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APPLICATIONS OF PEIFFER PAIRINGS IN THE MOORE
COMPLEX OF A SIMPLICIAL GROUP

A. MUTLU, T. PORTER
Transmitted by R. Brown

ABSTRACT. Generalising a result of Brown and Loday, we give for n = 3 and 4, a
decomposition of the group, dnNGn, of boundaries of a simplicial group G as a product
of commutator subgroups. Partial results are given for higher dimensions. Applications
to 2-crossed modules and quadratic modules are discussed.

Introduction

Simplicial groups occupy a place somewhere between homological group theory, homotopy
theory, algebraic K-theory and algebraic geometry. In each sector they have played a
significant part in developments over quite a lengthy period of time and there is an
extensive literature on their homotopy theory. In homotopy theory itself, they model all
connected homotopy types and allow analysis of features of such homotopy types by a
combination of group theoretic methods and tools from combinatorial homotopy theory.
Simplicial groups have a natural structure of Kan complexes and so are potentially models
for weak infinity categories. They do however suffer from a lack of apparent linkage
between their algebraic structure and the geometric structure they are used to model, so
that modelling a space with a simplicial group, one can seem to be spreading the geometry
so thinly around that it is no longer visible. In other words the algebra does not seem to
reflect the geometry in any simple way.

Some interesting recent work in modelling geometry by algebra has tended towards
the explicit use of weak infinity categories (Batanin, [2, 3], Baez and Dolan, [1], Leinster,
[18], Tamsamani, [23]). These use globular, multisimplicial or operad algebra models,
but not simplicial groups or groupoids as such, yet some of the structure of weak n-
groupoids is already apparent in the related simplicial group models. For the transfer
of simplicial homotopic technology to the weak infinity categoric models, it is clear that
some rapprochement of the two theories would be for the mutual benefit of both.

The simplest and most obvious link between them is via the lemma of Brown and
Loday, [7], which identifies the structure corresponding to the interchange law for cate-
gorical groups within the low dimensional group theoretic structure of a simplicial group
or groupoid, as being a commutator of face-map kernels. At the next level results of Brown
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and Gilbert, [6], and related ideas of Conduché, [11], have been used by Carrasco and Ce-
garra, [10], to study braided categorical groups. The categorical braiding corresponding
to a given simplicial group is a commutator of degenerate elements and the satisfaction of
the axioms for a braiding corresponds, yet again, to the vanishing of certain commutators
of intersections of face-map kernels. Thus ‘higher order weak monoidal structures’ and the
corresponding weak ‘interchange laws’ would seem to be related to products of commu-
tators of degeneracies and to the vanishing of commutators of intersections of face-map
kernels in some subtle way. This thus turns our attention to the internal structure of
simplicial groups as algebraic objects, however that internal structure has been studied
relatively little.

The present article is one of a series in which we will study n-types of simplicial groups
and the corresponding pairings or higher order braidings using algebraic methods, and will
apply the results in various mainly homological settings. The pleasing, and we believe
significant, result of this study is that simplicial groups lend themselves very easily to
detailed general calculations of these structural maps and thus to a determination of a
remarkably rich amount of internal structure. The calculations can be done by hand in
low dimensions, but it seems likely that more general computations should be possible
using computer aided calculations. A second pleasing conclusion is that these methods
not only clarify the connection between simplicial groups and higher order pairings in
the related infinity categories, but they also simplify certain calculations within simplicial
group theory itself.

In a bit more detail, recall that R. Brown and J.-L. Loday, [7], noted that if the
second dimension G2 of a simplicial group, G, is generated by degenerate elements, that
is, elements coming from lower dimensions, then the image of the second term, ∂2NG2,
of the Moore complex, (NG, ∂), of G by the differential ∂ is

[Kerd1, Kerd0]

where the square brackets as usual denote the commutator subgroup. An easy ar-
gument then shows that this subgroup of NG1 is generated by elements of the form
(s0d1(x)ys0d1(x)

−1)(xyx−1)−1, that is the Peiffer elements of the precrossed module ∂1 :
NG1 → NG0. Thus it is exactly the Peiffer subgroup of NG1 the vanishing of which
is equivalent to ∂1 : NG1 → NG0 being a crossed module. From the point of view of
internal categories in Groups, this gives [Kerd1, Kerd0] as the set of interchange law iden-

tities, whose vanishing would imply that the internal graph G1

��d1
��

d0 G0��
s0

had an internal

category structure. We seek higher dimensional analogues of these interchange identities
giving the possibility of an interpretation of the structure of the NGn, n ≥ 2, and the
corresponding categorical results on n-truncated Moore complexes.

In this paper, we generalise Peiffer elements to higher dimensions giving systematic
ways of generating them. The methods we use are based on ideas of Conduché, [11]
and techniques developed by Carrasco and Cegarra [9]. We recall from [21] and [22] the
following:
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Let G be a simplicial group with Moore complex NG and for n ≥ 0, let Dn be the
subgroup generated by the degenerate elements in dimension n, then

NGn ∩Dn = Nn for all n ≥ 1.

where Nn is the normal subgroup in Gn generated by an explicitly given set of elements.
Alternative interpretations of this intersection and of its image in NGn−1 are often

needed in applications. We aim to reveal decompositions of this image as a product of
commutator subgroups with a hope that this will eventually shed further light on four
problem areas:
(i) non-simply connected analogues of Curtis’s convergence theorem [12],
(ii) information on and calculation with Samelson and Whitehead products (again see
the survey [12] for the description of these for simplicial groups),
(iii) complete descriptions of algebraic models of the n-types of specific families of spaces
for low values of n
and, as mentioned above,
(iv) weak interchange identities in higher dimensional weak n- groupoids.

For even reasonably small values of n, such as n = 5 or 6, the task is daunting and
explicit calculations will almost certainly need the help of computer algebra packages,
however for n = 3 and 4, a product decomposition generalising the [Kerd0, Kerd1] de-
scription of Brown and Loday [7] is now known. Specifically in this article we show that

∂n(NGn ∩Dn) =
∏
I,J

[KI , KJ ]

for n = 2, 3 and 4, where ∅ �= I, J ⊂ [n− 1] = {0, 1, . . . , n− 1} with I ∪ J = [n− 1] and

KI =
⋂
i∈I

Kerdi and KJ =
⋂
j∈J

Kerdj,

and in general, for n > 4 we prove∏
I,J

[KI , KJ ] ⊆ ∂n(NGn ∩Dn).

For n = 2, this reduces to the Brown-Loday result. We will also give some illustrative
examples showing where for n = 3, the result relates to constructions of Conduché [11] and
Baues [4] and note that these results have been applied by Inassaridze and Inassaridze,
[14], in calculations of their non-abelian homology of groups.

(A word of caution needs adding here. As the groups considered are in general non-
abelian, a general indexed product of a number of subgroups or of a set of elements
is ill-defined unless the elements or subgroups are ordered in some way. In this paper
the products of elements are ordered as in the semidirect product decomposition of the
simplicial group or sometimes the order is specified explicitly in the formulae; the products
of subgroups can easily be seen to be without ambiguity as the subgroups are normal in
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all instances. Group theoretic products of subgroups will be written by juxtaposition so
if X and Y are subgroups of some group G then XY denotes the subgroup generated by
the union of X and Y .)
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1. Definition and notation

A simplicial group G consists of a family of groups {Gn} together with face and degeneracy
maps di = dn

i : Gn → Gn−1, 0 ≤ i ≤ n, (n �= 0) and si = sn
i : Gn → Gn+1, 0 ≤ i ≤

n, satisfying the usual simplicial identities given in [12] and also [16], [17]. Another
essential reference from our point of view is Carrasco’s thesis, [8], where many of the
basic techniques used here were developed systematically for the first time and the notion
of hypercrossed complex was defined.

