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ASPECTS OF FRACTIONAL EXPONENT FUNCTORS

ANDERS KOCK AND GONZALO E. REYES
Transmitted by R.J. Wood

ABSTRACT. We prove that certain categories arising from atoms in a Grothendieck
topos are themselves Grothendieck toposes. We also investigate enrichments of these
categories over the base topos; there are in fact often two distinct enrichments.

1. Introduction

In a cartesian closed category E, some objects A may have the property that they are
atoms in the sense that the exponent functor ( )A : E → E has a right adjoint ( )1/A (an
“amazing” right adjoint, in the terminology of Lawvere). Lawvere calls an endofunctor a
fractional exponent ( )C/A if it is of the form

E
( )C

✲ E
( )1/A

✲ E.

In this note, we shall prove some category theoretic results concerning fractional expo-
nents and atoms; these results were found in a response to questions, raised by Lawvere
[16], on a certain category of second order differential equations in the context of Syn-
thetic Differential Geometry (SDG). (It so happens that the infinitesimal objects like D,
in models of SDG, are in fact atoms, cf. [11], essentially from [12].) We shall leave the
applications to SDG for a future paper, and here concentrate on results of ‘pure’ category
theory. The results are in two directions: on the one hand, we prove how atoms in a
Grothendieck topos give rise to new Grothendieck toposes. They are essentially coalge-
bra toposes for fractional exponent endofunctors, and certain subcategories thereof. The
constructions here will give an answer, in an abstract form, to the question raised by
Lawvere, partly following his suggestion. On the other hand, we prove some results on
the possible enrichment, or even indexing, of fractional exponent functors; this kind of
structure turns out to be, in essence, equivalent to points of the atoms in question. The
enrichment of the fractional exponent functors which we construct, will in general not
correspond, under the adjointness, to the natural enrichment of the exponential functors
themselves. This leads to two different enrichments (and two different ways of indexing)
over the base topos of the categories constructed (e.g. two enrichments of the category of
second order differential equations).

Received by the editors 1999 June 7 and, in revised form, 1999 October 8.
Published on 1999 October 15.
1991 Mathematics Subject Classification: 18B25,18D20.
Key words and phrases: atom, coalgebra, enrichment.
c© Anders Kock and Gonzalo E. Reyes 1999. Permission to copy for private use granted.

251



Theory and Applications of Categories, Vol. 5, No. 10 252

We are indebted to Bill Lawvere for raising the question leading to the present research,
and for support and discussions; and to Peter Johnstone for pointing out to us that the
enrichment we constructed may be upgraded to an indexing, using a method of Bob Paré.
Also, Peter Johnstone supplied us with the ‘comparison’ between the indexing, on the one
hand, and the constructions of Freyd/Yetter/Johnstone of fractional exponents in slice
categories, on the other.

2. Grothendieck toposes from atoms

We begin by some auxiliary results on equifiers.

Let F,G : A → B be functors, and let φ, ψ : F → G natural transformations, so that
the equifier E(φ, ψ) ⊆ A of φ and ψ (= the full subcategory of A given by those X ∈ A
such that φX = ψX) makes sense. Then

2.1. Proposition. If A has and F preserves a certain class of colimits, then E(φ, ψ) ⊆
A is closed under this class of colimits; if A has and G preserves a certain class of limits,
then E(φ, ψ) ⊆ A is closed under this class of limits. And if G preserves monics, then
E(φ, ψ) ⊆ A is closed under subobjects.

Proof. For the first assertion, we want to see that φ and ψ agree for an object of
form lim→ Xi, provided they do so for the Xi’s, so we want to prove that two arrows
F (lim→ Xi) → G(lim→ Xi), are equal. But the domain here is by assumption a colimit of
F (Xi)’s on which φ and ψ agree, and the rest then follows by naturality. The two other
assertions are proved in a similar way.

2.2. Theorem. With the notation of the previous Proposition, if A is a Grothendieck
topos, and F is cocontinuous and G left exact, then the equifier E(φ, ψ) is a Grothen-
dieck topos, and the inclusion E(φ, ψ) ⊆ A is the inverse image functor of a surjective
geometric morphism. If G preserves all limits, this geometric functor is even essential.

