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Q-MODULES ARE Q-SUPLATTICES

ISAR STUBBE

Abstract. It is well known that the internal suplattices in the topos of sheaves on a
locale are precisely the modules on that locale. Using enriched category theory and a
lemma on KZ doctrines we prove (the generalization of) this fact in the case of ordered
sheaves on a small quantaloid. Comparing module-equivalence with sheaf-equivalence
for quantaloids and using the notion of centre of a quantaloid, we refine a result of F.
Borceux and E. Vitale.

1. Introduction

When studying topos theory one inevitably must study order theory too: if only because
many advanced features of topos theory depend on order-theoretic arguments using the
internal Heyting algebra structure of the subobject classifier in a topos, as C. J. Mikkelsen
[1976] illustrates plainly. One of the results of [Mikkelsen, 1976] states that an ordered
object in an elementary topos E is cocomplete, i.e. it is an internal suplattice, if and
only if the “principal downset embedding” from that object to its powerobject has a left
adjoint in Ord(E). In the case of a localic topos, it turns out that the internal suplattices
in Sh(Ω) are precisely the Ω-modules, and supmorphisms are just the module morphisms
[Joyal and Tierney, 1984; Pitts, 1988].

Now consider quantaloids (i.e. Sup-enriched categories) as non-commutative, multi-
typed generalization of locales. Using the theory of categories enriched in a quantaloid,
and building further on results by B. Walters [1981] and F. Borceux and R. Cruciani
[1998], I. Stubbe [2005b] proposed the notion of ordered sheaf on a (small) quantaloid Q
(or Q-order for short): one of several equivalent ways of describing a Q-order is to say
that it is a Cauchy complete category enriched in the split-idempotent completion of Q.
There is thus a locally ordered category Ord(Q) of Q-orders and functors between them.
If one puts Q to be the one-object suspension of a locale Ω, then Ord(Ω) is equivalent
to Ord(Sh(Ω)). (And if one puts Q to be the one-object suspension of the Lawvere reals
[0,∞], then Ord([0,∞]) is equivalent to the category of Cauchy complete generalized
metric spaces.)

In this paper we shall explain how Mod(Q), the quantaloid of Q-modules, is the
category of Eilenberg-Moore algebras for the KZ doctrine on Ord(Q) that sends a Q-order
A to its free cocompletion PA. The proof of this fact is, altogether, quite straightforward:
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a lot of the hard work – involving quantaloid-enriched categories – has already been done
elsewhere [Stubbe, 2005a, 2005b, 2006], so we basically only need a lemma on KZ doctrines
to put the pieces of the puzzle together. Applied to a locale Ω, and up to the equivalence
of Ord(Ω) with Ord(Sh(Ω)), this KZ doctrine sends an ordered sheaf on Ω to (the sheaf of)
its downclosed subobjects, so our more general theorem provides an independent proof of
the fact that Ω-modules are precisely the internal cocomplete objects of Ord(Sh(Ω)). This
then explains the title of this paper: even for a small quantaloid Q, “Q-modules are Q-
suplattices”! We end the paper with a comment on the comparison of (small) quantaloids,
their categories of ordered sheaves, their module categories, and their centres; thus we
refine a result of F. Borceux and E. Vitale [1992].

In some sense, this paper may be considered a prequel to [Stubbe, 2007]: we can now
rightly say that the latter paper treats those Q-suplattices (in their guise of cocomplete
Q-enriched categories) that are totally continuous (or supercontinuous, as some say). It is
hoped that this will lead to a better understanding and further development of “dynamic
domains”, i.e. “domains” in Ord(Q), so that applying general results to either Ω or [0,∞]
then gives interesting results for “constructive domains” or “metric domains”.

2. Preliminaries

Quantales and quantaloids. Let Sup denote the category of complete lattices and
maps that preserve arbitrary suprema (suplattices and supmorphisms): it is symmetric
monoidal closed for the usual tensor product. A quantaloid is a Sup-enriched category; it
is small when it has a set of objects; and a one-object quantaloid (most often thought of
as a monoid in Sup) is a quantale. A Sup-functor between quantaloids is a homomorphism;
QUANT denotes the (illegitimate) category of quantaloids and their homomorphisms. A
standard reference on quantaloids is [Rosenthal, 1996].

