Theory and Applications of Categories, Vol. 18, No. 14, 2007, pp. 372-399.

DENSE MORPHISMS OF MONADS

PANAGIS KARAZERIS, JIRI VELEBIL

ABSTRACT. Given an arbitrary locally finitely presentable category .# and finitary
monads T and S on JZ, we characterize monad morphisms « : S — T with the property
that the induced functor a, : #T — #° between the categories of Eilenberg-Moore
algebras is fully faithful. We call such monad morphisms dense and give a characteriza-
tion of them in the spirit of Beth’s definability theorem: « is a dense monad morphism
if and only if every T-operation is explicitly defined using S-operations. We also give a
characterization in terms of epimorphic property of « and clarify the connection between
various notions of epimorphisms between monads.

1. Introduction

We study embedding functors ® : #; — ¥#5, where #; and ¥, are finitary varieties, such
that ® does not change the underlying sets of respective algebras. More precisely: we
study situations

h— Y
\ / (1.1)

where U; and U are underlying functors with the additional property that

every Ys-homomorphism between #;-algebras is a #;-homomorphism. (1.2)
Situations (1.1) satisfying (1.2) abound — let us point out two trivial examples:
1.1. EXAMPLES.

1. 77 is the variety of Abelian groups, ¥ is the variety of all groups. That (1.2)
holds is trivial: 7] arises by adding just the commutativity law to the equational
presentation of 75 and such process does not affect the notion of a homomorphism.

2. ¥ is the variety of groups, %5 is the variety of monoids. Condition (1.2) holds since
the inverse operation can be defined explicitly in the language of monoids. More
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DENSE MORPHISMS OF MONADS 373

precisely, the sentence
VaVy (y=a""' & (zxy=eNyxz =e))

holds in every group (G, *,e,(—)"!). Thus, the predicate y = 27! (i.e., “to be an
inverse”) is preserved by any monoid homomorphism.

In fact, the above example of groups and monoids is a good illustration of a general
characterization of condition (1.2):

For every ¥1-operation T, the predicate “to be 77 must be explicitly definable by a
system of equations in the language of Y5-operations.

This result is a special case covered by the famous Beth’s Definability Theorem of model
theory, see [Be].

We prove Beth’s Definability Theorem in Theorem 4.3 below in a more general setting
than (1.1). To be more specific, we replace the base category Set of sets and mappings
by an essentially algebraic category % (see Definition 2.6 below) and we replace finitary
varieties #1, ¥ by categories # T, #° of Eilenberg-Moore algebras for finitary monads
T and S, respectively, on the category %, studying thus situations

HT s S

\ / (1.3)

where UT and U® denote the underlying functors. By putting # = Set, the situation (1.1)
is recovered, since finitary varieties are precisely the categories of Eilenberg-Moore alge-
bras for suitable finitary monads on Set, as proved by Fred Linton in [Li].
This level of generality has also the advantage that the situation (1.3) is equivalent to
having a monad morphism
a:S—T (1.4)

and we may ask which property of monad morphisms singles out the property
every S-homomorphism between T-algebras is a T-homomorphism. (1.5)

We call such monad morphisms dense. We introduce, using the formalism of monads, a
notion of explicit definability of operations and show in Theorem 4.3 below that « is dense
exactly when every n-tuple of m-ary T-operations is explicitly S-definable. Furthermore,
we characterize dense monad morphisms in terms of an orthogonality condition (Theo-
rem 5.4 below), locating them strictly in between strong epimorphisms and epimorphisms
in the category of finitary monads and their morphisms.
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ORGANIZATION OF THE PAPER. In Section 2 we gather notions that we will need in the
sequel. Various useful sufficient conditions for density of a monad morphism are given
in Section 3. Section 4 is devoted to the theorem of Beth type characterizing dense
monad morphisms, whereas in Section 5 we characterize dense monad morphisms in the
category of finitary monads. We also show that dense monad morphisms are “epis” of a
factorization system on the category of finitary monads. Finally, in Section 6 we briefly
indicate how one can state and prove the results of the paper in a yet more general setting
than that of locally finitely presentable categories and finitary monads.

RELATED WORK. Quite a few of sufficient conditions for density of morphisms of finitary
monads on sets can be found in textbooks by Ernest Manes [M] (see, e.g., Exercise 6, Sec-
tion 3, Chapter 3) and by Gavin Wraith [W] (Chapter 12). Beth’s Definability Theorem
for (possibly infinitary) varieties on sets was proved by John Isbell in [I;] and our proof
of Theorem 4.3 was much inspired by Isbell’s approach. Morphisms of finitary algebraic
theories on Set (i.e., morphisms of finitary monads on Set) that satisfy (1.2) were called
positive epis by John Isbell in [I3]. We do not adhere to this terminology since we do
not work in the internal logic of the ambient category, hence our “definability formula”
in Theorem 4.3 below is not, strictly speaking, positive.

ACKNOWLEDGEMENT. We would like to thank the referee for valuable comments, for
bringing our attention to Isbell’s paper [I3] and for asking the question about factorization
systems.

2. Preliminaries

In this section we fix the (mostly standard) notation and terminology we will need later.
We do not give any proofs, we refer the reader to corresponding publications instead.

2.1. MoONADS, THEIR MORPHISMS AND THEIR ALGEBRAS. The relevance of monads to
universal algebra is treated in great detail in the book [M] by Ernest Manes. Therefore
we just recall the definitions, the proofs of statements below can all be found in Manes’
book.

A monad on a category ¢ is a triple S = (S, 7°, u®) consisting of a functor S : # —
2 and natural transformations n° : Id — S, p¥ : SS — S such that the following
diagrams

S S S
g1 gg ST 595 - 55

\ !/ s [ (2.1)

SS———S
o

commute.
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An Eilenberg-Moore algebra for a monad S on % (or S-algebra) is a pair (A, a), where
a:SA— Ais a morphism in % subject to commutativity of the diagrams

77:?; Sa
A—— SA SSA——SA
\ J J l (22)
A SA—— A

An S-homomorphism from (A, a) to (B,b) is a morphism h : A — B making the square

SA-—""5 5B

l lb (2.3)

A= B

commutative.

Algebras for S and their homomorphisms form an Eilenberg-Moore category > equi-
pped with a natural underlying functor US : #° — J# sending (A, a) to A. The functor
US has always a left adjoint sending A to (SA, u3) — a free S-algebra on A.

The full subcategory of #° spanned by free S-algebras is called the Kleisli category
s of S. We will denote the full embedding by

Kg: g — H° (2.4)

A monad morphism between monads S = (S,7°, %) and T = (T, T, u¥) on A is a
natural transformation o : S — 7" making the following diagrams

§—*——T S TT
\ / “SJ J“T (2:5)
ST

commutative (where e denotes the horizontal composition of a with itself, i.e., aa =
aT - Sa=Ta-as).

It can be proved that monad morphisms o : S — T are in one-to-one correspondence
with functors o, : #T — #° that commute with the underlying functors, i.e., they
correspond to commutative triangles

HT—— s S
\ / (2.6)

The functor a is given by (A,a) — (A,a - as) on objects and will be referred to as
restriction along «.
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Unlike US and UT, the functor a, need not have a left adjoint in general. In fact a,
has a left adjoint o if and only if coequalizers of the pairs

Ta

(T'SA, puga) == (T'A, 1) (2.7)

ph Toa
exist in T for every S-algebra (A, a). The value of a* : #° — #T at an S-algebra
(A, a) is then the value of the above coequalizer and a* is defined on morphisms using
the universal property of coequalizers.