Proof. By the previous Proposition, the equifier subcategory E is closed in A under
colimits, finite limits, and subobjects. The two first of these properties guarantee that E
has the same exactness properties (involving these kinds of colimits/limits) as A does; so E
satisfies the exactness properties a), b), c) of the Giraud characterization of Grothendieck
toposes in [2] IV.1.1.2. To prove the last property d) (existence of a small generating
family), take a small generating family K in A closed under quotients. Because the
family is closed under quotients, every object X in A is covered by a family of monics
with domain in K (take the images of the maps from objects of K to X). Since the
equifier subcategory E is closed under subobjects, it follows that every X ∈ E is covered
by a family of maps with their domains in the small family K∩E. (This proof of existence
of a small generating subcategory for E was pointed out to us by Ieke Moerdijk.) So E
is a Grothendieck topos. As a cocontinuous functor between Grothendieck toposes, the
inclusion has a right adjoint (cf. [2] I.1.5). Also, by the Proposition, the inclusion is left
exact since G is so. So we have a geometric morphism as asserted.
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For the last assertion (existence of left adjoint for the inclusion), we first get from the
Proposition that the inclusion E ⊆ A preserves all limits. Also, it is accessible (by being
a left adjoint), So the conclusion follows from the Adjoint Functor Theorem, (in the form
of [1] 1.66, say).

It is a well known fact in elementary topos theory that the category of coalgebras
for a left exact comonad on an elementary topos again form an elementary topos, and
that the forgetful functor is the inverse image of a surjective geometric morphism. There
exists a similar result for Grothendieck toposes, where one needs to assume accessibility
of the functor part of the comonad. We shall need some related results, not for comonads,
but rather for mere endofunctors. Recall that if G : E → E is an endofunctor, then
a coalgebra for it is a pair X, ξ where X ∈ E and ξ : X → G(X); and a morphism
(X, ξ) → (X ′, ξ′) is a map f : X → X ′ making the obvious square commute. A general
investigation of coalgebras for endofunctors has been carried out by [6], and the following
can also be obtained as a Corollary of their results.

2.3. Proposition. Let E be a Grothendieck topos, and G a left exact accessible endo-
functor on it. Then the category Coalg(G) of coalgebras for G is a Grothendieck topos;
the forgetful functor to E is the inverse image functor of a surjective geometric morphism.

Proof. The comma category E ↓ G is a Grothendieck topos, according to SGA 4, [2]
IV.9.5 Theorem 4; they call it the topos obtained by glueing (recollement) along G. The
forgetful functor E ↓ G → E × E is the inverse image functor of a geometric morphism
of Grothendieck toposes; this is likewise (implicit) in loc. cit. If we form the (strict)
pull-back of categories of this forgetful functor along the diagonal E → E×E, we obtain
the category of G-coalgebras. But the functors in this pull-back diagram are all inverse
image functors of geometric morphisms; this follows from [17], according to which colimits
in the category of Grothendieck toposes and geometric morhisms is formed by forming
limits of the inverse-image functors.

2.4. Proposition. Let E be a Grothendieck topos, and G a endofunctor on it which
admits a left adjoint T . Then the category of coalgebras for G (which is ∼= to the category
of T -algebras) is a Grothendieck topos; the forgetful functor to E is the inverse image
functor of an essential and surjective geometric morphism.

Proof. Any (left or right) adjoint functor between Grothendieck toposes is accessible,
see [2] Proposition I.9.5. So by Proposition 2.3, the category of coalgebras for G is
a Grothendieck topos, and the forgetful functor has a right adjoint. In particular, it is
accessible. Using that G preserves limits, it is easy to see that the forgetful functor (creates
and) preserves limits. But an accessible limit preserving functor between Grothendieck
toposes has a left adjoint, by the Adjoint Functor Theorem (in the form of [1] 1.66 (p.
52), say).

We consider now a fixed atom A in a Grothendieck topos E, and denote by (−)1/A

the right adjoint of (−)A. Furthermore, we consider a fixed map α : A → E. (In the
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application to SDG, A will typically be D, and α will be the inclusion of D into D2.) For
any object X we have the map ”restriction along α”, XE → XA. An extension structure
for α on X we define to be a section of this map, i.e. a map ξ′ : XA → XE, which
composes with the restriction map to the identity map on XA; there is an obvious notion
of morphism of extension structures.