1.1. The poset of surjective maps. The following notation and terminology is de-
rived from [8], where it is used both for simplicial groups and simplicial algebras, and the
published version, [9], which handles just the group theoretic case.

For the ordered set [n] = {0 < 1 < · · · < n}, let αn
i : [n + 1] → [n] be the increasing

surjective map given by

αn
i (j) =

{
j if j ≤ i
j − 1 if j > i.

Let S(n, n − l) be the set of all monotone increasing surjective maps from [n] to [n − l].
This can be generated from the various αn

i by composition. The composition of these
generating maps satisfies the rule αjαi = αi−1αj with j < i. This implies that every
element α ∈ S(n, n − l) has a unique expression as α = αi1αi2 . . . αil with 0 ≤ i1 < i2 <
· · · < il ≤ n, where the indices ik are the elements of [n] at which α(i) = α(i + 1).
We thus can identify S(n, n − l) with the set {(il, ..., i1) : 0 ≤ i1 < i2 < · · · < il ≤
n − 1}. In particular the single element of S(n, n), defined by the identity map on [n],
corresponds to the empty 0-tuple () denoted by ∅n. Similarly the only element of S(n, 0)
is (n− 1, n− 2, . . . , 0). For all n ≥ 0, let

S(n) =
⋃

0≤l≤n

S(n, n− l).

We say that α = (il, ..., i1) < β = (jm, ..., j1) in S(n)

if i1 = j1, · · · , ik = jk but ik+1 > jk+1 (k > 0)

or

if i1 = j1, · · · , il = jl and l < m.
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This makes S(n) an ordered set. For instance, the orders of S(2), S(3) and S(4) are
respectively:

S(2) = {∅2 < (1) < (0) < (1, 0)},
S(3) = {∅3 < (2) < (1) < (2, 1) < (0) < (2, 0) < (1, 0) < (2, 1, 0)},
S(4) = {∅4 < (3) < (2) < (3, 2) < (1) < (3, 1) < (2, 1) < (3, 2, 1) < (0) < (3, 0) <

(2, 0) < (3, 2, 0) < (1, 0) < (3, 1, 0) < (2, 1, 0) < (3, 2, 1, 0)}.
If α, β ∈ S(n), we define α∩β to be the set of indices which belong to both α and β.

1.2. The Moore complex. The Moore complex NG of a simplicial group G is defined
to be the normal chain complex (NG, ∂) with

NGn =
n−1⋂
i=0

Kerdi

and with differential ∂n : NGn → NGn−1 induced from dn by restriction.

The Moore complex has the advantage of being smaller than the simplicial group
itself and being a chain complex is of a better known form for manipulation. However
being non-abelian in general, some new techniques do need developing for its study. Its
homology gives the homotopy groups of the simplicial group and thus in specific cases,
e.g. a truncated free simplicial resolution of a group, gives valuable higher dimensional
information on elements.

The Moore complex, NG, carries a hypercrossed complex structure (see [8] and [9])
which allows the original G to be rebuilt. We recall briefly some of those aspects of this
reconstruction that we will need later.

1.3. The semidirect decomposition of a simplicial group. The fundamental
idea behind this can be found in Conduché [11] . A detailed investigation of this for the
case of simplicial groups is given in Carrasco and Cegarra [9].

1.4. Lemma. Let G be a simplicial group. Then Gn can be decomposed as a semidirect
product:

Gn
∼= Kerdn

0 � sn−1
0 (Gn−1)

Proof. The isomorphism can be defined as follows:

θ : Gn → Kerdn
0 � sn−1

0 (Gn−1)

g �→ (gs0d0g
−1, s0d0g).
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Since we have the isomorphism Gn
∼= Kerd0 � s0Gn−1, we can repeat this process as

often as necessary to get each of the Gn as a multiple semidirect product of degeneracies
of terms in the Moore complex. In fact, let K be the simplicial group defined by

Kn = Kerdn+1
0 , dn

i = dn+1
i+1 |Kerdn+1

0
and sn

i = sn+1
i+1 |Kerdn+1

0
.

Applying Lemma 1.4 above, to Gn−1 and to Kn−1, gives

Gn
∼= Kerd0 � s0Gn−1

= Kerd0 � s0(Kerd0 � s0Gn−2)
= Kn−1 � (s0Kerd0 � s0s0Gn−2).

Since K is a simplicial group, we have the following

Kerd0 = Kn−1
∼= KerdK

0 � sK
0 Kn−2

= (Kerd1 ∩Kerd0) � s1Kerd0

and this enables us to write

Gn = ((Kerdn
1 ∩Kerdn

0 ) � s1(Kerdn−1
0 )) � (s0(Kerdn−1

0 ) � s0s0(Gn−2)).

We can thus decompose Gn as follows:

1.5. Proposition. (cf. [11], p.158) If G is a simplicial group, then for any n ≥ 0

Gn
∼= (. . . (NGn � sn−1NGn−1) � . . .� sn−2 . . . s1NG1)�

(. . . (s0NGn−1 � s1s0NGn−2) � . . .� sn−1sn−2 . . . s0NG0).

The bracketing and the order of terms in this multiple semidirect product are generated
by the sequence:

G1
∼= NG1 � s0NG0

G2
∼= (NG2 � s1NG1) � (s0NG1 � s1s0NG0)

G3
∼= ((NG3 � s2NG2) � (s1NG2 � s2s1NG1))�

((s0NG2 � s2s0NG1) � (s1s0NG1 � s2s1s0NG0))

and
G4

∼= (((NG4 � s3NG3) � (s2NG3 � s3s2NG2))�
((s1NG3 � s3s1NG2) � (s2s1NG2 � s3s2s1NG1)))�
s0(decomposition of G3).

and correspond to the order in S(n) where the term corresponding to α = (il, . . . , i1) ∈
S(n) is sα(NGn−#α) = sil...i1(NGn−#α) = sil ...si1(NGn−#α), where #α = l. Hence any
element x ∈ Gn can be written in the form

x = y
∏

α∈S(n)

sα(xα) with y ∈ NGn and xα ∈ NGn−#α.
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1.6. Crossed modules. Recall that from [24], a crossed module, (M,P, ∂), is a group
homomorphism ∂ : M → P , together with an action of P on M , written pm for p ∈
P and m ∈M , satisfying the following conditions: for all m,m′ ∈M, p ∈ P ,

CM1 : ∂(pm) = p∂(m)p−1

CM2 : ∂mm′ = mm′m−1.

The last condition is called the Peiffer identity.
If a group P acts onM and ∂ :M −→ P satisfies CM1 then it is sometimes convenient

to refer to (M,P, ∂) as a precrossed module. For example making P = NG0 act an
M = NG1 via conjugation using s0 so mp = s0(m)ps0(m)−1, we get that

∂1 : NG1 −→ NG0

is a precrossed module. In such a context the element

∂mm′ · (mm′m−1)−1

is called the Peiffer commutator of m and m′, or more briefly a Peiffer element. Of course
the vanishing of these Peiffer elements is equivalent to (M,P, ∂) being a crossed module.
The subgroup generated by such elements is known as the Peiffer subgroup of M for the
given precrossed module structure on (M,P, ∂).

Given any precrossed module ∂ : M → P , one can form an internal directed graph
in the category of groups simply by forming the semidirect product M � P and taking
the source, s, and target, t, to send an element (m, p) to p or ∂m.p respectively. The
Peiffer subgroup of M measures the obstruction to the directed graph having an internal
category structure. It can easily be seen to be [Kers, Kert].

2. Peiffer pairings and boundaries in the Moore complex of a simplicial
group

The following lemma is noted by Carrasco [8].

2.1. Lemma. For a simplicial group G, if 0 ≤ l ≤ n, let NG
(l)

n =
⋂
i�=l

Kerdi, then the

mapping ϕ : NGn −→ NG
(l)

n in Gn, given by

ϕ(g) = g(
n−l−1∏
k=0

sl+kdng
(−1)k+1

)−1,

is a bijection. This mapping restricts to give a bijection between NGn∩Dn and NG
(l)

n ∩Dn.
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Note that ϕ is not usually a homomorphism.