2.2. EQUATIONS W.R.T. A MONAD. Example 1.1(2) suggests that we will have to deal
with more complex formulae than just identities between terms as it is done in classical
universal algebra.

Thus, we are going to consider S-algebras as first order structures for the first order
language having S-equations as atomic formulae. An S-equation is a pair

A
X$§SY

of parallel morphisms. Intuitively, A picks up an “X-tuple” of S-terms on Y that form the
left-hand sides of the respective system of equations. Similarly, p picks up the right-hand
sides of the respective system of equations.
Suppose z : Y — Ais given, where (A, a) is an S-algebra. We say that (A, a) satisfies
A(z) = p(z), denoted by
(4,a) = Az) = p(z)

if 2% - X\ = 2* - p holds where z* : (SY, u5) — (B, b) denotes the unique extension of x to
an S-homomorphism (recall that (SY, 5 ) is a free S-algebra on Y').

The satisfaction of a general sentence in an S-algebra (B, b) is defined inductively in
the usual way. Examples:

1. (B,b) E Vo (Mz) = p(z)) means that 2* - X\ = z* - p holds for every z: Y — B.

2. (B,b) = 3z (A(z) = p(x)) means that z* - A = 2* - p holds for some v : Y — B.

3. (B,b) = 3Jx (Mx) = p(z) = (o(x) = 7(x))) means that there exists some z : Y —
B such that 2% - A = 2! - p implies 2% - 0 = 2% - 7.

2.3. EXAMPLE. Let S be the monad of semigroups. We show how to express the commu-
tative law for semigroups as an S-equation.
Denote by 2 the two-element set {z1, 22} and let 1 denote the one-element set {x}.
The mappings
Ak = T1To Pk > ok

are then a parallel pair

1%52
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thus, we defined an S-equation.
Let (B,b) be any semigroup. Then

(B,b) =V (A(x) = p(z))

holds, if, for every map = : 2 — B (i.e., for every interpretation of x;, xo in B), the
equality z*- A\ = ¥ p holds. This means precisely that (B, b) is a commutative semigroup.

2.4. LocALLY FINITELY PRESENTABLE CATEGORIES AND DENSE FUNCTORS. Locally
finitely presentable categories were introduced by Peter Gabriel and Friedrich Ulmer in
their book [GU]J. This concept generalizes the useful property of the category Set: every
set can be reconstructed by knowing its finite subsets. It turns out that a set M can be
recognized as finite when its hom-functor Set(M, —) : Set — Set preserves colimits of a
certain class, called filtered.

A filtered colimit in general is a colimit of a functor D : 9 — J# where & is a small
category that is filtered, i.e., such that every finite subcategory of ¥ admits a cocone in
2. A functor preserving filtered colimits is called finitary. A monad is called finitary if
its functor is finitary.

If # has filtered colimits, then an object M is called finitely presentable if its hom-
functor # (M, —) : & — Set is finitary.

2.5. EXAMPLE.
1. A set is finitely presentable if and only if it is finite.

2. An algebra of a finitary variety is finitely presentable if and only if it is finitely
presentable in the ordinary sense of universal algebra, i.e., if it is presented by
finitely many finitary equations and finitely many generators.

A general functor F': 9 — ¥ is called dense if its “tilde-conjugate” F:x —
[2°7 | Set] defined by N
F: XX (F-X)

is fully faithful. We will use the concept of density even when the category & is not small,
since we will assume that the possibly illegitimate presheaf category [2°P, Set| exists in
some higher universe.

2.6. DEFINITION. A cocomplete category with a small dense subcategory consisting of
finitely presentable objects is called locally finitely presentable (1.f.p. for short).

2.7. REMARK. L.f.p. categories are exactly the essential algebraic categories over sets, see,
e.g., Chapter 3.D of [AR]. This means, roughly speaking, that 1.f.p. categories encompass
all categories of structures that are defined by equations over finitary partial operations
with equationally defined domains. See Example 2.10 for some instances of this fact.
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2.8. NOTATION. In what follows, .2 will always denote an L.f.p. category and F : & —
 will denote the full embedding of a small dense subcategory representing all finitely
presentable objects. Objects of & will be denoted by small letters n, m, etc.

It can be proved that E : &/ — £ is in fact a free cocompletion of ./ under filtered
colimits.

2.9. EXAMPLE. Suppose S is a finitary monad on J%#". The inclusion
AS : % — %S

of the full subcategory spanned by S-algebras free on objects of &7 is a dense functor.
This is proved, e.g., in Theorem 6.9 in [Bi].
Similarly, the inclusion

KS . % — %S
of the Kleisli category in J#* is dense, see Example 4.3 of [Ds].

2.10. EXAMPLE.

1. The category Set is L.f.p. As a small dense subcategory representing all finitely
presentable objects we choose the category spanned by the sets n = {0, 1,...,n—1},
where n is a natural number.

2. A poset, considered as a category, is Lf.p. if and only if it is an algebraic lattice.
Finitely presentable objects are called compact elements in this context.

3. Any finitary variety of universal algebras is l.f.p. As a small dense subcategory
representing finitely presentable objects we can choose algebras, finitely presentable
in the usual sense.

4. The category Pos of all posets and monotone maps is I.f.p. As a small dense category
representing finitely presentable objects one can choose the category of finite posets.
The category Pos is not a finitary variety but it is an example of an essentially
algebraic category defined by partial operations, see Chapter 3.D of [AR].

5. The category Cat of all small categories and functors is Lf.p. As a small dense
subcategory representing finitely presentable objects we can choose categories on
finitely many objects subject to a finite set of commutativity conditions.

6. If 7 is 1.f.p., so is every functor category [Z, %], where 2 is a small category.
Thus, all categories [Z°7, Set| of presheaves are Lf.p.

In particular, the category

Fin(¢', %)

of finitary endofunctors of an 1.f.p. category £ is L.f.p., since Fin(J#", 2") is equiv-
alent to the functor category [«7, |, because E : of — £ is a free cocompletion
under filtered colimits.
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7. Given a finitary monad S on an Lf.p. category .#, then the category ¢ is Lf.p.
Recall from Example 2.9 that the inclusion Ag : o — #° is dense and %
clearly consists of finitely presentable objects in J#S. Moreover, the category .#°
is cocomplete, being reflective in [2%", Set]. See, e.g., Theorem 6.9 in [Bi].

Consequently, the category
Mnd fin (t%/ )

of all finitary monads on an Lf.p. category .# and monad morphisms is L.f.p. This
is seen as follows:

(a) The obvious finitary forgetful functor
U : Mndg, (#) — Fin(#, %)

has a left adjoint given by a free monad Fg on a finitary endofunctor H.

(b) Moreover, the functor U is monadic. This means that there exists a (fini-
tary!) monad S on Fin(#", %) such that the category Mndg, (%) is canoni-
cally equivalent to the category of S-algebras. (This fact is easily proved using
Beck’s Theorem, see, e.g., Theorem 21.5.7 of [S].)

(c) Now use the fact that Fin(2¢, %) is Lf.p., hence Fin(.#, . #)° (that is, the
category of finitary monads on %) is L.f.p.