For a given quantaloid Q we write Idm(Q) for the new quantaloid whose objects are
the idempotent arrows in Q, and in which an arrow from an idempotent e: A // A to an
idempotent f : B // B is a Q-arrow b: A // B satisfying b ◦ e = b = f ◦ b. Composition in
Idm(Q) is done as in Q, the identity in Idm(Q) on some idempotent e: A // A is e itself,
and the local order in Idm(Q) is that of Q. (Note that Idm(Q) is small whenever Q is.) It
is easy to verify that the quantaloid Idm(Q) is the universal split-idempotent completion
of Q in QUANT, as the next lemma spells out.

2.1. Lemma. If R is a quantaloid in which idempotents split, then, for any quantaloid Q,
the full embedding i:Q // Idm(Q): (f : A // B) 7→ (f : 1A

// 1B) determines an equivalence
of quantaloids − ◦ i: QUANT(Idm(Q),R) // QUANT(Q,R).

When Q is a small quantaloid, we use Mod(Q) as shorthand for QUANT(Qop, Sup):
the objects of this (large) quantaloid are called the modules on Q. Since idempotents
split in Sup, it follows directly from 2.1 that Mod(Q) ' Mod(Idm(Q)).

Quantaloid-enriched categories. A quantaloid is a bicategory and therefore it may
serve itself as base for enrichment. The theory of quantaloid-enriched categories, functors
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and distributors is surveyed in [Stubbe, 2005a] where also the appropriate references are
given. To make this paper reasonably self-contained we shall go through some basic
notions here; we follow the notations of op. cit. for easy cross reference.

To avoid size issues we work with a small quantaloid Q. A Q-category A consists of
a set A0 of ‘objects’, a ‘type’ function t: A0

//Q0, and for any a, a′ ∈ A0 a ‘hom-arrow’
A(a′, a): ta // ta′ in Q; these data are required to satisfy

A(a′′, a′) ◦ A(a′, a) ≤ A(a′′, a) and 1ta ≤ A(a, a)

for all a, a′, a′′ ∈ A0. A functor F : A // B betweenQ-categories is a map A0
// B0: a 7→ Fa

that satisfies
ta = t(Fa) and A(a′, a) ≤ B(Fa′, Fa)

for all a, a′ ∈ A0. For parallel functors F, G: A //
// B we put F ≤ G when 1ta ≤ B(Fa,Ga)

for every a ∈ A0. With the obvious composition and identities we obtain a locally ordered
category Cat(Q) of Q-categories and functors.

To give a distributor (or module or profunctor) Φ: A c // B between Q-categories is to
specify for any a ∈ A0, b ∈ B0, an arrow Φ(b, a): ta // tb in Q, such that

B(b, b′) ◦ Φ(b′, a) ≤ Φ(b, a) and Φ(b, a′) ◦ A(a′, a) ≤ Φ(b, a)

for every a, a′ ∈ A0, b, b′ ∈ B0. Two distributors Φ: A c // B, Ψ: B c // C compose: we write
Ψ⊗ Φ: A c // C for the distributor with elements(

Ψ⊗ Φ
)
(c, a) =

∨
b∈B0

Ψ(c, b) ◦ Φ(b, a).

The identity distributor on a Q-category A is A: A c // A itself, i.e. the distributor with
elements A(a′, a): ta // ta′. We order parallel distributors Φ, Φ′: A c //c // B by “elementwise
comparison”: we define Φ ≤ Φ′ to mean that Φ(b, a) ≤ Φ′(b, a) for every a ∈ A0, b ∈ B0.
It is easily seen that Q-categories and distributors form a quantaloid Dist(Q).

Every functor F : A // B between Q-categories represents an adjoint pair of distribu-
tors:

- the left adjoint B(−, F−): A c // B has elements B(b, Fa): ta // tb,

- the right adjoint B(F−,−): B c // A has elements B(Fa, b): tb // ta.

The assignment F 7→ B(−, F−) is a faithful 2-functor from Cat(Q) to Dist(Q); it gives
rise to a rich theory of Q-categories. We shall briefly explain two notions that play an
essential rôle in the current work: cocompleteness and Cauchy completeness.