2.2. Lemma. Given a simplicial group G, then we have the following:

dn(NGn) = dl(NG
(l)

n ),

and

dn(NGn ∩Dn) = dl(NG
(l)

n ∩Dn),

Proof. It is easy to see that, for all elements of the form

g(
n−l−1∏
k=0

sl+kdng
(−1)k−1

)−1

of NG
(l)

n with g ∈ NGn, one gets

dl(g(
n−l−1∏
k=0

sl+kdng
(−1)k+1

)−1) = dng

as required, but by Lemma 2.1 all elements of NG
(l)

n have this form.

2.3. Proposition. Let G be a simplicial group. Then for n ≥ 2 and I, J ⊆ [n − 1] with
I ∪ J = [n − 1]

[
⋂
i∈I

Kerdi,
⋂
j∈J

Kerdj ] ⊆ ∂n(NGn ∩Dn).

Proof. For any I ⊂ [n − 1], I �= ∅, let l be the smallest element of I. If l = 0, then
replace I by J and restart and if 0 ∈ I ∩ J, then redefine l to be the smallest nonzero
element of I. Otherwise proceed as follows. Let g0 ∈ ⋂

i∈I

Kerdi and g1 ∈ ⋂
j∈J

Kerdj . One

obtains

di[sl−1g0, slg1] = 1 for i �= l

and hence [sl−1g0, slg1] ∈ NG(l)

n . It follows that

[g0, g1] = dl[sl−1g0, slg1] ∈ dl(NG
(l)

n ) = dnNGn by the previous lemma,

and this implies

[
⋂
i∈I

Kerdi,
⋂
j∈J

Kerdj ] ⊆ ∂n(NGn ∩Dn).
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Writing the abbreviations

KI =
⋂
i∈I

Kerdi and KJ =
⋂
j∈J

Kerdj.

then Proposition 2.3 implies ∏
I,J

[ KI , KJ ] ⊆ ∂n(NGn ∩Dn)

for ∅ �=I, J ⊂ [n − 1] and I ∪ J = [n − 1].

Example: We illustrate the inclusion of Proposition 2.3 for n = 2. We suppose that
x, y ∈ NG1 = Kerd0 so that (x−1(s0d1(x)) ∈ Kerd1. Note that

(s0d1(x)ys0d1(x)
−1)(xyx−1)−1 ∼= [x−1s0d1(x), y] = d2[s1(x)

−1s0(x), s1(y)]

which corresponds to a Peiffer element. These elements vanish for all x, y if and only if
∂1 : NG1 → NG0 is a crossed module. Note that [Kerd0,Kerd1] ⊆ ∂2(NG2 ∩D2).

2.4. Truncated simplicial groups. A k − truncated simplicial group is given by
similar data to that for a simplicial group, but with Gn given only for n ≤ k. Given any
simplicial group G, one has a natural k-truncated simplicial group obtained by throwing
away all elements of dimension strictly greater than k. We denote this by TrkG. The
following is a result of Conduché [11].

2.5. Corollary. Let G′ be (n−1)-truncated simplicial group. Then there is a simplicial
group G with TrkG ∼= G′ if and only if G′ satisfies the following property:
For all nonempty sets of indices (I �= J), I, J ⊂ [n− 1] with I ∪ J = [n− 1],

[
⋂
i∈I

Kerdi,
⋂
j∈J

Kerdj ] = 1.

Proof. Since ∂nNG
′
n = 1, this follows from Proposition 2.3.

2.6. Peiffer pairings generate. In the following we will define a subgroup Nn of
Gn. First of all we adapt ideas from Carrasco [8] to get the construction of a useful family
of pairings. We define a set P (n) consisting of pairs of elements (α, β) from S(n) with
α ∩ β = ∅n and α < β, where α = (il, . . . , i1), β = (jm, ..., j1) ∈ S(n). It is immediate but
important to note that if (α, β) ∈ P (n) then neither α nor β can be ∅n. The pairings that
we will need,

{Fα,β : NGn−#α ×NGn−#β −→ NGn : (α, β) ∈ P (n), n ≥ 0}
are given as composites by the diagram where

NGn−#α ×NGn−#β
��

Fα,β

��
sα×sβ

NGn

Gn ×Gn
��µ
Gn

��
p
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where

sα = sil . . . si1 : NGn−#α −→ Gn, sβ = sjm . . . sj1 : NGn−#β −→ Gn,

p : Gn → NGn is defined by the composite projections p(z) = pn−1 . . . p0(z), where

pj(z) = zsjdj(z)
−1 with j = 0, 1, . . . , n− 1

and µ : Gn ×Gn → Gn is given by the commutator map. Thus

Fα,β(xα, yβ) = pµ(sα × sβ)(xα, yβ)
= p[sα(xα), sβ(yβ)].

We now define the normal subgroup Nn of Gn to be that generated by elements of the
form

Fα,β(xα, yβ)

where xα ∈ NGn−#α and yβ ∈ NGn−#β, where #α is the length of the string α. We
illustrate this for n = 2 and n = 3 to show what this subgroup looks like.

Examples : (a) For n = 2, suppose α = (1), β = (0) and x, y ∈ NG1 = Kerd0. It
follows that

F(0)(1)(x, y) = p1p0[s0(x), s1(y)]
= p1[s0(x), s1(y)]
= [s0(x), s1(y)][s1(y), s1(x)]

which is thus a typical ‘generating element’ of the subgroup N2.
(b) For n = 3, the pairings are the following

F(1,0)(2), F(2,0)(1), F(0)(2,1),
F(0)(2), F(1)(2), F(0)(1).

For all x ∈ NG1, y ∈ NG2, the corresponding generators of N3 are:

F(1,0)(2)(x, y) = [s1s0(x), s2(y)][s2(y), s2s0(x)]
F(2,0)(1)(x, y) = [s2s0(x), s1(y)][s1(y), s2s1(x)][s2s1(x), s2(y)][s2(y), s2s0(x)]

and all y ∈ NG2, x ∈ NG1,

F(0)(2,1)(x, y) = [s0(x), s2s1(y)][s2s1(y), s1(x)][s2(x), s2s1(y)],

whilst for all x, y ∈ NG2,

F(0)(1)(x, y) = [s0(x), s1(y)][s1(y), s1(x)][s2(x), s2(y)],
F(0)(2)(x, y) = [s0(x), s2(y)],
F(1)(2)(x, y) = [s1(x), s2(y)][s2(y), s2(x)].

The following theorem is proved in [22].
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2.7. Theorem. [22] ( Theorem A ) Let G be a simplicial group and for n > 1, let
Dn the subgroup of Gn generated by degenerate elements. Let Nn be the normal subgroup
generated by elements of the form

Fα,β(xα, yβ) with (α, β) ∈ P (n)
where xα ∈ NGn−#α, yβ ∈ NGn−#β. Then

NGn ∩Dn = Nn ∩Dn.

Proof. [22]

In what follows Dn will always be used to denote the subgroup of Gn generated by
the degenerate elements.

3. Commutators of kernel elements and boundaries in the Moore complex
of a simplicial group

By way of illustration of the potential of the above construction, we look at the case of
n = 2, collecting up items from earlier discussions.

3.1. Case n = 2. We know that any element g2 of G2 can be expressed in the form

g2 = gs1ys0xs0u

with g ∈ NG2, x, y ∈ NG1 and u ∈ s0G0. For simplicity we suppose D2 = G2. For n = 1,
we take α = (0), β = (1) and x, y ∈ NG1 = Kerd0. By example (a), the subgroup N2

is normally generated by elements of the form

F(0)(1)(x, y) = [s0x, s1y][s1y, s1x].