2.11. THE CALcULUS OF FINITARY MONADS. The calculus of finitary monads on Lf.p.
categories was developed by Max Kelly and John Power in their paper [KP]. This beau-
tiful and powerful technique allows one to say that finitary monads “are” indeed finitary
algebraic theories on an L.f.p. category, i.e., that finitary monads can be presented by
equations and operations of a suitable finitary signature. We recall the basic ideas now,
all the details and results can be found in the paper cited above. We will heavily use the
equivalence

Fin(#, #) ~ |of | #]

see Example 2.10(6).
A finitary signature ¥ is a collection

(E(1)n

of objects of # indexed by finitely presentable objects of .# and ¥(n) is the object of
n-ary operations.
Every finitary signature X gives rise to a corresponding finitary polynomial endofunctor
Hy, given by
Hy: X = [[#(En, X) e S(n)

where J (En, X) e ¥(n) denotes the % (En, X)-fold copower of ¥(n) and where the
coproduct is taken over all finitely presentable objects in /. Intuitively, Hx X is the
object of flat ¥-terms, i.e., 3-terms of depth < 1.
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A Y-algebra is an algebra for Hy, i.e., a pair (A,a), where a : HyrA — A is a
morphism in J# (intuitively: the computation of flat ¥-terms in A). A homomorphism
of ¥-algebras from (A, a) to (B,b) is a morphism h : A — B making the square

HeA = HoB

-
A T B
commutative.

If we denote by Fy = (Fx,n*, 1) the free monad on Hy, (see Example 2.10(7)), it is
straightforward to see that the category Hx-Alg of Hy-algebras and their homomorphisms
is equivalent to the Eilenberg-Moore category ¢ >,

Define the category of finitary signatures on & and their homomorphisms as a functor
category [|7|, | (where |.<7| is the discrete category on objects of /) and denote it by

Sig(A)
Then we have a series of right adjoints
Mnd s, () —— Fin(#, #") —— Sig(#)

where the left adjoint of U gives a free monad on a finitary endofunctor and the left
adjoint of V' forms a polynomial endofunctor of the given finitary signature.

Steve Lack proved in [L] that the composite V- U : Mndg, (%) — Sig(.#") is monadic
(compare with Example 2.10(7)), yielding thus a canonical coequalizer presentation

A c

for every finitary monad S on %", where Fy;, and Fr are free monads on suitable signatures
Y and I'.

What Max Kelly and John Power proved is that the category of Eilenberg-Moore
alegbras #T is isomorphic to the full subcategory of Fx-algebras (A, a) (or, equivalently,
Y-algebras) satisfying the equation A = p. The idea is to replace algebras for a monad by
certain monad morphisms (see Remark 2.14 for the well-known instance of these ideas).
This is done as follows:

For every pair A, B of objects in .2 and every finitely presentable object n in
define

(A, B)n = (En,A)h B

where ¢ (En, A)h B is the J# (En, A)-fold power of B in J#". Then the assignment n +—
(A, B))n clearly extends to a functor &/ — #. Thus (A, B)) is a finitary endofunctor
of A if we identify Fin(2#", 2") with the functor category [/, .%]. Clearly, the definition
of (A, B)) is functorial contravariantly in A and covariantly in B. Moreover, the following
holds:
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2.12. PROPOSITION. Every functor (A, A)) has a natural structure of a finitary monad
and monad morphisms a : T — (A, A)) correspond uniquely to Eilenberg-Moore algebra
structures a : TA — A on A. Moreover, if a : S — T is a monad morphism, then the
equality

(a-ax)=a-« (2.9)

holds.
If, for f: A — B, we form the pullback

{f, 11— (A 4)

al [ (2.10)

(B, B) > (A.B)

in Fin(.#", %) then the following holds:

2.13. PropoOSITION. {{f, f}} has canonically a structure of a finitary monad and there
exists a monad morphism T — {{f, f}} precisely when f carries a T-algebra homomorph-
1sm between the corresponding T-algebras.

Consider now the diagram

A ¢
Fr ?;IFE — = 55

N

(A, A)

to conclude that monad morphisms S — ((A, A)) (i.e., S-algebras) correspond bijectively
to monad morphisms Fy, — ((A, A)) that coequalize the pair A, p (i.e., to the -algebras
that satisfy the equations A, p). Replacing (A, A) by {{f, f}} in the above diagram one
obtains the corresponding bijection of hom-sets, proving that the category of S-algebras
and their homomorphisms is equivalent to the category of ¥-algebras that satisfy A = p
and their homomorphisms.

2.14. REMARK. In fact, the above calculus of monads is a generalization of a well known
fact about actions of monoids: denote, for sets A, B, by (A, B)) the set of all maps from
A to B.

This definition is clearly functorial contravariantly in A and covariantly in B. More-
over, it is well-known that every set (A, A)) carries a natural structure of a monoid w.r.t.
composition. Furthermore, given any monoid T = (T, e, %), there is an evident bijection
between monoid homomorphisms from T to (A4, A)) and monoid actions T'x A — A
(compare with Proposition 2.12).
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If we define, for a map f: A — B, the set {{f, f}} as a pullback
{f, 11— (A, A)

WBl J((Ayf»

(B, B) (5 (A B)

i.e., elements of {{f, f}} are pairs (h : A — Ak : B — B) such that f-h = k- f,
then {{f, f}} becomes a monoid in a natural way. In fact, {{f, f}} is a submonoid of a
product (A, A)) x (B, B)) via the map (74, 7p) (we will use a generalization of this fact
in Corollary 5.5 below).

Moreover, to give a monoid homomorphisms from a monoid T to {{f, f}} is to say
that f : A — B is an equivariant map between the action of T on A and B, respectively
(compare with Proposition 2.13).

3. Sufficient Conditions for Density

3.1. ASSUMPTION. In the rest of the paper & denotes a fixed l.f.p. category, E : of —
K the inclusion of a small dense subcategory representing all finitely presentable objects
of . By a:S — T we always denote a morphism of finitary monads on £ .

3.2. DEFINITION. A monad morphism o : S — T s called dense if the restriction-along-
a functor oy : KT — S is fully faithful.

Since .7 (and hence T, see Example 2.10(7)) is cocomplete, the functor a, always
has a left adjoint a* (see (2.7)) and by a general result on adjunctions, «, is fully faithful
if and only if a* is dense (see, e.g., Proposition 17.2.6 of [S]). This motivated our choice
of terminology.

In this section we mention various sufficient conditions for density of o that are mostly
well-known and are often very easy to verify in practice. Most of the properties suggest
that density of o is a kind of “epimorphism” condition, as, for example, the following
trivial property:

3.3. LEMMA. Dense monad morphisms compose and if the composite 3 -« is dense, so is
0.
3.4. LEMMA. Every pointwise epimorphic monad morphism is dense.
PRrROOF. Consider the diagram

SA-" 9B

QAJ, JQB
TA-">TB
| b

A= B
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where (A, a) and (B,b) are arbitrary T-algebras. If the perimeter of the above diagram
commutes, so does the lower square since a4 is epi. [

3.5. REMARK. In fact, pointwise epimorphic a characterize abstractly Birkhoff subcat-
egories of ¢S, see Theorem 3.3.4 of [M]. A Birkhoff subcategory of .#® is one where
we add equations to the presentation of S, see the theorem in [M]| mentioned above. An
example of a Birkhoff subcategory in groups is the subcategory of Abelian groups.

However, the full inclusion «, : Groups — Monoids (see Example 1.1(2)) is an example
of a dense « that is not pointwise epimorphic.

Observe that by (2.5) every a4 is an S-homomorphism from (SA, ;%) to a.(T A, 1%).

3.6. LEMMA. Suppose oy, : (Sm,u>) — a.(T'm,pul) is an epimorphism in & for
every finitely presentable object m. Then « is dense.