Cocompleteness and modules. Given a distributor Φ: A c // B and a functor F : B // C,
a functor K: A // C is the Φ-weighted colimit of F when it satisfies

C(K−,−) = [Φ, C(F−,−)]
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(and in that case it is essentially unique). The right hand side of this equation uses the
adjunction between ordered sets

Dist(Q)(C, A)

Φ⊗−
((

⊥
[Φ,−]

hh Dist(Q)(C, B)

which surely exists since Dist(Q) is a quantaloid. A functor is cocontinuous if it preserves
all weighted colimits that happen to exist in its domain; and a Q-category is cocomplete
if it admits all weighted colimits. We write Cocont(Q) for the subcategory of Cat(Q) of
cocomplete Q-categories and cocontinuous functors. Much more can be found in [Stubbe,
2005a, Sections 5 and 6].

As stated in [Stubbe, 2006, 4.13] (but see also the references contained in that paper),
Mod(Q) and Cocont(Q) are biequivalent locally ordered categories. Indeed, a Q-module
M :Qop // Sup determines a Q-category AM : as object set take (AM)0 = ]X∈Q0MX, then
say that tx = X precisely when x ∈ MX, and for x ∈ MX, y ∈ MY let AM(y, x) =∨
{f : X // Y | Mf(y) ≤ x}. A detailed analysis of why this AM is cocomplete, and why

every cocomplete Q-category arises in this way, is precisely the subject of [Stubbe, 2006];
we shall not go into details here.

2.2. Corollary. For a small quantaloid Q,

Cocont(Q) ' Mod(Q) ' Mod(Idm(Q)) ' Cocont(Idm(Q))

are biequivalent locally ordered categories.

Cauchy completeness and orders. A Q-category C is Cauchy complete if for any
other Q-category A the map

Cat(Q)(A, C) // Map(Dist(Q))(A, C): F 7→ C(−, F−)

is surjective, i.e. when any left adjoint distributor (also called Cauchy distributor) into C is
represented by a functor. This is equivalent to the requirement that C admits any colimit
weighted by a Cauchy distributor; and moreover such weighted colimits are absolute in
the sense that they are preserved by any functor [Street, 1983]. We write Catcc(Q) for
the full subcategory of Cat(Q) whose objects are the Cauchy complete Q-categories. For
more details we refer to [Stubbe, 2005a, Section 7].

Now we have everything ready to state an important definition from [Stubbe, 2005b].

2.3. Definition. For a small quantaloid Q, we write Ord(Q) for the locally ordered
category Catcc(Idm(Q)), and call its objects ordered sheaves on Q, or simply Q-orders.

In fact, the definition of ‘Q-order’ in [Stubbe, 2005b, 5.1] is not quite this one: instead
it is given in more “elementary” terms (avoiding the split-idempotent construction). But
it is part of the investigations in that paper (more precisely in its Section 6) that what we
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give here as definition is indeed equivalent to what was given there; and for the purposes
of the current paper this “structural” definition is best.

The notion of Q-order has the merit of generalizing two – at first sight quite different –
mathematical structures: On the one hand, taking Q to be the (one-object suspension of)
the Lawvere reals [0,∞], Ord([0,∞]) is the category of Cauchy complete generalized metric
spaces [Lawvere, 1973]. On the other hand, taking Q to be the (one-object suspension
of) a locale Ω, Ord(Ω) is the category of ordered objects in the topos Sh(Ω) [Walters,
1981; Borceux and Cruciani, 1998]; obviously, this example inspired our terminology. For
details we refer to [Stubbe, 2005b].

3. Monadicity of Q-modules over Q-orders

Recall from [Kock, 1995] that a Kock–Zöberlein (KZ) doctrine on a locally ordered 2-
category C is a monad (T : C // C, η: IdC +3 T, µ: T ◦ T +3 T ) for which T (ηC) ≤ ηTC for
any C ∈ C. This precisely means that “T -structures are adjoint to units”. Further on we
shall encounter an instance of the following lemma.

3.1. Lemma. Consider locally ordered 2-categories and 2-functors as in

B � o

W

��
??

??
??

??
??

??
?

A

V

??�������������
>
U

++ C
F

kk

with W a local equivalence and W ◦ V = U . Write η: idC +3 U ◦ F for the unit of the
involved adjunction. Then

1. F ◦ W a V and its unit ξ: IdB +3 V ◦ (F ◦ W ) satisfies η ∗ idW = idV ∗ ξ, that is,
W (ξB) = ηWB for every B ∈ B,

and writing T = U ◦ F : C // C and S = V ◦ (F ◦W ):B //B, these monads satisfy

2. T ◦W = W ◦ S,

3. if T is a KZ doctrine then

(a) also S is a KZ doctrine,

(b) B ∈ B is an S-algebra if and only if WB is a T -algebra,

(c) for A ∈ A, UA is a T -algebra if and only if V A is an S-algebra,

(d) if A ' CT then A ' BS.