The composite endofunctor G given by

X 
→ XE/A

(recall that XE/A := (XE)1/A) is then left exact, it even has a left adjoint. So by Propo-
sition 2.4, the category of coalgebras for G is a Grothendieck topos, and the forgetful
functor to E is the inverse image functor p∗ of an essential geometric surjection. Note
that for a coalgebra (X, ξ),

ξ : X → (XE)1/A,

the structure map ξ corresponds by adjointness to a map

ξ′ : XA → XE.

The category of extension structures is equivalent to the full subcategory consisting of
those coalgebras (X, ξ) for which ξ′ has the property that

Xα ◦ ξ′ = identity map of XA

(i.e. ξ′ restricts to the identity map along α). This subcategory is easily seen to be an
equifier subcategory of the kind dealt with in Theorem 2.2. In fact, consider the functor
q = (−)A ◦ p∗ : Coalg(G) → E which takes (x, ξ) to XA. We have two transformations
from q to q; the one is the identity transformation, call it φ, the other, ψ is the one whose
component at (X, ξ) ∈ Coalg(G) is Xα ◦ ξ′; and the equifier of these two is clearly the
subcategory in question. Now since q preserves limits as well as colimits (by Proposition
2.4), it follows from Theorem 2.2 that the equifier subcategory inside the category of
coalgebras is a Grothendieck topos, and that the inclusion to Coalg(G), and hence the
forgetful functor to E, is the inverse image of an essential geometric surjection.

We therefore have the following consequence:

2.5. Theorem. Let α : A → E be a map in a Grothendieck topos E, and assume that
A is an atom. Then the category G of ”extension structures”, i.e. the category whose
objects are pairs (X, ξ′) with X ∈ E and ξ′ : XA → XE with

XA ξ′→ XE Xα→ XA = idXA

(and evident morphisms), is a Grothendieck topos, and the forgetful functor (X, ξ′) 
→ X
is the inverse image functor of an essential geometric surjection E → G.

A combination of these results, which likewise has applications in SDG, is concerned
with the situation where we have a map α : A → E, as above (with A an atom), and
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where A and E are equipped with an action of a monoid (R, ·) such that the map α is
equivariant. Then we have induced actions of R on XA and on XE, and the restriction map
XE → XA is R-equivariant. One may then consider extension structures ξ : XA → XE

which likewise are R-equivariant. (For the case in SDG where A → E is the inclusion
of D in D2, and R is the number line acting by multipliation, the equivariant extension
structures are the sprays on X.) We then have

2.6. Theorem. Let α : A → E be as in the previous Theorem, and assume it is equivari-
ant with respect to an action by a monoid R. Then the category of R-equivariant extension
structures ξ : XA → XE is a Grothendieck topos, and the forgetful functor to E is the
inverse image functor of a surjective geometric morphism.

Proof. The equivariance of ξ can be expressed by the equality of two maps (defined in
tems of ξ and the R-actions) with domain R×XA and codomain XE. Taking exponential
adjoints of these two maps, the equivariance of ξ can be expressed by equality of two
maps with domain XA and codomain XE×R. Taking, in turn, the adjoints of these two
maps with respect to the adjointness (−)A  (−)1/A, we get that the equivariance can be
expressed in terms of equality of two maps

X → (XE×R)1/A,

both of which are constructed from ξ and hence clearly are natural in (X, ξ) ∈ G, where
G denotes the topos of the previous Theorem. They are both natural transformations
from the forgetful functor

G → E given by (X, ξ) 
→ X

to the functor
G → E given by (X, ξ) 
→ (XE×R)1/A,

and since the former preserves colimits and the latter limits, Theorem 2.2 applies. We thus
get that the inclusion from the equifier of these two transformations to G is the inverse
image of an essential geometric surjection. Composing this inclusion with the forgetful
functor G → E, which is likewise the inverse image functor of an essential geometric
surjection, we get the result for equivariant extension structures, as claimed.

In the context of SDG, there arise further variants on this theme, cf. [13], or our
forthcoming [14].