Proor. We prove first that that the action of «, is a bijection on every hom-set of the
form #T((Tm, ul), (B,b)), where m is finitely presentable and (B,b) is an arbitrary
T-algebra.

Let h : a.(Tm, ur) — a.(B,b) be any S-homomorphism. The unique T-homomorph-
ism extending the composite h -k : m — B is denoted by 1’ : (T'm, ul) — (B,b). We
want to prove that a.(h') = h. But this follows from the fact that the diagram

Qam h
(S 5) =22 (T, i) == 0. (B.)

clearly commutes and from the assumption that ay, is an epimorphism in J#5.
Expressing every free T-algebra (T'A, %)) as a filtered colimit

Tf:(Tm, ) — (TA, 1})
where f : m — A, we conclude that the action of «, is a bijection on every hom-set of
the form #T((T A, k), (B, b)), where A is arbitrary and (B, b) is an arbitrary T-algebra.
Finally, let us choose any S-homomorphism h : a,(A,a) — «a.(B,b). Express (A, a)
as a canonical coequalizer

T

w
(TTA7 ”%:A) :A; (TAv Mz) L> (A7 CL)

Ta

in T and consider the following commutative diagram

ax(a)

a(nh)
a.(TTA, uk ) %%a* (TA, uﬁ) —5 a.(4,a)

ax (k') - J{

a.(B,b)

We know that the composite h-a.(a) is of the form o, (k) for some T-homomorphism £’ :
(TA, ) — (B, b) necessarily coequalizing the pair Ta, %y : (TTA, pt,) — (T A, pi%y).
Hence k' induces a unique T-homomorphism &' : (4,a) — (B, b) for which a.(h') = h
holds. ]
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3.7. EXAMPLE. The above lemma can be applied to the case of a, : Groups — Monoids,
see Example 1.1(2), since the inclusion of a free monoid into a free group on the same
(finite) set is an epimorphism of monoids.

3.8. REMARK. It should be noted that the condition on «,, of Lemma 3.6 can be easily
modified into a necessary and sufficient condition for density of a:

Say that a,, : (Sm,ud) — a.(Tm,ul) is an a,-epimorphism in S if from
h-a,, = k-, the equality h = k follows for any parallel pair h, k : a.(T'm, ul) —
a,(B,b) of Sshomomorphisms.

Then « is dense if and only if every o, is a,-epimorphism in %5,

For sufficiency, read the proof of Lemma 3.6. Conversely, if « is dense and if h - av,, =
k - a,, holds for a parallel pair h,k : a.(T'm,ul) — a.(B,b) of S-homomorphisms,
then h = a,(h') and k = a.(k') for a unique parallel pair /', k" : (T'm,ul) — (B,b)
of T-homomorphisms. Observe that A’ = k£’ holds, since both A" and k' extend the same
morphism:
R R R e A

We conclude that h = k.

3.9. LEMMA. Every regular epimorphism in Mndg, (%) (especially, every split epimor-
phism) is dense.

Proor. Consider a coequalizer
A «
P—=S——T
in Mndg, (#). This coequalizer gives rise to an equalizer
[ Ax
AT —— S == "
Px

of functors that commute with (faithful) forgetful functors. Thus, a is fully faithful. =

Recall that a monad S is called idempotent if the underlying functor US : #S — %
is fully faithful.

3.10. LEMMA. A monad morphism o : S — T with S idempotent is a dense morphism
of and only if T is idempotent.

PROOF. The statement follows from the fact that US - a, = UT holds, hence U7 is fully
faithful if and only if «, is fully faithful. [
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Recall that by Ag : o — #5, Ar : oy — H'T, resp., we denote the full dense
subcategories of S-algebras, T-algebras, resp., spanned by algebras free on finitely pre-
sentable objects (see Example 2.9). Every monad morphism « : S — T then induces a

functor
Aa . % — d?l‘ (31)

sending every S-algebra (Sn, 1) to (Tn, ul) and every S-homomorphism h : (Sn, u2) —
(Sm, 1)) to a T-homomorphism (au, - h-n3)* : (Tn,ul) — (T'm, pl). Here by upper
star we denote the unique extension to a T-homomorphism.

Clearly, the above process can be performed for arbitrary free algebras, yielding a

functor
Ka : %1‘ E— <%/S (32)

3.11. LEMMA. If the functor [AP,Set] : [a#y”, Set] — [e#", Set] is fully faithful, then o
1s a dense monad morphism.

PRrROOF. The square
KT (A2 Set]
a*l J[Agp,Set] (3.3)
S — [ ", Set]
As
is easily seen to commute (up to isomorphism). Its diagonal is fully faithful by assumption,
thus, the functor «, is fully faithful. =

3.12. REMARK. Functors F' : ¥ — Z between general small categories with [F°P, Set]
fully faithful are called connected and they were characterized in [ABSV] as those for
which the canonical morphism

/C 2(D',FC) x 9(FC,D) — 2(D', D)

given by composition is an isomorphism.

4. Beth’s Definability Theorem

In this section we characterize dense monad morphisms in “Beth style” and give some
connections between dense monad morphisms and the density of induced functors between
Kleisli categories.

The following concept captures the notion of “explicit definability”.



386 PANAGIS KARAZERIS, JIR VELEBIL

4.1. DEFINITION. We say that an n-tuple 7 : n — T'm of m-ary T-operations is S-
definable, if there exists an equation of the form

Ar
m+n+pp:;5(m+n+q)

with p, q finitely presentable, such that

(4, a) EVaVy (y = 7(2) & 3t (A (2,9,1) = pr(2,9,1)))
holds for every T-algebra (A, a).
4.2. EXAMPLE.

1. As mentioned in the introduction, inverses in groups are definable in the language
of monoids. More precisely, every group (G, *,e, (—)!) satisfies the sentence

VxVy(y:x_lﬁx*y:e/\y*x:e)

Thus, if S and T are the finitary monads on Set that correspond to the theory of
monoids and groups, respectively, then (—)~!: 1 — T'1 is S-definable.

2. Complements in Boolean algebras are definable in the language of distributive lat-
tices having the least and the greatest elements: the sentence

VaVy(y=—-ax < (zMNy=LAzUy=T))
is satisfied in every Boolean algebra (B,M,U, L, T, —(—)).

3. Greatest common divisors in Euclidean rings are definable in the language of rings:
every Euclidean ring (R, 4+, -,0, 1, gcd(—, —)) satisfies the sentence

VaVa'Vy (y = ged(z,2') & k3K FaTd (. =k -y A2’ =K -yAy=a-z+d - 2'))

4. Joins and meets in Boolean algebras are definable in the language of MV-algebras
(see [C]): every Boolean algebra (B,M,U, L, T,—(—)) satisfies the following two
sentences

VaVa'Vy (y =z U’ & y=—(-z®a) )
VaVa'Vy (y =z Ma’ < y = =(-z U -a'))

5. Every n-tuple o : n — Sm of m-ary S-operations is S-definable. Consider the
equation Ay, p, : n — S(m + n) with

Sinl
)\U =n o Sm in

S(m+n)

and

_ ”75 Sinr
Po =N —"= Sn =" S(m +n)
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Then every S-algebra of the form «,(A,a) (indeed, every S-algebra) satisfies the
sentence

VaVy (y =o0(z) & A\(2,y) = Po—(?@y))

as it is easily seen.