Q-MODULES ARE Q-SUPLATTICES 55

Proof. To prove that F ◦W a V , observe that for B ∈ B and C ∈ C,

B(B, V C)

apply W
��

A(WB,WV C)

use that U = WV

A(WB,UC)

use that F a U
��

C(FWB,C)

are all equivalences (recall that W is supposed to be a local equivalence). Putting C =
FWB in the above, and tracing the element 1FWB through the equivalences, results in
W (ξB) = ηWB.

The second part of the lemma is trivial.
For the third part, suppose that T (ηC) ≤ ηTC for any C ∈ C, then also

WS(ξB) = TW (ξB) = T (ηWB) ≤ ηTWB = ηWSB = W (ξSB)

for every B ∈ B; but W is locally an equivalence, so S(ξB) ≤ ξSB as required to prove
(a). Now, by the very nature of the algebras of KZ doctrines, B ∈ B is an S-algebra if
and only if ξB is a right adjoint in B, which is the same as W (ξB) = ηWB being a right
adjoint in C because W is locally an equivalence, and this in turn is just saying that WB
is a T -algebra. This proves (b), and (c) readily follows by putting B = V A for an A ∈ A,
and using that W ◦ V = U ; so (d) becomes obvious.

In the rest of this section we let Q be a small quantaloid. It is a result from Q-en-
riched category theory [Stubbe, 2005a, 6.11] that Cocont(Q), the locally ordered category
of cocomplete Q-categories and cocontinuous functors, is monadic over the locally ordered
category Cat(Q) of all categories and functors: the forgetful functor Cocont(Q) // Cat(Q)
admits the presheaf construction as left adjoint,

Cocont(Q) ⊥
U

88

P
xx

Cat(Q). (1)

The unit of the adjunction is given by the Yoneda embeddings YA: A //PA; and a Q-
category A is in Cocont(Q) if and only if YA: A //PA admits a left adjoint in Cat(Q),
which is then the structure map of the algebra A. In short, the monad induced by (1) is
a KZ-doctrine on Cat(Q).

Cauchy complete Q-categories can be characterized as those Q-categories that ad-
mit all absolute colimits [Stubbe, 2005a, 7.2]. Knowing this it is clear that the forgetful
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Cocont(Q) // Cat(Q) factors over the full embedding Catcc(Q) // Cat(Q) of Cauchy com-
plete Q-categories into all Q-categories. Applying 3.1 to the adjunction in (1) we thus
obtain that the forgetful Cocont(Q) // Catcc(Q) has a left adjoint, namely (the restric-
tion of) the presheaf construction, and moreover Cocont(Q) is precisely the category of
algebras for the induced KZ doctrine on Catcc(Q).

We can apply all this to the quantaloid Idm(Q), and get the following result.

3.2. Proposition. For any small quantaloid Q, Cocont(Idm(Q)) is the category of alge-
bras for the “presheaf construction” KZ doctrine P : Catcc(Idm(Q)) // Catcc(Idm(Q)).

In combination with the remarks on Q-orders and Q-modules in Section 2, we can
now justify the title of the paper.

3.3. Theorem. For a small quantaloid Q, the diagram

Mod(Q) ' Cocont(Idm(Q)) ⊥
U

88

P
xx

Catcc(Idm(Q)) ' Ord(Q)

exhibits the quantaloid Mod(Q) as (biequivalent to) the category of algebras for the “pre-
sheaf construction” KZ doctrine on Ord(Q).

As an example we shall point out how the preceding theorem is a precise generalization
of the well-known fact that the internal suplattices in a localic topos Sh(Ω) are exactly
the Ω-modules [Joyal and Tierney, 1984; Pitts, 1988].

3.4. Example. Let Ω be a locale and (F,≤) and ordered object in Sh(Ω). We can
associate to this ordered sheaf a category A enriched in the quantaloid Idm(Ω) (the split-
idempotent completion of the monoid (Ω,∧, 1)) as follows:

- objects: A0 =
∐

v∈Ω F (v), with types tx = v ⇔ x ∈ F (v),

- hom-arrows: for x, y ∈ A0, A(y, x) =
∨
{w ≤ tx ∧ ty | y|w ≤w x|w}.