The image of N2 by ∂2 is known to be [Kerd1, Kerd0] by direct calculation. Indeed,

d2[F(0)(1)(x, y)] = d2([s0x, s1y][s1y, s1x])
= [s0d1x, y][y, x]

where x, y ∈Kerd0 and (x−1s0d1(x)) ∈ Kerd1 and all elements of Kerd1 have this form as
is checked.

As ∂2 = d2 restricted to NG2, this is precisely d2(F(0)(1)(x, y)). In other words the
subgroup ∂2(N2) is the ‘Peiffer subgroup’ of the pre-crossed module ∂ : NG1 → NG0,
whose vanishing is equivalent to this being a crossed module and the internal directed

graph, G1

��d1
��

d0 G0��
s0

having an internal category structure. The description of ∂2(N2) as

[Kerd1, Kerd0] gives that its vanishing in this situation is module-like behaviour since
a P -module, M, corresponds to the trivial case (M,P, ∂) where ∂ is itself the trivial
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homomorphism in which case this commutator is just [M, M ] = 1. Thus if (NG, ∂)
yields a crossed module, this fact will be reflected in the internal structure of G by
the vanishing of [Kerd1, Kerd0]. Because the image of F(0)(1)(x, y) is the Peiffer element
determined by x and y, we will call the Fα,β(x, y) in higher dimensions higher dimensional
Peiffer elements and will seek similar internal conditions for their vanishing.

We have seen that in all dimensions

∏
I,J

[KI , KJ ] ⊆ ∂n(NGn ∩Dn) = ∂n(Nn ∩Dn)

and we will show shortly that this inclusion is an equality, not only in dimension 2 ( as
above), but in dimensions 3 and 4 as well. The arguments are calculatory and do not
seem to generalise in any obvious way to higher dimensions although similar arguments
can be used to get partial results there. For completeness and to introduce notational
conventions, we start with the case n = 2 in the form to be used later.

Here ∂2(N2)) ⊆ [Kerd1, Kerd0]. Using similar calculations to those in the example
after Proposition 2.3, it is easy to obtain the converse of the equality and so ∂2(N2 ∩
D2) = [Kerd1, Kerd0]. We can summarise this in the following table

α β I, J
(0) (1) {1} {0}

We write ∂2(N2) = [K{1}, K{0}] where K{1} is Kerd1 and K{0} is Kerd0.

4. Case n = 3

This section provides analogues in dimension 3 of the Peiffer elements. The analogue of
the ‘[Kerd1, Kerd0]’ result here is:

4.1. Theorem. ( Theorem B, case n = 3 ) In any simplicial group, G,

∂3(NG3 ∩D3) = (
∏
I,J

[KI , KJ ]) [K{0,2}, K{0,1}] [K{1,2}, K{0,1}] [K{1,2}, K{0,2}]

where I ∪ J = [2], I ∩ J = ∅ and KI =
⋂
i∈I

Kerdi for I ⊆ [2].

Proof. By example (b) and Theorem A, we know the generator elements of the normal
subgroup N3 and ∂3(N3) = ∂3(NG3 ∩D3). The image of all the listed generator elements
of the subgroup N3 can then be given as in the following table. The correspondence
between the various Fα,β(x, y) and the corresponding parts of the decomposition is given
in the second table.



Theory and Applications of Categories, Vol. 4, No. 7 160

α β I, J
1 (1,0) (2) {2}{0,1}
2 (2,0) (1) {1}{0,2}
3 (0) (2,1) {0}{1,2} {0,2}{0,1}
4 (1) (2) {0,2}{0,1}
5 (0) (2) {1,2}{0,1} {0,2}{0,1}
6 (0) (1) {1,2}{0,1} {0,2}{0,1} {1,2}{0,2}

The explanation of this table is the following:
∂3Fα,β(xα, yβ) is in [KI , KJ ] in the simple cases corresponding to row 1, row 2 and row 4.
In row 3, F(0)(2,1)(x2, y1) ∈ [K{0}, K{1,2}] [K{0,2}, K{0,1}] and similarly in row 5 and row
6, the higher Peiffer element is in the product of the indicated [KI , KJ ].

To illustrate the sort of argument used we look at the case of α = (1, 0) and β = (2),
i.e row 1, but will omit that for row 4, which is similar. For x1 ∈ NG1 and y2 ∈ NG2,
the corresponding generator of ∂3N3 is

d3(F(1,0)(2)(x1, y2)) = d3{[s1s0x1, s2y2] [s2y2, s2s0x1]},
= [s1s0d1x1, y2] [y2, s0x1].

The elements x, y give elements (s1s0d1(x1)
−1s0x1) ∈ Kerd2 and y−1

2 ∈ NG2 and

[s1s0d1(x1)
−1s0x1, y

−1
2 ] = y−1

2 s1s0d1(x1)−1{[s1s0d1x1, y2] [y2, s0x1]},

that is,

s1s0d1(x1)y2 [s1s0d1(x1)
−1s0x1, y

−1
2 ] = d3(F(1,0)(2)(x1, y2)),

so we have

d3(F(1,0)(2)(x1, y2)) ∈ [Kerd2, Kerd0 ∩Kerd1] = [K{2}, K{0,1}].

For row 2, α = (2, 0), β = (1) with x1 ∈ NG1, y2 ∈ NG2,

d3(F(2,0)(1)(x1, y2)) = d3{[s2s0x1, s1y2] [s1y2, s2s1x1]
[s2s1x1, s2y2] [s2y2, s2s0x1]},

= [s0x1, s1d2y2] [s1d2y2, s1x1] [s1x1, y2] [y2, s0x1].

We have, for x1 ∈ NG1, y2 ∈ NG2, (s0(x1)
−1s1x1) ∈ Kerd1 and (s1d2(y2)

−1y2) ∈
Kerd0 ∩Kerd2, then

s0x1s1d2y2 [s0(x1)
−1s1x1, s1d2(y2)

−1y2] = [s0x1, s1d2y2] [s1d2y2, s1x1]
[s1x1, y2] [y2, s0x1],
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so that

s0x1s1d2y2 [s0(x1)
−1s1x1, s1d2(y2)

−1y2] = d3(F(2,0)(1)(x1, y2))

and
d3(F(2,0)(1)(x1, y2)) ∈ [Kerd1, Kerd0 ∩Kerd2] = [K{1}, K{0,2}].
Row 3 and row 5 are similar.
For row 3, α = (0), β = (2, 1) with x2 ∈ NG2, y1 ∈ NG1. It follows that

d3(F(0)(2,1)(x2, y1)) = d3{[s0x2, s2s1y1] [s2s1y1, s1x2] [s2x2, s2s1y1]},
= [s0d2x2, s1y1] [s1y1, s1d2x2] [x2, s1y1].

We can take the following elements for x2 ∈ NG2, y1 ∈ NG1,
(x2s1d2(x2)

−1s0d2x2) ∈ Kerd1 ∩ Kerd2, s1y1 ∈ Kerd0 and s1d2x2(x2)
−1 ∈ Kerd0 ∩ Kerd2,

then

s1d2(x2)x
−1
2 [x2s1d2(x2)

−1s0d2x2, s1y1]︸ ︷︷ ︸
k

= [s0d2x2, s1y1] [s1y1, s1d2x2]

[x2, s1y1],
s1d2x2(x2)−1

k [ s1d2x2(x2)
−1, [s1y1, x2] ] = d3(F(0)(2,1)(x2, y1)),

and

d3(F(0)(2,1)(x2, y1)) ∈ [Kerd1 ∩Kerd2, Kerd0] [Kerd0 ∩Kerd2, Kerd0 ∩Kerd1].

For row 6, α = (1), β = (0) and x2, y2 ∈ NG2 = Kerd0 ∩ Kerd1,

d3(F(0)(1)(x2, y2)) = d3{[s0x2, s1y2] [s1y2, s1x2] [s2x2, s2y2]},
= [s0d2x2, s1d2y2] [s1d2y2, s1d2x2] [x2, y2].