The concept of S-definability allows us to characterize dense monad morphisms:

4.3. THEOREM. The following are equivalent:
1. a:S — T is a dense monad morphism.

2. Bvery S-homomorphism o, (Tk, ul) — a.(A,a), where k is finitely presentable, is
a T-homomorphism (Tk, ul) — (A, a).

3. Every n-tuple of m-ary T-operations is S-definable.

ProOF. That (1) implies (2) and (3) implies (1) is trivial. It remains to prove that (2)
implies (3): Suppose an n-tuple 7 : n — T'm of m-ary T-operations is given. The plan
of the proof is as follows: we exhibit first a “large” S-equation L., R., that will witness
S-definability of 7 and then we reduce it to a “small” S-equation \;, p,, using finitarity
of Sand T.

Define first an equation

LT:[L(i)vL(ii),L(iii)}
m—+n+STm ¢S(m+n+Tm)
RT:[R(i)’R(ii)’R(iii)]

with the following properties (where (A, a) is an arbitrary T-algebra):
(i) ax(A,a) E LY(z,y,t) = RD(z,y,t) if and only if ¢ - n, = x.
(ii) a.(A,a) | LW (z,y,t) = R (z,y,t) if and only if t - 7 = y.

(iii) aw(A,a) & LU (z,y,t) = R (x y,t) if and only if ¢ is an S-homomorphism from
a.(Tm, ul) to a.(A, a).

The individual equations are defined as follows:

(i) Put
Sinl

S(m+n+1Tm)

T . S
Mm inr Mmtnt+Tm

RY =m Tm m+n+Tm=—"3S(m+n+Tm)

LW =m Sm

Let (A,a) be any T-algebra and let [x,y,t] : m + n + Tm — A be any morphism.
Then the equations

[xay7t]ti : L(Z) = [:L’,y,t]ti - Sinl - 7751 = xﬁ : Ufn =
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and

[LC, y?ﬂﬁ ’ R(Z) = [‘T, 3/715]1:i : 77n51+n+Tm -inr - 77777; = [I,y,t] -inr - 77777; =t 77177;
hold, thus, a.(A,a) E LY (z,y,t) = R (z,y,t) if and only if t - nl, = x

Put

S
inm Tmtn+T

LW =p——m+n+Tm— (m+n+Tm)

inr m+n+Tm

m+n+Tm——Sm+n+Tm)

T

Let (A,a) be any T-algebra and let [x,y,t] : m + n + Tm — A be any morphism.
Then the equations
[l‘,y,t]ﬁ AR [[L’, yat]ﬂ ’ 77;5;L—|—n—|—Tm -inm = [27, y?ﬂ inm =y

and )
[a:,y,t]ﬁ-R(“) = [x,y,t]ﬁ~ni+n+Tm~inr-T: [z, y,t]-inr -7 =¢-7T

hold, thus, a,(A,a) = LW (z,y,t) = R (x,y,t) if and only if t - 7 = y.

Put
aTm 5 inr n
@) = STm - TTm—- Tm m+n+Tm ++T (m+n+Tm)
R = §Tm =22 S(m + n + Tm)
Then the equations
[I, Y, t]ﬁ L(“Z) = [I, Y, t]ﬁ 'ni+n+Tm'inr'M%'aTm = [1'7 Y, t] 'inr'/ﬁﬁ'aTm - t',uﬁ'aTm

and
[z, y, 1) - RO = [z, y,t]* - Sinr = a - ay - St

hold, thus, a.(A,a) = LU (z,y,t) = RO (x,y,t) if and only if ¢ is an S-homo-
morphism from o, (Tm, ul) to a.(A4,a).

We proved so far that a.(A4,a) = L, (x,y,t) = R.(z,y,t) if and only if ¢ is the unique
T-homomorphism from (T'm, u!) to (A, a) (since o is assumed to be bijective on homo-
morphisms from (T'm, ul) to (A, a)) that extends x : m — A and satisfies t - 7 = y (or
equivalently, the equality 7(x) = y holds).

Suppose that x, y is given and y = 7(x) holds, then it suffices to put ¢ to be the
extension of z. If z, y are given such that y # 7(z), then there is no extension of x into
a T-homomorphism ¢ since this would imply y = 7(x).

We now reduce the “large” equation L., R, to a finitary one. Consider all morphisms
f :p — STm with p finitely presentable and suppose that for every such f there exists
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a T-algebra (Af,ar) and a triple [z, ys, t¢] : m +n+Tm — Ay such that yr # 7(xy)
and the diagram

id+id+f

L, zpygtrlt
m+n+p m—i—n—i—STmR:§S(m+n+Tm)M>a*(Af7af)

commutes. Since

[T e (Ar ap) = (] J(Ar  ar))
f

f
holds, this shows that the unique induced morphism

[z,y,t]* : S(m +n+Tm) — a*(H(Af,af))
f

coequalizes L,, R, and y # 7(x) holds, a contradiction.
Therefore we may choose f : p — ST'm with p finitely presentable such that the
equation

id+i Lr
m+n+pd+—d+f>m+n+STm?;S(m+n+Tm) (4.1)

does the same job as L., R,;. Express now S(m + n + Tm) as a filtered colimit with the
colimit cocone

S(id+id+g) : S(m+n+q) — S(m+n+Tm), g:q— Tm with g finitely presentable

and use the fact that m +mn+p is finitely presentable to obtain the following factorization
of (4.1)

Ar
4 id+id+f R S(id+id+g)
m+n+p——=> m+n+STm——=Sm+n+q) ——Sm+n+Tm) (42)
_ J

pr

through a colimit. In this way we obtain the desired )., p,. Clearly, if [z,y,t]* coequal-
izes (4.1) then [z,y,t - g]* coequalizes \;, p,. Conversely, if [z,y,t]* coequalizes M., p;,
let t* : Tm — A be the unique extension of x to a T-homomorphism. Then [z,y, t*]*
coequalizes (4.1). n

4.4. REMARK.

1. The equivalence of (1) and (3) of the above theorem is indeed Beth’s Definability
Theorem for finitary monads: the implication (1) = (3) says that every implicitly
defined operation (i.e., one preserved by S-homomorphisms) is defined explicitly by
a system of S-equations. The implication (3) = (1) is then the trivial part of
Beth’s Definability Theorem: every explicitly defined operation is preserved by S-
homomorphisms.
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2. Let us stress that the proof of (2) = (3) in Theorem 4.3 is non-constructive which
makes it, in general, difficult to find the definability S-equation.

3. One can prove the equivalence of (1) and (3) in a more general setting, imposing no
restriction on £, S and T whatsoever. One has to require S-definability of every
7: X — TY, where X and Y are arbitrary objects of #. In proving (1) = (3)
one defines an equation

L,
Y+X+STYR:§S(Y+X+TY)

in the same way as in the above proof. Of course, one cannot expect to reduce the
above system to a “smaller” one.

4. We show in Example 4.8 below that one cannot weaken the condition (2) of the
above theorem to the requirement that «, is fully faithful when restricted to .o,
the category of T-algebras free on finitely presentable objects of 2.

4.5. EXAMPLE. It is well-known (see [PS]) that the change-of-ring functor o, : T-Mod —
S-Mod between the categories of left modules is fully faithful if and only if a : S — T
is an epimorphism of rings with a unit. This fits into our framework since every ring S
with a unit can be considered as a finitary monad by assigning (an underlying set of) a
free left S-module S™*) on X to every set X. Moreover, ring homomorphisms correspond
then precisely to morphisms of the corresponding monads.