3. Enrichment/strength of fractional exponents

We recall some notions from enriched category theory, cf. [4] or [7]. Recall that a cartesian
closed category E is enriched in itself (i.e. is made into an E-category) by means of Y X

as the object of maps from X to Y . Then an E-enrichment of an endofunctor G : E → E
consists of a family of maps

GX,Y : Y X → G(Y )G(X),
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natural in X and Y , and which satisfies two equational conditions expressing the idea
that G takes identity maps to identity maps, and preserves composition. Fixing one of
the variables X or Y in the exponential functor Y X gives an endofunctor canonically
enriched in E.

Recall from [9] Theorem 1.3 (or see [5] for a recent account) that an E-enrichment
(“strength”) of an endofunctor G : E → E may be encoded equivalently in the form of a
“tensorial strength”, meaning a family of maps

tX,Y : X ×G(Y ) → G(X × Y ),

natural in X and Y , and satisfying two equational conditions,

t1,Y = 1GY : 1 ×GY → G(1 × Y ) (1)

tU,V ×Y ◦ (U × tV,Y ) = tU×V,Y : U × V ×GY → G(U × V × Y ), (2)

respectively, for all U, V, Y , (under the evident identifications like 1 ×GY = GY etc.).

We also recall that there is a notion for a natural transformation τX : G1(X) → G2(X)
between two E-functors to be E-natural, or strongly natural, see [4] 1.10; in terms of the
tensorial form of enrichments (for endofunctors G1 and G2 on E), this may be expressed
simply as commutativity of all squares of the form

X ×G1Y
t
(1)
X,Y✲ G1(X × Y )

X ×G2Y

1 × τY

❄

t
(2)
X,Y

✲ G2(X × Y )

τX×Y

❄

(3)

where t(i) denotes the enrichment of Gi (i = 1, 2); cf. [9].

We shall use the the words enrichment and strength more or less synonymously, and
similarly for enriched and strong.

Recall that any endofunctor of the form (−)A carries a canonical E-enrichment (its
tensorial strength is given below).

3.1. Proposition. Let A ∈ E be an object, and let φX : XA → X be natural in X. Then
in order that φ be E-natural, it is necessary and sufficient that, for all X, the composite

X
∆X ✲ XA φX ✲ X

be the identity map on X, where ∆X : X → XA denotes the ‘diagonal’-map, exponential
adjoint of the projection X × A → X.
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Proof. The commutative square corresponding to (3) reduces to the outer square in

X × Y A
∆X × 1✲ XA × Y A ∼= (X × Y )A

❅
❅

❅
❅

❅
φX × φY

❘

X × Y

1 × φY

❄

1X×Y

✲ X × Y

φX×Y

❄

where the upper map is the strength in monoidal form of (−)A. Using the naturality of
φ with respect to the two projections X × Y → X and X × Y → Y , it is easy to see that
under the identification XA × Y A ∼= (X × Y )A, φX×Y becomes φX × φY , and then it is
clear that φX ◦ ∆X = 1X implies commutativity of the square. The converse implication
follows by taking Y = 1.

Remark. If E = Sets, all functors and transformations are E-enriched. But for other
toposes E, there may exist A and natural transformations φX : XA → X which are not
E-natural; even for the case A = 1. Take e.g. E = Z2-Sets, i.e. the topos of sets-with-an-
involution, and let φX : X → X be the involution on X.

3.2. Proposition. Let F  G be endofunctors on a cartesian closed category, and as-
sume that F preserves finite products. Given a natural φX : F (X) → X, then the family
of maps τX,Y given by

F (X ×G(Y )) ∼= F (X) × F (G(Y ))
φX × εY✲ X × Y

(where ε is the counit of the adjunction F  G) gives by transposition along F  G a
family of maps

X ×G(Y )
tX,Y✲ G(X × Y )

which is an enrichment (in the form of a tensorial strength) of the functor G.

