose morphisms are braids between tuples, with strands labelled by
morphisms of �. So in particular, if � is the groupoid 1, with one object and only the
identity morphism, we find that !� ∼= FinSet0. Moreover, the free cocompletion of � is
equivalent to the functor category hom(�op,Set) of presheaves on � (see, for instance,
Mac Lane & Moerdijk [14], I.5, Prop 1). So in particular, since � is a groupoid, and

equivalent to its opposite, we have that !̂� ∼= hom(!�,Set).



CATEGORIFIED ALGEBRA AND QUANTUM MECHANICS 853

In the case where � = 1, we have !̂� ∼= hom(FinSet0,Set) = Set[Z]. So the 2-
rig of structure types can be seen as the freely generated 2-rig on one generator. We
may think of this generator as being the basic “object”, or “one-element set”. The first
natural extension to consider is when � = n, the groupoid with n objects having only
the identity morphisms. The 2-rig !̂n is also called Set[Z1, . . . , Zn], and gives what are
called multisort species. These can be described as 2-rigs of structures which can be put
on sets of elements of n different sorts. For other groupoids �, we get different notions
of species, many of which appear in various contexts in the literature, for instance ([3]).

The generalization of species considered by Fiore, Gambino, and Hyland [7] is the

2-rig hom(!�, �̂), for � and � some small groupoids. The various examples of �-species

mentioned above are all seen as functors into Set = 1̂, so � = 1. The 2-rig hom(!�, �̂)
is, in particular, the category of functors from !�, the category of families of �-objects
to �̂, the category of �-variable sets - presheaves over �.

Indeed, it is possible to define a 2-category of species between groupoids. In this
setting, the category of functors from families of �-objects into �-variable sets plays the
role of hom(�,�), and the objects in the 2-category are small groupoids.

References

[1] J. Baez, J. Dolan. “From Finite Sets to Feynman Diagrams”. Mathematics Unlim-
ited - 2001 And Beyond , Engquist, B., Schmid, W. (Eds.), Springer Verlag, 2001.
http://arxiv.org/abs/math.QA/0004133

[2] J. Baez, D. Wise. “Categorification and Quantization”. Lecture notes available at:

• http://math.ucr.edu/home/baez/qg-fall2003/

• http://math.ucr.edu/home/baez/qg-winter2004/

• http://math.ucr.edu/home/baez/qg-spring2004/

[3] F. Bergeron, G. Labelle, P. Leroux. Combinatorial Species and Tree-Like Struc-
tures: Encyclopedia of Mathematics and its Applications vol. 67 . Cambridge Uni-
versity Press, 1998.

[4] J.D. Bjorken, S.D. Drell. Relativistic Quantum Fields. McGraw-Hill, Inc., 1965.

[5] Bob Coecke. Kindergarten Quantum Mechanics - Lecture Notes .
http://arxiv.org/abs/quant-ph/0510032

[6] M. Fiore. Isomorphisms of Generic Recursive Polynomial Types.
http://www.cl.cam.ac.uk/ mpf23/papers/Types/recisos.ps.gz

[7] M. Fiore, N. Gambino, M. Hyland. Generalised Species of Structures and Analytic
Functors: Cartesian Closed Structure (Extended Abstract). (In preparation.)



854 JEFFREY MORTON

[8] G.M. Kelly. On clubs and doctrines pp 181-256, Category Seminar , Lecture Notes
in Mathematics 420, Springer, 1974.

[9] M. Guta, H.Maassen. Symmetric Hilbert Spaces Arising from Species of Structures.
http://arxiv.org/abs/math-ph/0007005

[10] Richard D. Mattuck. A Guide to Feynman Diagrams in the Many-Body Problem.
Dover Publications, Inc., 1967.

[11] A. Joyal. Foncteurs analytiques et especes de structures, in Combinatoire Enu-
merative, Springer Lecture Notes in Mathematics 1234, Springer, Berlin (1986),
126-159.

[12] A. Joyal. Une théorie combinatoire des séries formelles. Advances in Mathematics,
42:1-82, 1981.

[13] S. MacLane. Categories for the Working Mathematician: Graduate Texts in Math-
ematics vol. 5 . Springer Verlag, 1971.

[14] S. MacLane, I. Moerdijk. Sheaves in Geometry and Logic: A First Introduction to
Topos Theory . Springer Universitext, 1992.