Observe that an n-tuple 7 : n — T™) of m-ary T operations is just a matrix (7;;) of
elements of T" having n rows and m columns. We will denote this matrix by 7 again.

Suppose A is any left T-module and x : m — A, y : n — A are “vectors” of
elements of A. Then 7(z) = y holds if and only if the system

T-T=1y

of linear equations holds in A.
Analogously, an S-equation

Ar
m o+ n 4 p— 3 Stmtntd

consists of a pair A\,, p, of matrices over S having (m + n + p) rows and (m + n + q)
columns.

Theorem 4.3 then gives us the following characterization of ring epimorphisms « :
S—1T:

For every pair n, m of natural numbers and for every (n X m)-matrix T of elements
of T there exist ((m +mn+ p) X (m +n + q))-matrices \;, p, of elements of S, such
that, for every left T-module A, and each pair x, y of vectors of A, the system

T-x =y
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of linear equations holds in A if and only if the system

xZ Xz
Aol y | =pr- | Y
t t

has a solution t in A.

4.6. ExaMPLE. Considerations similar to the previous example can be made to charac-
terize epimorphisms of monoids.

If we identify a monoid S with a one-object category, then the category S-Act of left
S-actions and equivariant maps can be identified with the presheaf category [S°P, Set].

Given a monoid homomorphism a : S — T, then the restriction-along-a functor
[a°?,Set] : [T°P,Set] — [S°,Set| is fully faithful if and only if @ : S — T is an
epimorphism of monoids, as proved in Example 3.13(3) of [BV].

Now every monoid S in sets defines a finitary monad S on the category of sets by
putting X — S x X and, analogously, every monoid homomorphism a : S — T defines
a monad morphism « : S — T having ax =a x X : § x X — T x X as components.
Moreover, the restriction-along-a functor is of the form «,, since the categories of left
actions are precisely the categories of Eilenberg-Moore algebras for the respective monads.
We conclude:

The monad morphism « is dense if and only if a is an epimorphism of monoids.

Identify every 7:n — T x m with an n-tuple (7;, ;). Suppose that A is equipped with
a left T-action denoted by o. Then for x : m — A and y : n — A the equality 7(z) =y
holds if and only if the system of equations

yi=T1iowj, t=0,...,n—1

holds in A. Now we can use Theorem 4.3 to characterize monoid epimorphisms in the
style of Example 4.5.

Recall the functors A, : o — o/t and K, : Hs — 71 (see (3.1) and (3.2)).

4.7. PROPOSITION. The following are equivalent:
1. « is a dense monad morphism.
2. The composite Ar - Ay : oty — K" is a dense functor.

3. The composite Kt - K, : #s — " is a dense functor.
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PRroOOF. To prove (1) < (2) observe that the diagonal of the square (3.3) is the functor

At - A,. Tt is fully faithful (i.e., Ap - A, is dense) if and only if «, is fully faithful, since
the horizontal arrows of (3.3) are fully faithful (see Example 2.9).

The proof of (1) < (3) is analogous: instead of (3.3) one uses the commutative square

T [ Set]

a*l l[KZp,Set] (43)
a%/S — [<%/Sopv Set]
Ks

(which is even a bipullback, as proved by Fred Linton in [Lis)). n

4.8. EXAMPLE. We give an example of a functor a, : #® — #T that is not fully
faithful, although its restriction to %% is fully faithful.

Given a finitary endofunctor H : # — ¢, consider the free monad F on H. Then
it is easy to see that #T is isomorphic to the category H-Alg of H-algebras and their
homomorphisms.

We define the full subcategory H-Alg,, of iterative H-algebras as follows: an algebra
a: HA — A is iterative, if for any e : X — HX + A there is a unique ef : X — A

making the diagram

et
_

X
el [a,A]

HX—i—AmHA—i—A

commutative. (See [AMV] for the motivation of this concept.)

It can be proved that H-Alg, is reflective in H-Alg. Thus, there exist free iterative
H-algebras, RA, on any object A. The monad R of free iterative algebras, called the
rational monad of H, is finitary and there is a canonical monad morphism « : F — R.
The category #® is identified as the category of Elgot algebras in [AMV], i.e., structures
(A, a, (—)") consisting of a H-algebra (A, a) and a mapping (=)' : # (X, HX + A) —
H (X, A) satisfying certain axioms. However, the functor o, : #® — #F is not fully
faithful in general, although its restriction to J#g is always fully faithful, see Example 4.3
of [AMV].

Detecting, when the restriction of «a, to Kleisli category is fully faithful, is easy:
4.9. PROPOSITION. The following are equivalent:

1. The restriction of o, to 7 is fully faithful.

2. The functor K, : Hs — 71 is dense.
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Proor. Consider the diagram

Y

e s T LT Set]

a*l l[K&p,Set]

5 [, Set
Ks

where the square is the diagram (4.3). The passage from %t to [#”, Set] is the functor
K, and it is fully faithful if and only if «, - Kt is fully faithful. [

4.10. REMARK. Proposition 4.9 and Example 4.8 form a counterexample to Proposi-
tion 5.1 of [Da]:

Given a dense functor N : . — Jr the composite KpN : £ — #'" is dense.

Were the above true, then o, : #T — ¢ would be fully faithful whenever its restriction
to 7 is fully faithful. This is seen as follows: Suppose that the restriction of a, to 7 is
fully faithful. By Proposition 4.9 we conclude that K, is dense. By the above claim the

composite K1K, : #s — # " is dense. Thus, the diagonal .[?]I‘\I?a of the square

7 [ S

a*l J[Kﬁp,Set]

%/S = [%/Sop7 Set]
Ks

is fully faithful. We proved that «, is fully faithful. By considering o : F — R of
Example 4.8 we obtain a contradiction.

5. Position of Dense Monad Morphisms in the Category of Monads

In this section we locate dense monad morphisms as those in between the class of strong
epimorphisms and the class of epimorphisms in the category

I\/Indﬁn(%/)

of finitary monads on # and their morphisms. The main result of this section, The-
orem 5.4 below, then characterizes dense monad morphisms by a simple orthogonality
condition. This is used for showing that dense monad morphisms are the “epis” of a
factorization system on Mndg, (%), see Proposition 5.8.

The following proposition answers in negative the first question of Exercise 3.3.6(d)
in [M].
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5.1. PROPOSITION. v : S — T is an epimorphism of monads if and only if c, : AT —
S is injective on objects.

PROOF. Form the cokernel of o in Mndg, (%) and consider the unique connecting mor-
phism 7 : coker(ar) — T:

S T
T —— coker(a) id (5.1)
. A

id T

Then « is an epimorphism if and only if 7 above is an isomorphism. Since 7 is (always)
a split epimorphism, it is dense by Lemma 3.9, hence

T, J{T N %coker(a)

is fully faithful.

It therefore suffices to prove that «, is injective on objects if and only if 7, is bijective
on objects.

By Proposition 2.12 coker(«)-algebras are pairs ((A,a), (A,b)) of T-algebras with
(A, a) = a.(A,b). Therefore a, is injective on objects if and only if coker(«)-algebras
are pairs ((A,a), (A, a)) of T-algebras.

Hence a, is injective on objects if and only if 7, (or, equivalently, 7) is an isomorphism.