We can take the following elements (x2s1d2(x2)
−1s0d2x2) ∈ Kerd1 ∩Kerd2 and

(s1d2y2(y2)
−1) ∈ Kerd0 ∩Kerd2. Forming their commutator gives

[x2s1d2(x2)
−1s0d2x2, y

−1
2 s1d2y2]︸ ︷︷ ︸

m

= x2s1d2(x2)−1(y2)−1{[y2, s0d2x2] [s0d2x2, s1d2y2] [s1d2y2, s1d2x2] [x2, y2]}
x2s1d2(x2)−1{[y2, x2] [s1d2x2, y2]} y−1

2 {[y2, x2] [x2, s1d2y2]},
or

[s0d2x2, y2]
y2s1d2x2x−1

2 {m y−1
2 {[s1d2y2, x2] [x2, y2]}} [s1d2x2, y2] [y2, x2]

= d3(F(0)(1)(x2, y2)),
and

d3(F(0)(1)(x2, y2)) ∈ [Kerd1 ∩Kerd2, Kerd0 ∩Kerd1]
[Kerd0 ∩Kerd2, Kerd0 ∩Kerd1]
[Kerd1 ∩Kerd2, Kerd0 ∩Kerd2]
[Kerd0 ∩Kerd2, Kerd0 ∩Kerd1].
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Thus we have shown

∂3(NG3 ∩D3) ⊆ (
∏
I,J

[KI , KJ ]) [K{0,2}, K{0,1}] [K{1,2}, K{0,1}] [K{1,2}, K{0,2}].

The opposite inclusion is given by Proposition 2.3. Therefore

∂3(NG3 ∩D3) = [Kerd2, Kerd0 ∩Kerd1] [Kerd1, Kerd0 ∩Kerd2]
[Kerd0, Kerd1 ∩Kerd2] [Kerd0 ∩Kerd2, Kerd0 ∩Kerd1]
[Kerd1 ∩Kerd2, Kerd0 ∩Kerd1]
[Kerd1 ∩Kerd2, Kerd0 ∩Kerd2].

This completes the proof of the result.

Remark: This result has been used by Inassaridze and Inassaridze, [14] to aid calculation
of their non-abelian homology group, H3(G,A).

5. Illustrative example: 2-crossed modules

The following definition of 2-crossed modules is equivalent to that given by D.Conduché,
[11].

5.1. Definition. A 2-crossed module consists of a complex of groups

L ��∂2
M ��∂1

N

together with an action of N on L and M , written n( ), and on N itself by conjugation,
so that ∂2, ∂1 are morphisms of N -groups, and a N -equivariant function

{ , } :M ×M → L

called a Peiffer lifting, which satisfies the following axioms:

2CM1 : ∂2{m,m′} = ( ∂1mm′) (m(m′)−1(m)−1),
2CM2 : {∂2(l), ∂2(l

′)} = [l′, l],
2CM3 : (i) {mm′,m′′} = ∂1m{m′,m′′}{m,m′m′′(m′)−1},

(ii) {m,m′m′′} = {m,m′} mm′(m)−1{m,m′′},
2CM4 : {m, ∂2l}{∂2l,m} = ∂1ml(l)−1,
2CM5 n{m,m′} = { nm, nm′},

for all l, l′ ∈ L, m,m′,m′′ ∈M and n ∈ N.
Here we have used ml as a shorthand for {∂2l,m}l in the condition 2CM3(ii) where l

is {m,m′′} and m is mm′(m)−1. This gives a new action of M on L. Using this notation,
we can split 2CM4 into two pieces, the first of which is tautologous:

2CM4 : (a) {∂2(l),m} = m(l).l−1,
(b) {m, ∂2(l)} = (∂1ml)(m(l)−1),

.
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The old action of M on L via the N−action on L is in general distinct from this second
action with {m, ∂2(l)} measuring the difference (by 2CM4(b)). An easy argument using
2CM2 and 2CM4(b) shows that with this action, ml, of M on L, (L,M, ∂2) becomes a
crossed module.

We denote such a 2-crossed module by {L, M, N, ∂2, ∂1}. A morphism of 2-crossed
modules is given by a diagram

L ��∂2

��
f2

M

��
f1

��∂1
N

��
f0

L′ ��
∂′
2
M ′ ��

∂′
1
N ′

where f0∂1 = ∂′1f1, f1∂2 = ∂′2f2,

f1(
nm1) =

(f0(n))f1(m1), f2(
nl) = (f0(n))f2(l),

and

{ , }f1 × f1 = f2{ , },
for all l ∈ L, m1 ∈ M, n ∈ N. These compose in an obvious way. We thus can
consider the category of 2-crossed modules denoting it as X2Mod. Conduché [11] proved
that 2-crossed modules give algebraic models of homotopy 3-types.

5.2. Proposition. Let G be a simplicial group with the Moore complex NG. Then the
complex of groups

NG2/∂3(NG3 ∩D3) ��∂2
NG1

��∂1
NG0

with NG0 acting via conjugation and the degeneracy maps, is a 2-crossed module, where
the Peiffer map is defined as follows:

{ , } : NG1 ×NG1 −→ NG2/∂3(NG3 ∩D3)

(x0, x1) �−→ s0x0s1x1s0(x0)
−1s1x0s1(x1)

−1s1(x0)
−1.

Here the right hand side denotes a coset in NG2/∂3(NG3∩D3) represented by an element
in NG2. The two actions of NG1 on NG2/∂3(NG3 ∩D3) are given by
(i) ∂1ml corresponds to the action s0(m)ls0(m)−1 via s0 and conjugation;
(ii) ml corresponds to the action s1(m)ls1(m)−1 via s1 and conjugation.

Proof. This is a reformulation of a result of Conduché [11]. Our aim is to show the role
of the Fα,β in the structure. We will show that the axioms of a 2-crossed module are
verified. It is readily checked that s0(m)ls0(m)−1 = s1s0d0(m)ls1s0d0(m)−1 so the action
“∂1ml ” is that via s0.

In the following calculations we display the elements omitting the overlines:
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2CM1:
∂2{x0, x1} = ∂2(s0x0s1x1s0x0

−1s1x0s1x1
−1s1x0

−1),

= s0d1(x0)x1s0d1(x0)
−1x0(x1)

−1(x0)
−1,

= ∂1(x0)x1 x0(x1)
−1(x0)

−1.

2CM2:
From ∂3(F(1)(0)(x, y)) = [s0d2x, s1d2y] [s1d2y, s1d2x] [x, y], one obtains

{∂2(x), ∂2(y)} = s0d2(x)s1d2(y)s0d2(x)
−1s1d2(x)s1d2(y)

−1s1d2(x)
−1,

≡ [y, x] mod ∂3(NG3 ∩D3).

2CM3: (i)

{x0x1, x2} = s0(x0)s0(x1)s1(x2)s0(x1)
−1s0(x0)

−1s1(x0)s1(x1)

s1(x2)
−1s1(x1)

−1s1(x0)
−1,

= (s0(x0)s0(x1)s1(x2)s0(x1)
−1s1(x1)s1(x2)

−1s1(x1)s0(x1)
−1)

(s0(x0)s1(x1)s1(x2)s1(x1)
−1s0(x0)

−1s1(x0)s1(x1)

s1(x2)
−1s1(x1)

−1s1(x0)
−1),

≡ ∂1(x0) {x1, x2} {x0, x1x2(x1)
−1}.

(ii)

{x0, x1x2} = s0(x0)s1(x1)s1(x2)s0(x0)
−1s1(x0)s1(x2)

−1s1(x1)
−1s1(x0)

−1,

= (s0(x0)s1(x1)s0(x0)
−1s1(x0)s1(x1)

−1s1(x0)
−1)

s1(x0)s1(x1)s1(x0)
−1(s0(x0)s1(x2)s0(x0)

−1

s1(x0)s1(x2)
−1s1(x0)

−1)s1(x0)s1(x1)
−1s1(x0)

−1,

= {x0, x1} x0x1(x0)
−1{x0, x2}.