That is to say, we can read off that

A(y, x) = “the greatest level at which y ≤ x in F”.

With a slight adaptation of the arguments in [Walters, 1981; Borceux and Cruciani,
1998] one can prove that this construction extends to a (bi)equivalence of locally ordered
categories Ord(Sh(Ω)) ' Catcc(Idm(Ω)); the details are in [Stubbe, 2005b].

We shall now explain that, under the identification of (F,≤) in Sh(Ω) with A, there
is a bijective correspondence between downsets of F and presheaves on A; in particular do
principal downsets correspond with representable presheaves.

A downset S of (F,≤) is an S ∈ ΩF (i.e. an S ⊆ Fu ⊆ F for some u ∈ Ω)1 such that

(y ≤ x) ∧ (x ∈ S) ⇒ (y ∈ S), (2)

1We write Fu for the “truncation of F at u” [Borceux, 1994, vol. 3, 5.2.3]: it is the sheaf defined by
Fu(v) = F (v) whenever v ≤ u and otherwise Fu(v) = ∅.
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this definition being written in the internal logic of Sh(Ω). On the other hand, a presheaf
on the Idm(Ω)-enriched category A is by definition a distributor φ: ∗u

c // A for some u ∈
Idm(Ω); equivalently, such is a map φ: A0

// Ω such that for all x, y ∈ A0, φ(x) ≤ u ∧ tx
and

A(y, x) ∧ φ(x) ≤ φ(y). (3)

The similarity between the formulas in (2) and (3) suggests that a downset S of (F,≤)
is related with a presheaf φ on A by the clause

φ(x) = “the greatest level at which x ∈ S”.

Here is how this can be made precise: Given a downset S ⊆ Fu ⊆ F with its characteristic
map ϕ: F // Ω, consider the family of its components ϕv: F (v) // Ω(v) (indexed by v ∈ Ω),
extend their codomains in the obvious way to the whole of Ω and call these new maps
φv: F (v) // Ω. The coproduct φ =

∐
v∈Ω φv: A0

// Ω satisfies, for x ∈ A0,

φ(x) =
∨
{v ≤ tx | x|v ∈ S(v)}

so that quite obviously φ(x) ≤ tx∧u, and moreover (3) holds because it is just a rephrasing
of (2). Hence φ gives the elements of a presheaf φ: ∗u

c // A. Conversely, given a presheaf
φ: ∗u

c // A we decompose the map φ: A0
// Ω into a family of maps φv: F (v) // Ω: x 7→ φ(x)

indexed by v ∈ Ω. Since φ(x) ≤ tx ∧ u we can restrict the codomains of each of these
maps to obtain a new family(

ϕv: F (v) // Ω(v): x 7→ φ(x)
)

v∈Ω
.

This family is natural in v: Let w ≤ v and take any x ∈ F (v). Then w = A(x|w, x) and
therefore w∧ϕv(x) = A(x|w, x)∧φ(x) ≤ φ(x|w) = ϕw(x|w) by (3). But also w = A(x, x|w)
and so, again by (3), ϕw(x|w) = φ(x|w) = w∧φ(x|w) = A(x, x|w)∧φ(x|w) ≤ φ(x) = ϕv(x).
Thus indeed w ∧ ϕv(x) = ϕw(x|w). Now we let S ∈ ΩF be the S ⊆ F with characteristic
map ϕ: F // Ω: then actually S ⊆ Fu ⊆ F because φ(x) ≤ u, and moreover S is a downset
because (2) follows from (3). The constructions S 7→ φ and φ 7→ S are inverse to each
other under the identification of the ordered sheaf (F,≤) with the enriched category A.

In particular, the principal downset Sx of F at x ∈ F is the Sx ∈ ΩF such that

(y ≤ x) ⇔ (y ∈ Sx).