]

5.2. COROLLARY. Every dense monad morphism is an epimorphism.

PROOF. Suppose a : S — T is dense and let a.(A,a) = a.(B,b). Then necessarily
A = B and identity is a morphism from «.(A,a) to a,(A,b). Since a, is fully faithful,
identity is a morphism from (A4, a) to (A4,b). =

5.3. EXAMPLE. It has been proved by John Isbell [I;] that the monad morphism « :
S — T, where S is the monad of semigroups and T is the monad of monoids, is an
epimorphism in Mndg,(Set). This can also easily be seen by employing Proposition 5.1,
since the forgetful functor

a : Monoids — Semigroups

is injective on objects. However, «, is not fully faithful, thus, the above « is an example
of an epimorphism which is not dense in Mndg, (Set).
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Recall from [K;] that, in any category, a morphism a : A — B is called orthogonal
to a morphism b : C' — D, if for every commutative square

A——B
CT>D

there exists a unique diagonal morphism d : B — (' making both triangles commutative.
The orthogonality characterization of dense monad morphisms is the following one:

5.4. THEOREM. The following are equivalent:
1. a:S — T is dense.

2. « is orthogonal to every monad morphism of the form (ma,mg) : {f,f}} —

(A, A) x (B, B).

PRrOOF. Consider the following diagram

S

T
l(di))
{{f7 f}}<ﬁ><<A7 A>> X <<B7 B»
in Mndg, (). Then the (necessarily unique) diagonal monad morphism T — {{f, f}}
witnesses precisely the fact that «, is fully faithful. n

Recall from [K;] that strong epimorphisms are defined as those morphisms that are
orthogonal to every monomorphism. The above theorem has then the following corollary:

5.5. COROLLARY. Every strong epimorphism in Mndg, (%) is dense.

PROOF. Observe that every morphism of the form (w4, 75) : {{f, f}} — (A, A) x (B, B))
is a monomorphism. [

5.6. ExXAMPLE. We provide an example of a dense monad morphism that is not strong
epimorphic.

We will use the fact that the category Fin(Set,Set) is equivalent to the category
[Sety,, Set], where E : Sets, — Set is the inclusion of a small full subcategory repre-
senting finite sets.

First observe that regular epimorphisms in the category [Sety,,Set| coincide with
(pointwise) epimorphisms. Thus, the horizontal composite 70 = 7K' - Ho = H'o - 7K :
HK — H'K’is a regular epimorphism for every pair 7 : H — H', 0 : K — K’ of
regular epimorphisms.

Observe further that the functor H — Fp on Fin(Set,Set) which assigns to every
finitary endofunctor H the underlying functor Fj of the free monad Fy on H preserves
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regular epimorphisms: for let 7: H — H' be pointwise an epimorphism. Then we have
a chain 7y, 7, ..., of connecting epimorphisms:

wo,1 1,2 w2,3 Wk—1,k Wi, k+1 Wh41,k+2

WQ Wl o WQ : 4)Wk4+>Wk+14>

/ / / / /
W Wi Wy — — W, — W, .
w wy 2 Wy 3 W 1k Wi k+1 k+1,k+2

!
0,1

1,
where the horizontal chains have Fy, resp. Fpy as a colimit, ie., Wy = W] = Id ,
Wi = HW +1d, W, = HW| +1d, and wo; = inr : Id — H +1d, wy, = inr : I[d —
H' +1d, wgt1 442 = Hwy e +1id. The connecting morphisms are defined by putting
o =1d : Id — Id and 7441 = 77 +id : Wiy — W,QH and they are all pointwise
epimorphisms. So is the induced connecting morphism F; : colim W), — colim W}.

Thus, a monad morphism is a regular epimorphism in Mndg,(Set) if and only if it
is a regular epimorphism as a natural transformation in Fin(Set, Set), see. e.g., Theo-
rem 21.6.3(d) of [S].

Therefore regular epimorphisms in Mndg, (Set) are closed under composition and thus
strong epimorphisms coincide with regular epimorphisms in Mndg;,, (Set) by Proposition 3.8
of [Kl]

We conclude that the full inclusion «, : Groups — Monoids is an example of a dense
a such that « is not strong epimorphic. This follows from the fact that « is not (regular)
epi in Fin(Set, Set).

Recall from, e.g., [FK] the following definition.

5.7. DEFINITION. A factorization system (&, .#') on a category & consists of two classes
of morphisms & and M such that the following three conditions are satisfied:

1. Both & and # contain all isomorphisms and are closed under composition.

2. Every morphism in £ can be factored as a morphism in & followed by a morphism

m M.

3. For every commutative square

e
—

A B
C——D

with e € & and m € M, there exists a unique diagonal morphism d : B — C
making both triangles commutative.

Given a factorization system (&,.#), it can be proved that elements of & behave
very much like epimorphisms and elements of .# are then the corresponding “monomor-
phisms”. We prove now that dense monad morphisms are epimorphisms in this broad
sense:
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5.8. PROPOSITION. The class of dense monad morphisms is an “epi” part of a factoriza-
tion system on Mndg, (J£).

PRrROOF. Denote by 57 the class of all morphisms of the form

(ma,mp)  {{f, [ — (A, A) x (B, B))

Then (by Theorem 5.4) the class of dense morphisms is of the form J#7, i.e., dense monad
morphisms are exactly those orthogonal to the class 7. Form the class 1, i.e., 1!
is the class of all morphisms orthogonal to dense morphisms. Then the pair

(T, M)

constitutes a prefactorization system on Mndg,(#") in the sense of [FK]|. To prove that
it is in fact a factorization system, we only need to know that every monad morphism
factors as a dense morphism followed by a morphism in s (Corollary 2.2.2 of [FK]).
This fact, however, follows immediately from Lemma 2.3.2 of [FK], since Mndg, (%),
being locally finitely presentable and well-powered, has intersections of arbitrary families
of monomorphisms in J#1!. n

We were not able to obtain an explicit characterization of morphisms in s# . However,
we have:

Every monad morphism o : S — T such that o : #°5 — HT reflects isomor-
phisms is in 1.

This follows from the fact that any left adjoint between sufficiently complete categories can
be factored as a reflection onto a full subcategory followed by an isomorphism-reflecting
left adjoint (see, e.g., Proposition 5.1 of [D4]).

5.9. OPEN PROBLEM. Are the “monos” that correspond to dense monad morphisms pre-
cisely those monad morphisms a for which o reflects isomorphisms?

6. Possible Generalizations
The above results can be easily generalized in two ways:

1. All main results of this paper go through verbatim if one systematically replaces
locally finitely presentable categories and finitary monads by locally D-presentable
categories and D-accessible monads for a limit doctrine D, as introduced in [ABLR].

Besides an obvious generalization to A\-presentable categories and \-accessible mon-
ads for an uncountable regular cardinal A (see [GU]) we obtain thus, e.g., results for
the interesting doctrine D of finite products (replacing thus filtered colimits with
sifted colimits).
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2. One can also start with a symmetric monoidal closed category ¥ that is locally
finitely presentable as a monoidal category (see [K3]) and choose it as a base category
for category theory enriched over ¥, see [Ks]. An example of such a base category
is the category Ab of Abelian groups and group homomorphisms. An Ab-category
is then one that has Abelian groups as hom-objects and its composition maps are
group homomorphisms.

Replacing systematically categories and functors by ¥ '-categories and ¥ -functors
one obtains the corresponding results on dense morphisms between 7’-monads.