2CM4: (a)
From ∂3(F(0)(2,1)(y, x)) = [s0d2y, s1x0] [s1x0, s1d2y] [y, s1x0] ∈ ∂3(NG3 ∩D3),

{∂2(y), x0} ≡ [s1(x0), y] mod ∂3(NG3 ∩D3),

= s1(x0)ys1(x0)
−1y−1,

= x0y y−1, by the definition of the action.

This justifies claim (ii) of the statement of the proposition. (b) Since

∂3(F(2,0)(1)(x0, y)) = [s0x0, s1d2y] [s1d2y, s1x0] [s1x0, y] [y, s0x0],

{x0, ∂2(y)} = [s0(x0), y] [y, s1(x0)],
≡ (x0 · y) x0y−1 mod ∂3(NG3 ∩D3),

or using the original form:
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2CM4:
{x0, ∂2(y)} {∂2(y), x0} = (x0 · y) x0y−1 x0y y−1,

= ∂1(x0)y y−1.

2CM5:
n{x0, x1} = s1s0(n)s0x0s1x1s0x0

−1s1s0(n)
−1

s1s0(n)s1x0s1x1
−1s1x0

−1s1s0(n)
−1,

= { nx0,
nx1},

here with x, y ∈ NG2/∂3(NG3 ∩D3), x0, x1, x2 ∈ NG1 and n ∈ NG0.
This completes the proof of the proposition.

This only used the higher dimension Peiffer elements. A result in terms of the vanishing
of the [KI , KJ ] can also be given:

5.3. Proposition. If in a simplicial group G, one has [KI , KJ ] = 1 in dimension 2
for the following cases: I ∪ J = [2], I ∩ J = ∅; I = {0, 1}, J = {0, 2} or I = {1, 2}; and
I = {0, 2}, J = {1, 2}, then

NG2 −→ NG1 −→ NG0

can be given the structure of a 2-crossed module.

Note that any 2-truncated simplicial group satisfies this condition, but many other
simplicial groups may also satisfy it. Since Theorem A (that is 2.5) describes NG2 in
many instances, these results do provide a hope for calculating invariants of 3-types.

Remarks: (i) In [4] and [5] Baues introduces a related notion of quadratic module. As
in the above, one has a complex

L ��δ
M ��∂

N

of groups with actions but the Peiffer lifting is replaced by a pairing

ω : C ⊗ C −→ L

where C is the abelianisation of the quotient group M/P2(∂) where P2 is the Peiffer
subgroup of the precrossed module (M,N, ∂). Baues, [4] and [5], gives a construction of
a quadratic module from a simplicial group. Again we can use the Fα,β’s in verifying the
axioms. Quadratic modules have ‘nilpotency degree two’ in as much as the triple Peiffer
commutators are trivial. Quadratic modules are thus ‘nilpotent’ algebraic modules of 3-
types. In [5], Baues points out that a ‘nilpotent’ algebraic model for 4-types is not known.
Preliminary attempts by various authors suggest that the structure of 3-truncated Moore
complexes (3-crossed modules) goes some way towards that aim, but the nilpotency must
allow for the 6 pairings used above, and any analogue of Baues’ construction for 4-types
will be likely to need information on d4NG4 to which we turn in the next section.

(ii) A braiding on a monoidal category relates the two tensor products A ⊗ B and
B⊗A, satisfying various compatibility conditions with the structure maps of the monoidal
structure, (cf. Joyal and Street, [15]). Any crossed module determines an internal category
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in groups and hence a strict monoidal category, in fact a strict categorical group. The
concept of a braiding allows one to weaken the strictness. Braided regular crossed modules
were introduced by Brown and Gilbert, [6], whilst braided categorical groups were studied
by Carrasco and Cegarra, [10]. The braiding in the strict categorical group associated to
a simplicial group, G, is given in terms of the above Peiffer pairing, { , }, (cf. p.4009 of
[10]).

(iii) For comparison with Conduché’s formulation in [11], we have written ml where
he writes m · l and his Peiffer lifting is

{m1,m2} = [s1m1, s1m2][s1m2, s0m1],

so our formulae are often the reverse of his.

6. The case n = 4

With dimension 4, the situation is more complicated, but is still manageable.

6.1. Theorem. ( Theorem B: case n = 4) In a simplicial group, G,

∂4(NG4 ∩D4) =
∏
I,J

[KI , KJ ]

where I ∪ J = [3], I = [3]− {α}, J = [3]− {β} and (α, β) ∈ P (4).
Proof. There is a natural isomorphism

G4
∼= NG4 � s3NG3 � s2NG3 � s3s2NG2 � s1NG3�

s3s1NG2 � s2s1NG2 � s3s2s1NG1 � s0NG3�

s3s0NG2 � s2s0NG2 � s3s2s0NG1�

s1s0NG2 � s3s1s0NG1 � s2s1s0NG1 � s3s2s1s0NG0.

We firstly see what the generator elements of the normal subgroup N4 look like. For
n = 4, one gets

S(4) = {∅4 < (3) < (2) < (3, 2) < (1) < (3, 1) < (2, 1) < (3, 2, 1) < (0) <
(3, 0) < (2, 0) < (3, 2, 0) < (1, 0) < (3, 1, 0) < (2, 1, 0) < (3, 2, 1, 0)}.

The key pairings are thus the following:

F(0)(3,2,1), F(3,2,0)(1), F(3,1,0)(2), F(2,1,0)(3),
F(3,0)(2,1), F(2,0)(3,1), F(1,0)(3,2), F(1)(3,2),
F(0)(3,2), F(0)(3,1), F(0)(2,1), F(3,1)(2),
F(2,1)(3), F(3,0)(2), F(3,0)(1), F(2,0)(3),
F(2,0)(1), F(1,0)(3), F(1,0)(2), F(2)(3),
F(1)(3), F(0)(3), F(1)(2), F(0)(2),
F(0)(1).
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For x1, y1 ∈ NG1, x2, y2 ∈ NG2 and x3, y3 ∈ NG3, the generator elements of the
normal subgroup N4 are

1) F(0)(3,2,1)(x3, y1) = [s0x3, s3s2s1y1] [s3s2s1y1, s1x3]
[s2x3, s3s2s1y1] [s3s2s1y1, s3x3],

2) F(3,2,0)(1)(x1, y3) = [s3s2s0x1, s1y3] [s1y3, s3s2s1x1]
[s3s2s1x1, s2y3] [s2y3, s3s2s0x1]
[s3s2s0x1, s3y3] [s3y3, s3s2s1x1],

3) F(3,1,0)(2)(x1, y3) = [s3s1s0x1, s2y3] [s2y3, s3s2s0x1]
[s3s2s0x1, s3y3] [s3y3, s3s1s0x1],

4) F(2,1,0)(3)(x1, y3) = [s2s1s0x1, s3y3] [s3y3, s3s1s0x1],
5) F(3,0)(2,1)(x2, y2) = [s3s0x2, s2s1y2] [s2s1y2, s3s1x2]

[s3s2x2, s2s1y2] [s3s1y2, s3s2x2]
[s3s1x2, s3s1y2] [s3s1y2, s3s0x2],

6) F(2,0)(3,1)(x2, y2) = [s2s0x2, s3s1y2] [s3s1y2, s2s1x2]
[s2s1x2, s3s2y2] [s3s2y2, s2s0x2]
[s3s0x2, s3s2y2] [s3s2y2, s3s1x2]
[s3s1x2, s3s1y2] [s3s1y2, s3s0x2],