Proof. Given Y , the transpose of t1,Y is, by construction, φ1 × εY , which under identi-
fications of type 1 × Y = Y is just εY , the transpose of the identity map on GY , proving
(1). Given U, V, Y , then the right hand side in (2) has for its transpose, under identifi-
cations of type FX × FY = F (X × Y ), the map φU × φV × εY , whereas the left hand
side has transpose U × V × εY ◦ (φU×V ×FGY ). But just by naturality of φ with respect
to the two projections from U × V , we conclude that φU×V = φU × φV , and the required
commutativity is then immediate. The Proposition is proved.
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Remark. We may supplement the Proposition with a statement about natural transfor-
mations f : F1 → F2; if such an f commutes with the “augmentations” φi : Fi(X) → X,
then the mate of f , G2 → G1, becomes a strongly natural transformation, with respect to
the strengths obtained on the Gi’s by virtue of the Proposition. In particular, the mate
of φ itself, X → G(X), is strongly natural in X.

For any atom A, there is a canonical natural transformation πX : X1/A → X, namely
the composite

X1/A
∆✲ (X1/A)A εX ✲ X,

where ε is the counit for the adjunction (−)A  (−)1/A.

3.3. Theorem. Let A be an atom in E. There is a bijective correspondence between
the set of those E-enrichments of the endofunctor (−)1/A : E → E, which make the
transformation π : (−)1/A → idE E-natural, and the set of points 1 → A.

Proof. Assume given an enrichment, in the form of a tensorial strength, of the endo-
functor (−)1/A,

X × (Y 1/A)
tX,Y✲ (X × Y )1/A;

its transpose under the adjointness (−)A  (−)1/A consists then in maps

XA × (Y 1/A)A
τX,Y✲ X × Y,

natural in X and Y . Using this naturality with respect to the maps X → 1 and Y → 1,
it is easy to see that τX,Y must be of form φX × ψY with φX : XA → X natural in X
and ψY : (Y 1/A)A → Y natural in Y . From (1) it follows that ψY must in fact be the
counit εY for the adjointness (−)A  (−)1/A. On the other hand, for any natural family
φX : XA → X, the transposes tX,Y of the maps τX,Y := φX × εY will in fact provide an
enrichment for (−)1/A, without any assumptions on φ except naturality; this follows by
taking F = (−)A, G = (−)1/A in Proposition 3.2.

From the analysis made it follows that there is a bijective correspondence between
strengths tX,Y : X × (Y 1/A) → (X × Y )1/A of the endofunctor (−)1/A, and natural trans-
formations φX : XA → X.

Now compatibility of the strength t with π is easily seen, by transposition, to be
equivalent to the normalization condition φX ◦ ∆X = idX .

But by Proposition 3.1, this condition is equivalent to E-naturality of φX : XA → X.
Finally, we invoke the enriched Yoneda Lemma, in the form of [7] 1.9 (therein called the
weak Yoneda, since after all it talks about a bijection between two sets!). According to
it, the set of E-natural transformations (−)A → (−)B is in bijective correspondence with
the set of maps B → A. Now take B = 1. The Theorem is proved.
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Remark. On a cartesian closed category, any endofunctor −×A is the functor part of a
comonad, with counit and comultiplication being −× (A → 1) and −×∆A, respectively.
It follows by mating that (−)A carries a canonical structure of monad. If A is an atom,
then, again by mating, (−)1/A carries a canonical structure of comonad. The counit of
this comonad structure is the π considered in Theorem 3.3. So if (−)1/A is supplied with a
strength, by virtue of a point of A, as in the Theorem, π is strongly natural. One may ask
whether also the comultiplication of the comonad is strongly natural, (so that the comonad
becomes a strong one). The answer is yes. This follows in essence by the Remark after
Proposition 3.2; for, a point o of A induces an augmentation of ((−)A)A (just evaluate
twice at o), with which the multiplication of the monad (−)A is compatible. (Note that
the monad (−)A carries a canonical strength, but that strength does not transfer to a
strength on (−)1/A, since the adjointness (−)A  (−)1/A is not strong, unless A = 1.)

The categories which we constructed in Section 2 always can be enriched in the base
topos E. In fact, we construct the categories as full subcategories of the category of G-
coalgebras, and this category is equivalent to the category of T -algebras, where T  G.
Now a strength of either G or T will by quite standard procedure (to be recalled for the
G-case) lead to an enrichment of T − Alg � G − Coalg. Now, in the case at hand, T
carries a standard enrichment; we shall also construct a non-standard enrichment on G,
and these two enrichments do not correspond to each other under the adjointness T  G.
This leads to two distinct enrichments of T − Alg � G − Coalg (in fact two distinct
indexings).