[15] R. Street. Elementary Cosmoi I pp134-180, Category Seminar , Lecture Notes in
Mathematics 420, Springer, 1974.

[16] H. Wilf. Generatingfunctionology . Academic Press, Boston, 1994. (Also available
at http://www.cis.upenn.edu/ wilf/)

University of California, Riverside
Email: morton@math.ucr.edu

This article may be accessed via WWW at http://www.tac.mta.ca/tac/ or by anony-
mous ftp at ftp://ftp.tac.mta.ca/pub/tac/html/volumes/16/29/16-29.{dvi,ps,pdf}



THEORY AND APPLICATIONS OF CATEGORIES (ISSN 1201-561X) will disseminate articles that
significantly advance the study of categorical algebra or methods, or that make significant new contribu-
tions to mathematical science using categorical methods. The scope of the journal includes: all areas of
pure category theory, including higher dimensional categories; applications of category theory to algebra,
geometry and topology and other areas of mathematics; applications of category theory to computer
science, physics and other mathematical sciences; contributions to scientific knowledge that make use of
categorical methods.
Articles appearing in the journal have been carefully and critically refereed under the responsibility of
members of the Editorial Board. Only papers judged to be both significant and excellent are accepted
for publication.
The method of distribution of the journal is via the Internet tools WWW/ftp. The journal is archived
electronically and in printed paper format.

Subscription information. Individual subscribers receive (by e-mail) abstracts of articles as
they are published. Full text of published articles is available in .dvi, Postscript and PDF. Details will
be e-mailed to new subscribers. To subscribe, send e-mail to tac@mta.ca including a full name and
postal address. For institutional subscription, send enquiries to the Managing Editor, Robert Rosebrugh,
rrosebrugh@mta.ca.

Information for authors. The typesetting language of the journal is TEX, and LATEX2e is
the preferred flavour. TEX source of articles for publication should be submitted by e-mail directly to
an appropriate Editor. They are listed below. Please obtain detailed information on submission format
and style files from the journal’s WWW server at http://www.tac.mta.ca/tac/. You may also write
to tac@mta.ca to receive details by e-mail.

Managing editor. Robert Rosebrugh, Mount Allison University: rrosebrugh@mta.ca

TEXnical editor. Michael Barr, McGill University: mbarr@barrs.org

Transmitting editors.

Richard Blute, Université d’ Ottawa: rblute@uottawa.ca
Lawrence Breen, Université de Paris 13: breen@math.univ-paris13.fr
Ronald Brown, University of North Wales: r.brown@bangor.ac.uk
Aurelio Carboni, Università dell Insubria: aurelio.carboni@uninsubria.it
Valeria de Paiva, Xerox Palo Alto Research Center: paiva@parc.xerox.com
Ezra Getzler, Northwestern University: getzler(at)math(dot)northwestern(dot)edu
Martin Hyland, University of Cambridge: M.Hyland@dpmms.cam.ac.uk
P. T. Johnstone, University of Cambridge: ptj@dpmms.cam.ac.uk
G. Max Kelly, University of Sydney: maxk@maths.usyd.edu.au
Anders Kock, University of Aarhus: kock@imf.au.dk
Stephen Lack, University of Western Sydney: s.lack@uws.edu.au
F. William Lawvere, State University of New York at Buffalo: wlawvere@acsu.buffalo.edu
Jean-Louis Loday, Université de Strasbourg: loday@math.u-strasbg.fr
Ieke Moerdijk, University of Utrecht: moerdijk@math.uu.nl
Susan Niefield, Union College: niefiels@union.edu
Robert Paré, Dalhousie University: pare@mathstat.dal.ca
Jiri Rosicky, Masaryk University: rosicky@math.muni.cz
Brooke Shipley, University of Illinois at Chicago: bshipley@math.uic.edu
James Stasheff, University of North Carolina: jds@math.unc.edu
Ross Street, Macquarie University: street@math.mq.edu.au
Walter Tholen, York University: tholen@mathstat.yorku.ca
Myles Tierney, Rutgers University: tierney@math.rutgers.edu
Robert F. C. Walters, University of Insubria: robert.walters@uninsubria.it
R. J. Wood, Dalhousie University: rjwood@mathstat.dal.ca