7) F(1,0)(3,2)(x2, y2) = [s1s0x2, s3s2y2] [s3s2y2, s2s0x2]
[s3s0x2, s3s2y2],

8) F(1)(3,2)(x3, y2) = [s1x3, s3s2y2] [s3s2y2, s2x3]
[s3x3, s3s2y2],

9) F(0)(3,2)(x3, y2) = [s0x3, s3s2y2],
10) F(0)(3,1)(x3, y2) = [s0x3, s3s1y2] [s3s1y2, s1x3]

[s2x3, s3s2y2] [s3s2y2, s3x2],
11) F(0)(2,1)(x3, y2) = [s0x3, s2s1y2] [s2s1y2, s1x3]

[s2x3, s2s1y2] [s3s1y2, s3x3],
12) F(3,1)(2)(x2, y3) = [s3s1x2, s2y3] [s2y3, s3s2x2]

[s3s2x2, s3y3] [s3y3, s3s1x2],
13) F(2,1)(3)(x2, y3) = [s2s1x2, s3y3] [s3y3, s3s1x2],
14) F(3,0)(2)(x2, y3) = [s3s0x2, s2y3] [s3y3, s3s0x2],
15) F(3,0)(1)(x2, y3) = [s3s0x2, s1y3] [s1y3, s3s1x2]

[s3s2x2, s2y3] [s3y3, s3s2x2],
16) F(2,0)(3)(x2, y3) = [s2s0x2, s3y3] [s3y3, s3s0x2],
17) F(2,0)(1)(x2, y3) = [s2s0x2, s1y3] [s1y3, s2s1x2]

[s2s1x2, s2y3] [s2y3, s2s0x2]
[s3s0x2, s3y3] [s3y3, s3s1x2],

18) F(1,0)(3)(x2, y3) = [s1s0x2, s3y3],
19) F(1,0)(2)(x2, y3) = [s1s0x2, s2y3] [s2y3, s2s0x2]

[s3s0x2, s3y3],
20) F(2)(3)(x3, y3) = [s2x3, s3y3] [s3y3, s3x3],
21) F(1)(3)(x3, y3) = [s1x3, s3y3],
22) F(0)(3)(x3, y3) = [s0x3, s3y3],
23) F(1)(2)(x3, y3) = [s1x3, s2y3] [s2y3, s2x3]

[s3x3, s3y3],
24) F(0)(2)(x3, y3) = [s0x3, s2y3],
25) F(0)(1)(x3, y3) = [s0x3, s1y3] [s1y3, s1x3]

[s2x3, s2y3] [s3y3, s3x3].
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By Theorem A, we have ∂4(NG4 ∩D4) = ∂4(N4). We take an image by ∂4 of each Fα,β,
where α, β ∈ P (4). We summarise the image of all generator elements, which are listed
early on, in the subsequent table.

α β I, J

1 (0) (3,2,1) {1,2,3}{0} {0,2,3}{0,1,3}
2 (3,2,0) (1) {1}{0,2,3} {0,1,3}{0,1,2}
3 (3,1,0) (2) {2}{0,1,3}
4 (2,1,0) (3) {3}{0,1,2}
5 (3,0) (2,1) {0,3}{1,2} {0,2}{0,1,3}
6 (2,0) (3,1) {1,3}{0,2} {0,3}{0,1,2}
7 (1,0) (3,2) {2,3}{0,1} {3}{0,1,2}
8 (1) (3,2) {0,2,3}{0,1} {0,1,3}{0,1,2}
9 (0) (3,2) {0,1}{0,2,3} {1,2,3}{0,1}
10 (0) (3,1) {1,2,3}{0,2} {0,1}{1,2,3} {0,1,3}{0,2}
11 (0) (2,1) {1,2,3}{0,3} {1,2,3}{0} {0,2}{0,1,3} {0,1,2}{0,3}
12 (3,1) (2) {0,2}{0,1,3}
13 (2,1) (3) {0,3}{0,1,2}
14 (3,0) (2) {1,2}{0,1,3} {0,1,3}{0,2}
15 (3,0) (1) {1,2}{0,2,3} {0,1,3}{1,2} {0,2,3}{0,1} {0,1,3}{0,1,2}
16 (2,0) (3) {1,3}{0,1,2} {0,3}{0,1,2}
17 (2,0) (1) {1,3}{0,2,3} {0,1,2}{1,3} {0,2,3}{1} {3}{0,1,2}
18 (1,0) (3) {2,3}{0,1,2} {3}{0,1,2}
19 (1,0) (2) {2,3}{0,1,3} {0,1,2}{2,3} {3}{0,1,2} {0,2}{0,1,3} {0,1,3}{1,2}
20 (2) (3) {0,1,3}{0,1,2}
21 (1) (3) {0,2,3}{0,1,2} {0,1,3}{0,1,2}
22 (0) (3) {1,2,3}{0,1,2} {0,2,3}{0,1,2} {0,1,3}{0,1,2}
23 (1) (2) {0,2,3}{0,1,3} {0,1,2}{0,2,3} {0,1,3}{0,1,2}
24 (0) (2) {1,2,3}{0,1,3} {0,1,3}{0,2,3} {1,2,3}{0,1,2} {0,2,3}{0,1,2}

{0,1,3}{0,1,2}
25 (0) (1) {1,2,3}{0,2,3} {0,1,3}{1,2,3} {0,2,3}{0,1,2} {0,1,3}{0,1,2}

{0,2}{0,1,3} {0,2,3}{0,1,3} {0,1,2}{0,2,3}
As the proofs are largely similar to those for n = 3 we leave most to reader, limiting

ourselves to one or two of the more complex cases by way of illustration.

Row: 1
d4(F(0)(3,2,1)(x3, y1)) = [s0d3x3, s2s1y1] [s2s1y1, s1d3x3]

[s2d3x3, s2s1y1] [s2s1y1, x3].

Take elements (x2s1d2(x2)
−1s0d2x2) ∈ Kerd1 ∩Kerd2 and

(s1d2y2(y2)
−1) ∈ Kerd0 ∩Kerd2,

so
d4(F(0)(3,2,1)(x3, y1)) = a−1{A [s2s1y1, x

−1
3 s2d3x3]}

[s2d3x3, s2s1y1][s2s1y1, x3]
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then we have

d4(F(0)(3,2,1)(x3, y1)) ∈ [K{1,2,3}, K{0}] [K{0,2,3}, K{0,1,3}],

where [x−1
3 s2d3x3s1d3(x3)

−1s0d3x3, s2s1y1] = A and
x−1

3 s2d3x3s1d3(x3)
−1 = a.

Row: 2
d4(F(3,2,0)(1)(x1, y3)) = [s2s0x1, s1d3y3] [s1d3y3, s2s1x1]

[s2s1x1, s2d3y3] [s2d3y3, s2s0x1]
[s2s0x1, y3] [y3, s2s1x1].

Let a, b, c, d, e be s2s0x1, s1d3y3, s2s1x1, s2d3y3, y3 respectively and giving elements
(c−1a) ∈ K{1}, (ed−1b) ∈ K{0,2,3}, (ade−1a−1) ∈ K{0,1,3} and
a[a−1c, e] ∈ K{0,1,2}. Then

d4(F(3,2,0)(1)(x1, y3)) = ade−1a−1c[c−1a, ed−1b]ade−1
[a−1c, e] [a, e] [e, c]

= ade−1a−1c[c−1a, ed−1b] [ade−1a−1, a[a−1c, e] ],

so it follows that

d4(F(3,2,0)(1)(x1, y3)) ∈ [K{1}, K{0,2,3}] [K{0,1,3}, K{0,1,2}].

Row: 10
d4(F(0)(3,1)(x3, y2)) = [s0d3x3, s1y2] [s1y2, s1d3x3]

[s2d3x3, s2y2] [s2y2, x3].

