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ABSTRACT� We introduce MD
sketches� which are a particular kind of Finite Sum
sketches� Two interesting results about MD
sketches are proved� First� we show that�
given two MD
sketches� it is algorithmically decidable whether their model categories
are equivalent� Next we show that data
speci�cations� as used in database
design and
software engineering� can be translated to MD
sketches� As a corollary� we obtain that
equivalence of data
speci�cations is decidable�

�� Introduction

This paper is about the correspondence between two kinds of speci�cation mechanisms�
sketches and data�speci�cations�

Sketches were invented by Charles Ehresmann in the late sixties� for the purpose of
specifying algebraic structures� Since then� they have been studied intensively� An outline
of the theory of sketches� with a large number of references� can be found in ����� It is
well�known that the categories of models of sketches 	in Set
 are exactly the accessible
categories� An accessible category is complete i� it is the model category of a Limit sketch
i� it is a locally presentable category� Locally presentable categories have the pleasant
property that it is possible to de�ne a canonical Limit sketch with the given category as
model category� All these results can be found in ���� For other accessible categories� it
is not possible to de�ne a canonical sketch with the given category as model category�
In a number of recent papers 	�� ��
� various equivalence preserving transformations
between sketches are studied� These transformations preserve 	up to equivalence
 the
model category in Set� but do not necessarily preserve model categories in other categories
than Set� Hence� it is clear that model categories in Set do not determine the sketch in
the same way as this is the case for Limit sketches� In this paper we are interested in
algorithmic decidability of the equivalence problem� and we will prove that the equivalence
problem is decidable for the class of MD�sketches�

Semantic data�speci�cations like Chen�s Entity�Relationship diagrams 	����
 on the
other hand� have been used for many years in the early stages of database design� However�
most speci�cation systems used in practice are of an informal nature� and have little or
no mathematical foundation� This makes it impossible to prove interesting results about
them� ��� formalized these speci�cation systems using categorical language� and proved
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a �rst interesting result� the existence of so�called canonical forms for a large subset of
data�speci�cations� Other categorical formalisations of semantic data�speci�cations exist�
��� and ���� propose generalized sketches in the sense of ���� as a formalisation for data�
speci�cations� In ����� object�oriented data�speci�cation systems based on categorical
constructs are de�ned� and a query language based on universal constructions is shown
to be at least as expressive as relational algebra�

The structure of this paper is as follows�
First� in section �� we introduce a special kind of Finite Sum sketch 	���
� in which

you can only specify certain monicity and disjointness constraints� This kind of sketch
is called an MD�sketch� The main result about MD�sketches is that equivalence of the
model�categories of two MD�sketches is decidable�

In section  we de�ne data�speci�cations� and their model�categories� Our de�ni�
tion is equivalent to the de�nition of speci�cation with attributes in ���� If the model�
categories of two di�erent data�speci�cations are equivalent� this means that they are
di�erent formalizations of the same real world situation� Recognizing that two di�erent
data�speci�cations are equivalent is very important when one tries to integrate a number
of data�speci�cations into one large data�speci�cation� Hence� it would be interesting to
have an algorithm to decide equivalence of data�speci�cations�

In section �� we show that data�speci�cations can be translated to MD�sketches� and
as a corollary� we obtain that equivalence of data�speci�cations is decidable� Combining
the translation algorithm with the algorithm to decide equivalence of MD�sketches gives
us an algorithm to decide equivalence of data�speci�cations�

���� Acknowledgments� We want to thank Francis Borceux for a number of very clarifying
discussions about accessible categories and about Kan�extensions� and Ji�r�� Rosick�y for a
very interesting discussion about the equivalence problem for sketches when one considers
models in Set or in FinSet� We also want to thank Dominic Verity� Roy Crole and all
the other readers of the categories mailing list who took the time and e�ort to answer our
questions about discrete op�brations�

�� MD�sketches

An MD�sketch is a peculiar kind of Finite Sum sketch� MD�sketches are interesting
because equivalence of their model categories is algorithmically decidable 	theorem ����
�
and yet they have su�cient expressive power to allow for a translation of data�speci�ca�
tions to MD�sketches 	theorem ��
�

���� Preliminary De�nitions�

���� Definition� A ��nite� source in a category C is a pair 	X� 	fi
i�I
 consisting of an
object X of C and a family of morphisms fi � X � Yi of C� indexed by some ��nite� set I�

In this paper� we only consider �nite sources� and we will take the unquali�ed word
�source� to mean �nite source� We will use the notations 	X� 	fi
i�I
 and fi � X � Yi
interchangeably� A source 	X� 	fi
i�I
 is a mono�source if fi � x � fi � y for all i � I
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implies that x � y� The base of a source fi � X � Yi is the indexed family of objects Yi�
Hence� the base of a source is a discrete diagram�

These de�nitions of source and mono�source in a category are standard� and can be
found for instance in ����

��� Definition� A double�source in a category C is a pair of two sources fi � X � Yi
and gi � Z � Yi in C� on the same base�

A double�source 	fi� gi
 looks like this�

Y�

X

��
f�

��������

��fn ��
��

��
��

��� Z

��
g�

��������

��
gn

��
��
��
��

Yn

We say that a double�source 	fi� gi
 is disjoint� i� the limit of the diagram above is the
initial object� In FinSet� the category of �nite sets and functions� this means that there
are no elements x � X and z � Z such that fi	x
 � gi	z
 for all i�

���� Definition� An MD�sketch is a triple 	C�M�D
 where C is a �nite category� M is
a �nite set of sources in C� D is a �nite set of double�sources in C�

���� Definition� A model of an MD�sketch 	C�M�D
 is a functor from C to FinSet�
which takes every source inM to a mono�source and every double�source in D to a disjoint
double�source�

A source � will sometimes be called a monicity condition� A monicity condition � is
satis�ed by a functor F i� F takes � to a mono�source� In a similar way� a double�source �
will sometimes be called a disjointness condition� and a disjointness condition � is satis�ed
by a functor F i� F takes � to a disjoint double�source�

The model�category of an MD�sketch� denoted Mod	C�M�D
 is the full subcategory of
Fun	C�FinSet
 containing only the models� We use the notation Mod	C�M
 to denote
the full subcategory of Fun	C�FinSet
 consisting of all those functors that take all sources
in M to mono�sources 	but do not necessarily satisfy the disjointness conditions
�

���� Remark� It should be obvious that an MD�sketch is a restricted kind of Finite Sum
sketch 	���
� The requirement that a source must be mono can be stated by requiring
a certain cone to be a limit cone� To state the disjointness conditions� you add a new
object to C� and an arrow from the new object to every object of C� Then a disjointness
condition can be stated by requiring the new object to be initial� and by requiring that
the limit of the double�source is this new object�

We could consider models of MD�sketches in other categories than FinSet� However�
for the application that we have in mind 	data�speci�cations
� only models in FinSet are
needed� Therefore� we restrict our attention to models in FinSet�
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Example� We give an example to show that model categories of MD�sketches are not
necessarily �nitely complete� Since model categories of Finite Limit sketches are always
�nitely complete� it follows that an MD�sketch is not a restricted kind of Finite Limit
sketch� Consider the following MD�sketch�

C �

X

��f ��
��

��
� Y

��
g

��
��
��
�

Z

� M � �� D � f	f� g
g

	Only the non�identity arrows of the category C are drawn
� Models of this MD�sketch
are functors F � C � FinSet such that the images of Ff and Fg are disjoint� It is easy
to see that the category of models does not have a terminal object�

���� Properties of MD�Sketches�

���� Lemma� Mod	C�M
 is an epi�re�ective subcategory of Fun	C�FinSet
� Moreover�
there exists an algorithm to compute the re�ection of a functor F � C � FinSet�

The algorithm to compute the re�ection is given in the proof below�

Proof� The construction of the re�ection of a functor F is as follows�

�� De�ne a relation R on the elements of F where xRy i� there exists some source
fi � X � Yi � M such that Ffi	x
 � Ffi	y
 for all i�

�� Construct the smallest congruence relation on the elements of F � containing R�

� Take the quotient of F by this congruence relation�

The universal arrow from F to its re�ection is the projection of F on this quotient� We
leave the veri�cation to the reader�

Hence� we have the following situation�

Fun	C�FinSet

��R

Mod	C�M
oo
I

Mod	C�M�D
oo
J

	�


where I and J are inclusions and R is left adjoint to I�

���� Lemma� Suppose F is in the range of J �i�e� F � J	G
 for some G�� and suppose
there exists a morphism � � F � � F in Mod	C�M
� then F � is also in the range of J �

Proof� Suppose F � is not in the range of J � This means that there exists a disjointness
condition 	fi � X � Yi� gi � Z � Yi
 in D which is not satis�ed by F �� Hence� there exists
elements x� � F �	X
 and z� � F �	Z
 such that F �	fi
	x�
 � F �	gi
	z�
 for all i� But then�
let x � �X	x�
 and z � �Z	z�
� and we �nd that F 	fi
	x
 � F 	gi
	z
 for all i� As a
consequence� the disjointness condition 	fi� gi
 is not satis�ed by F and F cannot be in
the range of J � Contradiction�
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����� Lemma� J preserves and re�ects colimits�

Proof� Since J is full and faithfull� it is obvious that it re�ects colimits� To prove
that it preserves colimits� consider a diagram D in Mod	C�M�D
� and suppose it has a
colimit 	L� �
� We must prove that the colimit of J	D
 is 	J	L
� J	�

� Since Mod	C�M

is cocomplete� J	D
 must have a colimit 	L�� ��
� By the universal property of the colimit�
we �nd an arrow � � L� � J	L
 such that � � �� � J	�
� But� by the previous lemma� this
means that L� is in the range of J � Since J re�ects colimits� we conclude that L� and J	L

are isomorphic�

����� Definition� An MD�sketch 	C�M�D
 is normal� or is in normal form� if all the
representable functors from C are models�

����� Lemma� For every MD�sketch� there exists a normal MD�sketch with an equivalent
model category� Moreover� there exists an algorithm to compute such a normal MD�sketch�

An algorithm to compute an equivalent normal MD�sketch is contained in the proof
below�

Proof� Suppose an MD�sketch 	C�M�D
 is given� Consider diagram 	�
� and let � be
the unit of the adjunction 	R� I
� We de�ne a congruence relation on the arrows of C in
the following way�

f � g i� �Hom�C���
	f
 � �Hom�C���

	g


with C the source of f and g� Let C� be C� � and let P � C � C� � be the projection�
Since Nat	Hom	C��
� IM
 � Nat	IRHom	C��
� IM
� we can conclude that the arrows
that are identi�ed by � must be taken to the same function in every model� De�neM� to
be fP 	�
 j � � Mg and D� to be fP 	�
 j � � Dg� It is easy to verify that Mod	C�M�D

is equivalent to Mod	C��M��D�
� and that all representable functors from C� satisfy all
the monicity conditions in M��

Next� suppose that Hom	C ���
 does not satisfy a disjointness condition � in D�� By
lemma ���� it follows that all models of 	C��M��D�
 must take C � to the empty set� Hence�
Mod	C��M��D�
 is equivalent to Mod	C���M���D��
 with�

� C�� is the full subcategory of C� containing all the objects X for which Hom	X��

is a model of 	C��M��D�
�

� M�� � ffi � X � Yi � M� j X � C��g

� D�� � f	fi � X � Yi� gi � Z � Yi
 � D� j X � C�� and Z � C��g

It is easy to verify that 	C���M���D��
 is normal� and that its model category is equivalent
to that of 	C��M��D�
� and hence to that of 	C�M�D
�

Since C is a �nite category� all these constructions are clearly computable�
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Example� Consider the following MD�sketch�

C �

B

��

f

��
��

��
�

C ��i
D

A

��
g

�������

��

h

�������

� M � fig� D � f	f� f
g

with i � h � i � g� It is clear that Hom	A��
 does not satisfy the monicity conditions�
since Hom	A� i
 is not an injective function� The �rst part of the construction given in
the previous proof gives us�

C� �

B

��

f

��
��

��
�

C ��i
D

A

��
g

�������

� M� � fig� D� � f	f� f
g

Hom	B��
 does not satisfy the disjointness condition� Applying the second part of the
construction in the previous proof leads to�

C�� � A ��g
C ��i

D � M�� � fig� D�� � fg

���� Proposition� Let 	C�M�D
 be a normal MD�sketch and let � � 	fi � X � Yi
 be
a �nite source in C� then it is decidable whether � is taken to a mono�source in every
model of 	C�M�D
�

An e�ective decision procedure is contained in the proof below�

Proof� Suppose that � is taken to a mono�source by every functor in Mod	C�M�D
�
Then we have the following situation�

Mod	C�M
 Mod	C�M� f�g
oo
J �

Mod	C�M�D
oo
J ��

where J � J � � J �� preserves colimits 	by lemma ����
� and where J � and J �� are full
inclusions� and hence re�ect colimits�

Consider the following diagram in Mod	C�M� f�g
�

Hom	Y���


ww

Hom�f����

oo
oo
oo
oo
oo
oo

��

Hom�f����

OO
OO

OO
OO

OO
OO

Hom	X��
 ��� Hom	X��


Hom	Yn��


gg

Hom�fn���

OOOOOOOOOOOO

��

Hom�fn���

oooooooooooo
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Its colimit is Hom	X��
� But since J �� re�ects and J � � J �� preserves this colimit� the
colimit of this diagram in Mod	C�M
 is also Hom	X��
�

Conversely� if the colimit of that diagram in Mod	C�M
 is Hom	X��
� it follows easily
that � will be taken to a mono�source by every functor of Mod	C�M�D
�

Hence� we can decide whether � is taken to a mono�source in every model by computing
the colimit of the diagram above in Mod	C�M
� and checking if this colimit is naturally
isomorphic to Hom	X��
�

Since colimits of �nite diagrams in Mod	C�M
 are computable 	�rst compute the
colimit in Fun	C�FinSet
 and then compute the re�ection of this colimit along the inclu�
sion
� the result follows�

����� Proposition� Let 	C�M�D
 be a normal MD�sketch and let � � 	fi� gi
 be a �nite
double�source in C� then it is decidable whether � is taken to a disjoint double�source in
every model of 	C�M�D
�

Again� an e�ective decision procedure is contained in the proof below�

Proof� Let 	F� �
 be the colimit of the following diagram in Mod	C�M
�

Hom	Y���


ww

Hom�f����

oo
oo
oo
oo
oo
oo

��

Hom�g����

OO
OO

OO
OO

OO
OO

Hom	X��
 ��� Hom	Z��


Hom	Yn��


gg

Hom�fn���

OOOOOOOOOOOO

��

Hom�gn���

oooooooooooo

Suppose F satis�es all disjointness conditions in D� Then F is a model which does not
satisfy �� and hence � is not satis�ed in all models of 	C�M�D
�

Suppose F does not satisfy all disjointness conditions in D� Given any functor F �

which does not satisfy �� we can easily construct a commutative cocone on the above
diagram into F �� and hence an arrow � � F � F �� By lemma ���� F � can not be a model�
Hence� all models of 	C�M�D
 satisfy ��

Hence� we can decide whether � is satis�ed in all models by computing the colimit of
the above diagram in Mod	C�M
� and checking whether all disjointness conditions in D
are satis�ed in the vertex of this colimit�

Recall that a category is skeletal i� no two distinct object are isomorphic� and that it
is Cauchy�complete i� every idempotent arrow is split 	��� ��
�

����� Lemma� For every normal MD�sketch 	C�M�D
� there exists an equivalent normal
MD�sketch 	C��M��D�
 where C� is skeletal and Cauchy�complete� Moreover� there exists
an algorithm to compute such an equivalent MD�sketch�

The proof below describes an algorithm to compute an equivalent skeletal� Cauchy�
complete normal MD�sketch�
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Proof� Let C� be the skeleton of the Cauchy�completion of C� and consider the functor
p � i where p is the projection on the skeleton and i is the injection in the Cauchy�
completion 	���
� Let M� � fp	i	�

 j � � Mg and let D� � fp	i	�

 j � � Dg� It is easy
to verify that Mod	C�M�D
 and Mod	C��M��D�
 are equivalent� and that 	C��M��D�

will be normal if 	C�M�D
 was normal� Again� since C is �nite� it is clear that this
construction is computable�

����� Lemma� Every model M � C � FinSet of a normal MD�sketch 	C�M�D
 is a col�
imit of representable models�

Proof� It is well�known that every object in Fun	C�FinSet
 is a colimit of representable
functors 	���
� Moreover� we know that all the representable functors are models 	since
	C�M�D
 is normal
� From this and the fact that the inclusion of the model�category in
Fun	C�FinSet
 re�ects colimits 	since it is full and faithful
� the result follows�

����� Lemma� Let 	C�M�D
 be a normal MD�sketch with C Cauchy�complete� then the
following are equivalent�

�� M is a representable model�

	� The arrows � � colimNat	M�D
 � Nat	M� colimD
� induced by the universality of
the colimit� are epis for every diagram D in Mod	C�M�D
 for which the colimit
exists�

Proof� First we show that representable models have property �� Let H be a Hom�
functor� H belongs to the model�category since the given MD�sketch is normal� Consider
again diagram �� Let � be the unit of the adjunction 	R� I
� Since Mod	C�M
 is an
epi�re�ective subcategory 	lemma ���
� every �X is epi�

Nat	H� colimD
 � Nat	IJH� IJcolimD
 	since I � J is full and faithfull


� Nat	IJH� IcolimJD
 	J preserves colimits


� Nat	IJH� �colimIJD � colimIJD


� Nat	IJH� �colimIJD
 �Nat	IJH� colimIJD


� Nat	IJH� �colimIJD
 � colimNat	IJH� IJD


� Nat	IJH� �colimIJD
 � colimNat	H�D


	For the third equality� see the computation of colimits in epi�re�ective subcategories in
���
 Since �colimIJD is epi� and since Nat	IJH��
 preserves epis� we conclude that H has
property ��

Secondly� suppose that M has property �� We know from lemma ���� that M �
colimD where all objects from D are representable models� Let � � D �M be the colim�
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iting cocone� We have the following commutative diagram�

colimNat	M�D


		

�

RRR
RR

RRR
RR

RRR

Nat	M�M


Nat	M�D


OO

�




Nat�M���

lllllllllllll

with � an epi� So some object H of Nat	M�D
 contains an � such that �H � � � IdM �
Hence� M is a splitting of an idempotent of a representable model H� But since every
idempotent in C is split� M must be a representable model�

����� Theorem� Equivalence of MD�sketches is decidable�

An algorithm to decide equivalence is given in the proof�

Proof� Suppose we are given two MD�sketches 	C�M�D
 and 	C��M��D�
� We may
assume that both MD�sketches are normal and that C and C� are skeletal and Cauchy�
complete� by lemmas ���� and ����� We claim that the two sketches are equivalent i�
there exists an isomorphism i � C � C� such that

�� for each � � M and for each � � D� i	�
 is a mono�source in every model of
	C��M��D�
 and i	�
 is a disjoint double�source in every model of 	C��M��D�
�

�� for each �� � M� and for each �� � D�� i��	��
 is a mono�source in every model of
	C�M�D
 and i��	��
 is a disjoint double�source in every model of 	C�M�D
�

Since C and C� are �nite� we can enumerate all isomorphisms between them� and hence�
by propositions ��� and ����� it follows that equivalence is decidable�

It remains to prove that the condition above is indeed a su�cient and necessary
condition for equivalence� It is obvious that the condition is su�cient� We prove that it is
necessary� Suppose we have an equivalence between the two model�categories� Since the
property mentioned in lemma ���� is clearly preserved by equivalence� we know that the
equivalence maps representable models to representable models� By the Yoneda lemma
and the fact that C and C� are skeletal� we conclude that the equivalence between the
model�categories induces an isomorphism between C and C�� It is easy to verify that this
isomorphism satis�es the two conditions mentioned above�
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�� Data�Speci�cations

��� De�nition and Examples�

��� Definition� A data�speci�cation is a triple 	S�M� A
� where

�� S is a �nite category�

	� M is a �nite set of sources in S�


� A � S� � FinSet is a functor� where S� is the discrete category whose set of objects
is the set of objects of S�

Essentially� A is just a function from the objects of S to the class of �nite sets�

�� Definition� A model of a data�speci�cation 	S�M� A
 is a pair 	M�	
� where

�� M � S � FinSet is a functor taking every � �M to a mono�source�

	� 	 � M � I � A is a natural transformation� where I � S� � S is the inclusion�

The following examples are taken from ���� The category S of the speci�cation is
often given as a graph G� and a set E of equations� The category S is de�ned to be the
free category on G� divided by the congruence generated by the equations in E� We begin
with a few examples for which the functor A is the constant functor on �� the terminal
set� Such data�speci�cations are in fact the same as MD�sketches with an empty set of
disjointness conditions�

Example� If S is a discrete category 	no non�identity arrows
� the models are just typed
sets� Let S be the discrete category with two objects 	call them COMPUTER and PRINTER

and no arrows� and let M be empty� This speci�cation says that the part of the world
we want to specify consists of two kinds of entities 	computers and printers
� and that is
all it says�

Example� Arrows in the category specify existential dependencies� Consider for instance�

G �

COMPUTER

��
l

LOCATION

� E � �� M � �

Since the arrow must be taken to a function in a model� this speci�es that every computer
must have a location associated with it� 	An entity of type COMPUTER is always
associated with an entity of type LOCATION�
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Example� A source with n arrows in the category can be seen as an n�ary multirelation�

G �

CONNECTION

vv

c

lll
lll

lll
lll

l

		

p

QQQ
QQQ

QQQ
QQ

Q

COMPUTER PRINTER

� E � �� M � �

This speci�cation says that connection is a multirelation between computers and printers�
every entity of type CONNECTION is associated with a couple of entities 	x� y
 with x
of type COMPUTER and y of type PRINTER� It is possible that two di�erent entities
of type CONNECTION are associated with the same couple� Hence CONNECTION
is a multi�relation over COMPUTER and PRINTER� For example� a printer could be
connected twice to a computer� once with a serial cable� and once with a parallel cable�

Example� A multi�relation is an ordinary relation 	no duplicates allowed
 if and only if
the corresponding source is a mono�source� The speci�cation�

G �

CONNECTION

vv

c

lll
lll

lll
lll

l

		

p

QQ
QQ

QQ
QQ

QQ
QQ

COMPUTER PRINTER

� E � �� M � f	CONNECTION�	c�p

g

says that CONNECTION is an ordinary relation over COMPUTER and PRINTER� A
printer can be connected only once to a computer�

Example� By requiring certain equations to be valid in S� we can express equality con�
straints�

G �

CONNECTION

vv

c

lll
lll

lll
lll

l

		

p

QQ
QQ

QQ
QQ

QQ
QQ

COMPUTER
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This speci�cation says that computers and printers can be connected only if they have
the same location� This kind of constraint occurs very often in practice�

In the examples we have discussed up to now� the functor A was always the constant
functor �� A data�speci�cation with A � � only speci�es the types of entities that exist in
the part of the world we want to specify� and some structural constraints 	e�g� a computer
is always associated with a location� a printer can only be connected to a computer if they
share the same location
� In a database� we also want to store attributes of the entities�
For example� for a printer� we might want to store whether it is a laserprinter or a matrix�
printer� and for a computer� we might want to store the type of its processor� or its amount
of memory� With the functor A� we specify for each type of entity 	each node of S
 the
set of attribute values that entities of that type can have� Looking at the de�nition of a
model of a data�speci�cation� it is easy to see that in every modelM � all entities of type C
	i�e� all elements of the set M	C

 will be labelled with an element of A	C
� The function
which takes each entity to its label is the component of the natural transformation 	 at
C�
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Example� Consider for example�
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The functor A is de�ned on the �gure� using dotted lines� if there is a dotted line from
a node of the graph to a �nite set� then this de�nes the functor A for that node� For
example� A	PRINTER
 is the set f matrix� laserg� If there is no dotted line from a given
node n in the graph� then A	n
 is de�ned to be the terminal set� In a model of this
speci�cation� every entity of type PRINTER will be labelled with a value from the set
f matrix� laser g� In a similar way� we could have labelled computers with their type of
processor� and connections with their data�transmission speed� However� remember that
attribute sets must be �nite sets�

With these examples in mind� it should be clear that data�speci�cations provide for
an intuitive way to specify the structure of a database� The last example� for instance
speci�es a 	small
 database� containing information about the hardware equipment of a
company� A model 	M�	
 of this data�speci�cation is a possible instance of the database�
The functor M indicates how many entities of each type exist� and how they are related
to each other� The natural transformation 	 gives an attribute value for each entity�

In fact� the most widely used data�speci�cation mechanisms� namely those based on
Entity�Relationship diagrams 	����
� are very close to our data�speci�cations� For more
details on how to convert Entity�Relationship diagrams to our data�speci�cations� consult
���� That Entity�Relationship diagrams are of major importance in database design can
be judged from the fact that an annual international conference on the Entity�Relationship
Approach has been organized since ����� Almost any introductory book on database
design includes examples of Entity�Relationship diagrams 	see for instance ���� or ����
�
Since these diagrams can be reformulated as categorical data�speci�cations� we refrain
from giving more extended examples in this paper� referring the reader to books like ����
and ���� instead�

��� Definition� A homomorphism between two models 	M�	
 and 	M �� 	�
 of a data�
speci�cation 	S�M� A
 is a natural transformation � �M �M � such that 	� � �I � 	�

In other words� it is a natural transformation between M and M � that is compatible
with the labelling�

Models and homomorphisms of models of a speci�cation F � 	S�M� A
 form a cat�
egory� the model category of F � which is denoted as Mod	F
� Let I � S� � S be the
inclusion� let I� � Fun	S�FinSet
� Fun	S��FinSet
 be the functor of composition with
I and let A � �� Fun	S��FinSet
 be the functor picking out A� Then�
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��� Lemma� Mod	F
 is a full subcategory of the comma�category 	I� � A
�

The proof of this lemma is trivial� An object 	F��
 of 	I� � A
 belongs to Mod	F
 i�
the functor F takes all sources in M to mono�sources�

��� Lemma� Let A� � S � FinSet be the right Kan extension of A along I� 	I� � A
 is
isomorphic to Fun	S�FinSet
�A��

Proof� First� note that the right Kan extension exists� since S is a �nite category� and
FinSet is �nitely complete� �From the universal property of the right Kan extension� we
get the natural isomorphism�

Nat	I�	F 
� A
 	 Nat	F�A�
 	


Objects of 	I� � A
 are couples 	F� 	
 with F � S � FinSet a functor and 	 � I�	F 
� A
a natural transformation� Objects of Fun	S�FinSet
�A� are couples 	F� 	
 with F � S �
FinSet a functor and 	 � F � A� a natural transformation� By 	
� there is a bijection
between the objects of both categories�

Arrows in both categories are natural transformations �� In 	I� � A
 they must satisfy
commutativity of�

I�	F�


��

I����
��

��

FF
FF

FF
FF

F

A

I�	F�




��

xxxxxxxxx

In Fun	S�FinSet
�A� they must satisfy commutativity of�

F�

��

�

��

��

AA
AA

AA
A

A�

F�

��

��

�������

However by the naturality in F of 	
� these two conditions are equivalent� and hence
	I� � A
 and Fun	S�FinSet
�A� are isomorphic�

��� Equivalence of Data�Speci�cations� We say that two data�speci�cations are equiv�
alent i� their model�categories are equivalent� What we want to �nd is an algorithm
to decide equivalence of data�speci�cations� Our approach will be to translate data�
speci�cations to MD�sketches and then apply theorem ����� But �rst we give an example
of equivalent data�speci�cations�
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Example� The following speci�cation is equivalent to speci�cation 	�
�
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M � f	M�CONNECTION� 	m� c�

� 	L�CONNECTION� 	c�� l�

g

Informally� it is not too hard to see that the two speci�cations are semantically equivalent�
In the speci�cation above� two di�erent entity types are used for matrix�printers and laser�
printers� instead of one entity type with an attribute� Further in this paper� we will prove
that the model�categories are indeed equivalent�

The fact that the same real�world situation can be speci�ed in a number of non�
isomorphic ways is an important problem in database design and software engineering�
Suppose for example� that a number of di�erent data�speci�cations exist� and that these
di�erent speci�cations overlap partly� certain parts of the real world are speci�ed in more
than one of the speci�cations� It is very likely that these parts are speci�ed di�erently in
each of the speci�cations� and that makes it hard to combine the given speci�cations into
one large speci�cation� This problem of combining data�speci�cations is called the view
integration problem in the database literature� and has been studied extensively� We refer
the reader to ��� for a survey� The usual approach is to develop heuristic algorithms which
try to identify the equivalent subspeci�cations� and then leave it to a database designer
to decide which subspeci�cations are indeed equivalent and which are not� A provably
correct algorithm 	in contrast with a heuristic algorithm
 could minimize the amount of
work that is left to the database designer� In the sequel of this paper� we will develop
such an algorithm� by giving a constructive proof of the decidability of equivalence of
data�speci�cations�

�� Translating data�speci�cations to MD�sketches

In this section we show that� given an arbitrary data�speci�cation� we can compute an
MD�sketch with an equivalent model�category� Since we can decide equivalence of MD�
sketches� as a corollary� we �nd that we can decide equivalence of data�speci�cations�

���� Set�valued functors and discrete op�brations� It is well�known that the category
Fun	C�FinSet
 is equivalent with the category FinDof	C
 of �nite discrete op�brations
over C� 	See for instance ��� for a description of the equivalence


Suppose F � C � FinSet is the functor corresponding to a discrete op�bration 	dof

� � E � C under this equivalence� In this section� we investigate under what conditions
	for �
 the functor F takes a source � to a mono�source� or a double�source � to a disjoint
double�source�
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Let � � 	fi � X � Yi
 be a source in C and suppose B and B� are nodes of E such that
�	B
 � �	B �
 � X� The arrow�lifting property of dofs ensures us the existence of two
unique sources gi � B � Zi and g�i � B

� � Z �

i such that �	gi
 � �	g�i
 � fi� We say that
B �	

� B� i� Zi � Z �

i for all i� This situation is illustrated in the following picture�
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It is clear that the functor corresponding to � takes � to a mono�source i� B �	
�

B� 
 B � B��
Now� let � � 	fi � X � Yi� f

�

i � X
� � Yi
 be a double�source in C� The functor cor�

responding to � takes � to a disjoint double�source i� there is no double�source �� �
	gi � B � Zi� g

�

i � B
� � Zi
 in E such that �	��
 � ��

���� Definition� Let 	S�M� A
 be a data�speci�cation� Let A� be the right Kan extension
of A along I � S� � S and let

R
A� be the category of elements of A�� with associated

projection � �
R
A� � S� We de�ne the translation of 	S�M� A
 to be the MD�sketch

	Ct�Mt�Dt
 where

�� Ct is
R
A��

	� Mt is f� j �	�
 � Mg�


� Dt is f	fi � X � Yi� gi � Z � Yi
 j X �� Z��	fi
 � �	gi
 � Mg�

��� Theorem� The model�category of a data�speci�cation 	S�M� A
 is equivalent to the
model�category of its translation 	Ct�Mt�Dt
�

Proof� First we prove that both model categories are equivalent to full subcategories of
FinDof	Ct
�

For Mod	Ct�Mt�Dt
� this is obvious� since this category is a full subcategory of
Fun	Ct�FinSet
� and we know that Fun	Ct�FinSet
 is equivalent with FinDof	Ct
�

For Mod	S�M� A
� we know from lemmas �� and �� that this category is a full
subcategory of Fun	S�FinSet
�A�� Therefor� it is equivalent to a full subcategory of
FinDof	S
�	� �

R
A� � S
� But it is well�known that�

FinDof	S
�	� �
R
A� � S
 is equivalent with FinDof	

R
A�
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Hence� we conclude that both model categories are equivalent to full subcategories of
FinDof	Ct
� It remains to verify that an object of FinDof	Ct
 corresponds to a model
of 	Ct�Mt�Dt
 i� it corresponds to a model of 	S�M� A
�

An object � � E � Ct corresponds to a model of 	Ct�Mt�Dt
 i� the functor F � Ct �
FinSet corresponding to � satis�es all monicity conditions in Mt and all disjointness
conditions in Dt� We have seen in paragraph ��� what this means in terms of ��

An object � � E � Ct corresponds to a model of 	S�M� A
 i� the functor F � S �
FinSet corresponding to the dof � �� satis�es all monicity conditions in M�

We prove that these two conditions are equivalent�

�� Suppose � � E � Ct corresponds to a model of 	S�M� A
� Then we know that
B �
�	

� B� implies that B � B�� for all � � M�

Let �� be an element ofMt and suppose B �	
�� B�� thenB �
�	

� B� where � � �	��
�
and hence B � B�� We conclude that all sources in Mt are taken to mono�sources�

Let �� � 	f �i � X
� � Y �

i � g
�

i � Z
� � Y �

i 
 be an element of Dt� Suppose �� is not satis�ed
by the functor corresponding to �� This means that there is a double�source � �
	fi � X � Yi� gi � Z � Yi
 such that �	�
 � ��� From the de�nition of the translation
we know that � � �	f �i
 � �	g�i
 � M� and that X � �� Z �� Since �	X
 � X � and
�	Z
 � Z �� it follows that X �� Z� Yet� we have that X �
�	

� Z� which contradicts
the fact that � corresponds to a model of 	S�M� A
� We conclude that all double�
sources in Dt are taken to disjoint double�sources�

Hence� � � E � Ct also corresponds to a model of 	Ct�Mt�Dt
�

�� Suppose � � E � Ct corresponds to a model of 	Ct�Mt�Dt
�

Let � � M and suppose B �
�	
� B�� Then �	B
 must be equal to �	B�
 � or a

disjointness condition in Dt would be violated� But that means that B �	
�� B� for

some �� with �	��
 � �� Hence B � B� and � corresponds to a model of 	S�M� A
�

���� Corollary� Equivalence of data�speci�cations is decidable�

Proof� Apply theorem �� to compute two equivalent MD�sketches� and then apply
theorem ���� to decide the equivalence of these two MD�sketches�

���� Remark� Because of theorem ��� which states that any data�speci�cation can
be translated to an MD�sketch� the reader might wonder whether data�speci�cations
are now obsolete 	subsumed by MD�sketches
� We believe that this is not the case�
Data�speci�cations have a very intuitive nature� and are very close to the kind of data�
speci�cations that are used in practice� MD�sketches are cumbersome to work with in
practice� For example� the translation of a data�speci�cation to an MD�sketch tends to
make the speci�cation much larger� and unreadable to a human reader� On the other
hand� MD�sketches are easier to treat mathematically� since they are sketches� and a lot
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is known about sketches and their model categories� Therefor� we believe that both kinds
of speci�cations have their uses�

We end this section with an example of an equivalence proof of two data�speci�cations�

Example� It is an easy exercise to translate speci�cations 	�
 and 	�
 to MD�sketches�
Speci�cation 	�
 is already an MD�sketch� since the functor A is the constant functor on
�� To translate speci�cation 	�
� you must compute the category of elements of the
right Kan extension of A along the inclusion of S� into S� These constructions are
straightforward� algorithms can be found in ���� The resulting category is isomorphic 	call
the isomorphism i
 to the underlying category of speci�cation 	�
� The set of double�
sources of the translation is empty� and the set of sources contains � sources which map
under i to the � sources in the set of sources of speci�cation 	�
� Hence� the translations
of speci�cations 	�
 and 	�
 are isomorphic as MD�sketches� We conclude that their
model�categories are equivalent�

�� Conclusion

We have studied MD�sketches� a speci�c kind of Finite Sum sketches� and we have proved
that equivalence of model categories is algorithmically decidable for this class of sketches�
Moreover� our proof was constructive� an algorithm to decide the equivalence of MD�
sketches can be extracted from the proof�

Then we have shown that data�speci�cations� as used in database design� can be trans�
lated to MD�sketches� Again� the proof was constructive� and an algorithm to compute
the translation was given�

As a consequence� we obtain an algorithm to decide the equivalence of data�speci�ca�
tions� Moreover� the proofs are also constructive in the following sense� if you �nd that
two data�speci�cations 	or two MD�sketches
 are indeed equivalent� then the equivalence
between the model categories itself is also computable� Given a model of the �rst speci�
�cation� it is possible to compute the image of this model under the equivalence� giving
you a corresponding model of the second speci�cation�

The ability to decide equivalence of data�speci�cations� and to compute corresponding
models for equivalent speci�cations is of major importance during view�integration� the
process of combining several partly overlapping data�speci�cations into one big data�
speci�cation�
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