(Clearly such an Sx is always a downset.) The corresponding presheaf φx: ∗u
c // A must

thus satisfy
A(y, x) = φx(y),

that is to say, it is the representable presheaf A(−, x).
Now we can understand why an ordered sheaf (F,≤) is an internal suplattice in Sh(Ω)

if and only if the associated Idm(Ω)-category A is cocomplete: (F,≤) is an internal suplat-
tice in Sh(Ω) if and only if the “principal downset inclusion” F // ΩF has a left adjoint
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[Mikkelsen, 1976; Johnstone, 2002, B2.3.9]. But this is constructively equivalent with the
existence of a left adjoint to its factorization over the (object of) downsets of F . By the
above we know that this is the case if and only if the Yoneda embedding YA: A 7→ PA has
a left adjoint, which in turn means precisely that A is cocomplete.

By 3.3 we thus get an independent proof of the fact that the internal suplattices in
Sh(Ω) are precisely the modules on Ω: Sup(Sh(Ω)) ' Mod(Ω).

4. Module equivalence compared with sheaf equivalence

For any quantaloid Q, let Z(Q) be shorthand for QUANT(Q,Q)(IdQ, IdQ) and call it the
centre of Q. This is by definition a commutative quantale: that Z(Q) is a quantale,
is because it is an endo-hom-object of the quantaloid QUANT(Q,Q); that it is moreover
commutative, is because QUANT(Q,Q) is monoidal with IdQ the unit object for the tensor
(which is composition). Unraveling the definition, an element α ∈ Z(Q) is a family of
endo-arrows (

A

αA

rr

∣∣∣ A ∈ Q0

)
such that for every f : A // B in Q, αB ◦ f = f ◦ αA. Inspired by [Bass, 1968, p. 56] it
is then straightforward to prove the following proposition. (Since I believe that this is a
“folk theorem” – and moreover the case for quantales is already mentioned in [Borceux
and Vitale, 1992] – I shall only sketch the proof.)

4.1. Proposition. For any quantaloid Q, Z(Q) ∼= Z(Mod(Q)). Therefore Morita-
equivalent quantaloids have isomorphic centres.

Sketch of proof: Given a natural transformation α: IdQ // IdQ, build the natural trans-
formation α̂: IdMod(Q)

// IdMod(Q) whose component at M ∈ Mod(Q) is the natural trans-
formation α̂M : M // M , whose component at A ∈ Q is the Sup-arrow

α̂A
M = M(αA): M(A) // M(A).

Conversely, given a natural transformation β: IdMod(Q)
// IdMod(Q), build the natural trans-

formation β: IdQ // IdQ whose component at A ∈ Q is the Q-morphism

βA = βA
Q(A,−)(1A): A // A.

The mappings Z(Q) //Z(Mod(Q)): α 7→ α̂ and Z(Mod(Q)) //Z(Q): β 7→ β thus defined
are quantale homomorphisms which are each other’s inverse.

The following is now an easy consequence.

4.2. Proposition. For small quantaloids Q and Q′,

Q ' Q′ =⇒ Ord(Q) ' Ord(Q′) =⇒ Mod(Q) ' Mod(Q′) =⇒ Z(Q) ∼= Z(Q′).

Proof. The first implication holds because “equivalent bases give equivalent enriched
structures”. The second implication is due to the monadicity explained in 3.3. For the
third implication, see 4.1.
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It is an interesting problem to study the converse implications in the above proposition,
for they do not hold in general. However, since a quantale is commutative if and only
if it equals its centre, we do have the following special case which is a refinement of the
conclusion of [Borceux and Vitale, 1992].

4.3. Corollary. For commutative quantales Q and Q′,

Q ' Q′ ⇐⇒ Ord(Q) ' Ord(Q′) ⇐⇒ Mod(Q) ' Mod(Q′).

A locale Ω is in particular a commutative quantale, so the above applies. Moreover, and
this in strong contrast with the case of quantaloids or even quantales, besides the category
Ord(Ω) of ordered sheaves and its subcategory Mod(Ω) of modules (i.e. cocompletely
ordered sheaves) on Ω, we may now also consider the category Sh(Ω) of all sheaves. But
a locale Ω is (isomorphic to) the locale of subobjects of the terminal object in Sh(Ω) (see
[Borceux, 1994, vol. 3, 2.2.16] for example), thus we may end with the following.

4.4. Corollary. For locales Ω and Ω′,

Ω ' Ω′ ⇐⇒ Sh(Ω) ' Sh(Ω′) ⇐⇒ Ord(Ω) ' Ord(Ω′) ⇐⇒ Mod(Ω) ' Mod(Ω′).
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Richard Blute, Université d’ Ottawa: rblute@uottawa.ca
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