Set a = s0d3x3, b = s1y2, c = s1d3x3, d = s2d3x3, e = s2y2, f = x3, and take elements
(f−1dc−1a) ∈ K{1,2,3}, (e−1b) ∈ K{0,2}, e−1 ∈ K{0,1},
(f−1dc−1a) ∈ K{1,2,3}, (f−1d) ∈ K{0,1,3}, (cd−1) ∈ K{0,2}
and [ f−1d, e ] ∈ [K{0,1,3}, K{0,1}] then

d4(F(0)(3,1)(x3, y2)) = cd−1f{ [ f−1dc−1a, e−1b ] b[ e−1, f−1dc−1a ] }
cd−1fb[ f−1d, b−1e ] [ cd−1 [ f−1d, e ] ]

so we get
d4(F(0)(3,1)(x3, y2)) ∈ [K{1,2,3}, K{0,2}] [K{0,1}, K{1,2,3}]

[K{0,1,3}, K{0,2}] [K{0,2}, K{0,1,3}].

Row: 15
d4(F(3,0)(1)(x2, y3)) = [ s0x2, s1d3y3 ] [ s1d3y3, s1x2 ]

[ s2x2, s2d3y2 ] [ y3, s2x2 ].

Let a = s0x2, b = s1d3y3, c = s1x2, d = s2x2, e = s2d3y3, f = y3, and take elements
(dc−1a) ∈ K{1,2}, (be−1f) ∈ K{0,2,3}, (e−1f) ∈ K{0,1,3}, [d, b] ∈ K{0,1,3}, d ∈ K{0,1},
(ef−1) ∈ K{0,1,3} and [d, f ] ∈ K{0,1,2} then

d4(F(3,0)(1)(x2, y3)) = a−1cd−1
([dc−1a, be−1f ] b[e−1f, dc−1a])

[ a−1cd−1, [d, b] ] e−1f [ fe−1b, d] [ef−1, [d, f ] ]
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and one gets

d4(F(3,0)(1)(x2, y3)) ∈ [K{1,2}, K{0,2,3}] [K{0,1,3}, K{1,2}]
[K{1,2}, K{0,1,3}] [K{0,2,3}, K{0,1}]
[K{0,1,3}, K{0,1,2}].

Row: 17

d4(F(2,0)(1)(x2, y3)) = [ s2s0d2x2, s1d3y3 ] [ s1d3y3, s2s1d2x2 ]
[ s2s1d2x2, s2d3y3 ] [ s2d3y3, s2s0d2x2 ]
[ s0x2, y3 ] [ y3, s1x2 ].

Let a = s2s0d2x2, b = s1d3y3, c = s2s1d2x2, d = s2d3y3, e = s0x2, f = y3, g = s1x2,
giving elements (g−1ea−1c) ∈ K{1,3}, (b−1df−1) ∈ K{0,2,3}, f−1 ∈ K{0,1,2}, (g−1e) ∈ K{1},
(abe−1) ∈ K{3} and ([g, f ] [f, e]) ∈ K{0,1,2}, then

d4(F(2,0)(1)(x2, y3)) = abe−1gf ( [g−1ea−1c, b−1df−1 ] b−1d[ f−1, g−1ea−1c ]
f [b−1df−1, g−1e] )[ abe−1, [g, f ] [f, e] ]

so we have

d4(F(2,0)(1)(x2, y3)) ∈ [K{1,3}, K{0,2,3}] [K{0,1,2}, K{1,3}]
[K{0,2,3}, K{1}] [K{3}, K{0,1,2}].

Row: 19

d4(F(1,0)(2)(x2, y3)) = [ s1s0d2x2, s2d3y3 ] [ s2d3y3, s2s0d2x2 ]
[ s0x2, y3 ].

Let a = s1s0d2x2, b = s2d3y3, c = s2s0d2x2, d = s0x2, e = y3, f = s1x2, g = s2y3, and take
elements (dc−1a) ∈ K{2,3}, (be−1) ∈ K{0,1,3}, e−1 ∈ K{0,1,2}, (cd−1) ∈ K{3}, [b, d] ∈ K{0,1,2},
df−1g ∈ K{1,2} and gf−1 ∈ K{1,2}, then

d4(F(1,0)(2)(x2, y3)) = cd−1
([dc−1a, be−1] b[ e−1, dc−1a])

[cd−1, [b, d] ] ded−1g−1f{[e−1b, df−1g] [gf−1, e−1b]}
so

d4(F(1,0)(2)(x2, y3)) ∈ [K{2,3}, K{0,1,3}]
[K{0,1,2}, K{2,3}] [K{3}, K{0,1,2}]
[K{0,2}, K{0,1,3}] [K{0,1,3}, K{1,2}].

Row: 23
d4(F(1)(2)(x3, y3)) = [ s1d3x3, s2d3y3 ] [ s2d3y3, s2d3x3 ]

[ x3, y3 ].

Let a = s1d3x3, b = s2d3y3, c = s2d3x3, d = x3, e = y3, and taking elements (dc−1a) ∈
K{0,2,3}, (be−1) ∈ K{0,1,3}, e−1 ∈ K{0,1,2}, d ∈ K{0,1,2},
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(cd−1) ∈ K{0,1,3} and [d, e ] ∈ K{0,1,2}
we obtain

d4(F(1)(2)(x3, y3)) = cd−1
[dc−1a, be−1 ] b[ e−1, dc−1a ]

cd−1e−1
[e−1b, d] [ cd−1, [d, e ] ].

So
d4(F(1)(2)(x3, y3)) ∈ [K{0,2,3}, K{0,1,3}] [K{0,1,2}, K{0,2,3}]

[K{0,1,3}, K{0,1,2}] [K{0,1,3}, K{0,1,2}].

Finally

Row: 25
d4(F(0)(1)(x3, y3)) = [ s0d3x3, s1d3y3 ] [ s1d3y3, s1d3x3 ]

[ s2d3x3, s2d3y3 ] [ y3, x3 ].

Let a = s0d3x3, b = s1d2y3, c = s1d3x3, d = s2d3x3, e = s2d3y3, f = y3 and g = x3,
A1 = ef−1

[fe−1b, dg−1] and A2 = ef−1g−1
[g−1d, f ] [e−1f, [f, g] ]. Considering elements

(g−1dc−1a) ∈ K{1,2,3}, (be−1f) ∈ K{0,2,3}, (e−1f) ∈ K{0,1,3}, (cd−1) ∈ K{0,2}, (g−1d) ∈
K{0,1,3}, f ∈ K{0,1,2}, (e−1f) ∈ K{0,1,3} and [f, g] ∈ K{0,1,2}, we get

d4(F(0)(1)(x3, y3)) = cd−1g( [ g−1dc−1a, be−1f ]
b[ e−1f, g−1dc−1a ])cd

−1
(d4F(3)(1)(x3, y3) )

[ cd−1, [d , b ] ] A1 A2

and then one has

d4(F(0)(1)(x3, y3)) ∈ [K{1,2,3}, K{0,2,3}] [K{0,1,3}, K{1,2,3}]
[K{0,2,3}, K{0,1,2}] [K{0,1,3}, K{0,1,2}]
[K{0,2}, K{0,1,3}] [K{0,2,3}, K{0,1,3}]
[K{0,1,2}, K{0,2,3}] [K{0,1,3}, K{0,1,2}]
[K{0,1,3}, K{0,1,2}].

So we have shown that ∂4(N4) ⊆
∏

I,J [KI , KJ ]. The opposite inclusion can be obtained
from Proposition 2.3.

Collecting up these results, we have:

6.2. Theorem. (Theorem B) For n = 2, 3 or 4, let G be a simplicial group with
Moore complex NG then

∂n(NGn ∩Dn) =
∏
I,J

[ KI , KJ ]

for I, J ⊆ [n− 1] with I ∪ J = [n− 1], I = [n− 1]− {α} and J = [n− 1]− {β}, where
(α, β) ∈ P (n).
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The categorical theory of tricategories is still relatively undeveloped and so we have
not attempted to identify relationships between the above elements, the kernel-kernel
commutators and the complicated conditions for a tricategory, cf. [13].
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