References

[ABSV] J. Adamek, R. El Bashir, M. Sobral and J. Velebil, On functors which are lax
epimorphisms, Theor. Appl. Categ. 8 (2001), 509-521

[ABLR] J. Adamek, F. Borceux, S. Lack and J. Rosicky, A classification of accessible
categories, Jour. Pure Appl. Algebra 175 (2002), 7-30

[AMV]  J. Addmek, S. Milius and J. Velebil, Elgot algebras, Logical Methods in Com-
puter Science Vol. 2(5:4) (2006), 1-31

[AR] J. Adamek and J. Rosicky, Locally Presentable and Accessible Categories, Cam-
bridge University Press, 1994

[BV] R. El Bashir and J. Velebil, Simultaneously reflective and coreflective subcat-
egories of presheaves, Theor. Appl. Cat., 10 (2002), 410-423

[Be] E. W. Beth, On Padoa’s method in the theory of definition, Indag. Math. 15
(1953), 330-339

[Bi] G. J. Bird, Limits in 2-categories of locally presented categories, Ph. D. Thesis,
The University of Sydney, 1984

[C] C. C. Chang, Algebraic analysis of many-valued logics, Trans. Amer. Math.
Soc. 88 (1958), 467-490

(D] B. J. Day, On adjoint-functor factorisation, in Category Seminar, Lecture
Notes in Mathematics Vol. 420, Springer 1974, 1-19

[Ds] B. J. Day, Density presentations of functors, Bull. Austral. Math. Soc. 16
(1977), 427-448

[FK] P. J. Freyd and G. M. Kelly, Categories of continuous functors I, J. Pure Appl.
Alg., 2 (1972), 169-191

[GU]| P. Gabriel and F. Ulmer, Lokal prasentierbare Kategorien, Lecture Notes in

Mathematics 221, Springer 1971



DENSE MORPHISMS OF MONADS 399

1] J. R. Isbell, General functorial semantics, Amer. J. Math. XCIV (1972), 535—
594

L] J. R. Isbell, Functional implicit operations, Israel J. Math. 15 (1973), 185-188

[15] J. R. Isbell, Generic algebras, Trans. Amer. Math. Soc 275.2 (1983), 497-510

K] G. M. Kelly, Monomorphisms, epimorphisms and pull-backs, J. Aust. Math.

Soc. IX (1969), 124142

[Ks] G. M. Kelly, Basic Concepts of Enriched Category Theory, London Math. Soc.
Lecture Notes Series 64, Cambridge Univ. Press, 1982, also available as TAC
reprint via
http://www.tac.mta.ca/tac/reprints/articles/10/tr10abs.html

K] G. M. Kelly, Structures defined by finite limits in the enriched context I,
Cahiers de Top. et Géom. Diff. XXIII (1982), 3-42

[KP] G. M. Kelly and A. J. Power, Adjunctions whose counits are coequalizers and
presentations of enriched monads, J. Pure Appl. Alg., 89 (1993), 163-179

(L] S. Lack, On the monadicity of finitary monads, J. Pure Appl. Alg. 140 (1999),
65-73
[Liy] F. E. J. Linton, Some aspects of equational categories, in Proceedings of the

Conference on Categorical Algebra, La Jolla 1965 (eds. S. Eilenberg and S.
MacLane), 84-94

[Lis] F. E. J. Linton, An outline of functorial semantics, Lecture Notes in Mathe-
matics Vol. 80, Springer 1969, 7-50

M] E. G. Manes, Algebraic Theories, Graduate Texts in Mathematics, Springer,
1976
[PS] N. Popescu and T. Spircu, Quelques observations sur les épimorphismes plats

(a gauche) d’anneaux, J. Algebra 16 (1970), 40-59
[S] H. Schubert, Categories, Springer-Verlag, 1972
(W] G. Wraith, Algebraic Theories, Aarhus University Lecture Notes No. 22, 1975

Department of Mathematics, University of Patras, Patras, Greece

Faculty of Electrical Engineering, Czech Technical University, Prague, Czech Republic
Email: pkarazer@math.upatras.gr

velebil@math.feld.cvut.cz

This article may be accessed at http://www.tac.mta.ca/tac/ or by anonymous ftp at
ftp://ftp.tac.mta.ca/pub/tac/html/volumes/18/14/18-14.{dvi,ps,pdf}



THEORY AND APPLICATIONS OF CATEGORIES (ISSN 1201-561X) will disseminate articles that
significantly advance the study of categorical algebra or methods, or that make significant new contribu-
tions to mathematical science using categorical methods. The scope of the journal includes: all areas of
pure category theory, including higher dimensional categories; applications of category theory to algebra,
geometry and topology and other areas of mathematics; applications of category theory to computer
science, physics and other mathematical sciences; contributions to scientific knowledge that make use of
categorical methods.

Articles appearing in the journal have been carefully and critically refereed under the responsibility of
members of the Editorial Board. Only papers judged to be both significant and excellent are accepted
for publication.

Full text of the journal is freely available in .dvi, Postscript and PDF from the journal’s server at
http://www.tac.mta.ca/tac/ and by ftp. It is archived electronically and in printed paper format.

SUBSCRIPTION INFORMATION. Individual subscribers receive abstracts of articles by e-mail as they
are published. To subscribe, send e-mail to tac@mta.ca including a full name and postal address. For in-
stitutional subscription, send enquiries to the Managing Editor, Robert Rosebrugh, rrosebrugh@mta. ca.

INFORMATION FOR AUTHORS. The typesetting language of the journal is TEX, and KTEX2e
strongly encouraged. Articles should be submitted by e-mail directly to a Transmitting Editor. Please
obtain detailed information on submission format and style files at http://www.tac.mta.ca/tac/.

MANAGING EDITOR. Robert Rosebrugh, Mount Allison University: rrosebrugh@mta.ca
TEXNICAL EDITOR. Michael Barr, McGill University: mbarr@barrs.org

TRANSMITTING EDITORS.

Richard Blute, Université d’ Ottawa: rblute@uottawa.ca

Lawrence Breen, Université de Paris 13: breen@math.univ-parisi13.fr
Ronald Brown, University of North Wales: r.brown@bangor.ac.uk

Aurelio Carboni, Universita dell Insubria: aurelio.carboni@uninsubria.it
Valeria de Paiva, Xerox Palo Alto Research Center: paiva@parc.xerox.com
Ezra Getzler, Northwestern University: getzler(at)math(dot)northwestern(dot)edu
Martin Hyland, University of Cambridge: M.Hyland@dpmms.cam.ac.uk

P. T. Johnstone, University of Cambridge: ptj@dpmms.cam.ac.uk

G. Max Kelly, University of Sydney: maxk@maths.usyd.edu.au

Anders Kock, University of Aarhus: kock@imf .au.dk

Stephen Lack, University of Western Sydney: s.lack@uws.edu.au

F. William Lawvere, State University of New York at Buffalo: wlawvere@acsu.buffalo.edu
Jean-Louis Loday, Université de Strasbourg: loday@math.u-strasbg.fr

Ieke Moerdijk, University of Utrecht: moerdijk@math.uu.nl

Susan Niefield, Union College: niefiels@union.edu

Robert Paré, Dalhousie University: pare@mathstat.dal.ca

Jiri Rosicky, Masaryk University: rosicky@math.muni.cz

Brooke Shipley, University of Illinois at Chicago: bshipley@math.uic.edu
James Stasheff, University of North Carolina: jds@math.unc.edu

Ross Street, Macquarie University: street@math.mq.edu.au

Walter Tholen, York University: tholen@mathstat.yorku.ca

Myles Tierney, Rutgers University: tierney@math.rutgers.edu

Robert F. C. Walters, University of Insubria: robert.walters@uninsubria.it
R. J. Wood, Dalhousie University: rjwood@mathstat.dal.ca