The non-standard enrichment which we shall construct on G depends on the atom A
used for its construction being a pointed object. (This will be the case for the differential
equations case, where A = D which carries the point 0.)

We first describe how a strength on an endofunctor gives rise to an enrichment on its
category of coalgebras.

For this purpose, it is better to have the E-enrichment of G encoded not in tensorial
form X × GY → G(X × Y ), but rather in the classical form, as a family of maps GX,Y :
[X,Y ] → [GX,GY ] (where square brackets denote hom-objects, as in [7]). We shall write
st (for “strength of G”) rather than GX,Y , to save subscripts. Also, when the bifunctor
[X,Y ] is applied to a map ξ, say, we sometimes write [ξ, 1] as ξ∗ and [1, ξ] as ξ∗; this is
also standard mathematical usage for the contravariant, respectively covariant, aspect of
hom-functors.

3.4. Proposition. Let G : E → E be a V-functor, where V is a symmetric monoidal
closed category with equalizers. Then the category Coalg(G) of G-coalgebras carries a
canonical V-enrichment.

Proof. We are interested only in the case where E = V, and V is a topos, hence carte-
sian closed, and accordingly, we shall write × rather than ⊗ for the monoidal structure.
But we shall write [X,Y ] rather than Y X , for typographic convenience.

The construction is straightforward, in the spirit of [3] or [10] (in fact, we could
probably read off the desired conclusion from either, — say from the proof of (2.5) in
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[10], by suitable dualization and exponential adjoints). But we shall be more explicit: to
construct the V-valued hom [[X,Y ]] for two G-coalgebras X = (X, ξ) and Y = (Y, η)
(where ξ : X → GX, η : Y → GY ), we take the equalizer object in the equalizer diagram

[[X,Y ]]
iX,Y✲ [X,Y ]

ξ∗ ◦ stX,Y✲

η∗
✲ [X,GY ].

(It is clear that [[X,Y ]] by hom(1,−) goes to the set of coalgebra morphisms from X, ξ
to Y, η.) If (Z, ζ) is a third G-coalgebra, we would like to prove that the composition map

[Y, Z] × [X,Y ]
MXY Z✲ [X,Z]

restricts to a map

[[Y, Z]] × [[X,Y ]] ✲ [[X,Z]].

Now consider the following two maps [Y, Z] × [X,Y ] → [X,GZ]; the first is

[Y, Z] × [X,Y ]
1 × η∗✲ [Y, Z] × [X,GY ]

st× 1✲ [GY,GZ] × [X,GY ]
M✲ [X,GZ], (4)

the second is

[Y, Z] × [X,Y ]
st× 1✲ [GY,GZ] × [X,Y ]

η∗ × 1✲ [Y,GZ] × [X,Y ]
M✲ [X,GZ]. (5)

It is a consequence of the extraordinary naturality [7] of M with respect to η that these
two maps are equal.

Now the strategy is to eliminate η in (4) in favour of ξ, using iX,Y , and to eliminate η
from (5) in favour of ζ, using iY,Z . For the first elimination, consider the map

[Y, Z] × [X,Y ]
M✲ [X,Z]

st✲ [GX,GZ]
ξ∗✲ [X,GZ]. (6)

We claim that the restrictions of (4) and (6) along 1× iX,Y are equal. In (6), use st◦M =
M ◦ (st× st), which is a general property of enrichments st of functors G (“G commutes
with composition”). Also, naturality of M w.r.to ξ gives the first equality sign in

ξ∗ ◦M ◦ (st× st) = M ◦ (1 × ξ∗) ◦ (st× st)

= M ◦ st× 1 ◦ (1 × ξ∗) ◦ (1 × st)

(the second equality sign by bifunctorality of ×). When restricted along 1 × iX,Y , the
factor (1 × ξ∗) ◦ (1 × st) may be replaced by 1 × η∗, so that the total expression gets
replaced by (4).

For the second elimination, consider the map

[Y, Z] × [X,Y ]
M✲ [X,Z]

ζ∗✲ [X,GZ], (7)
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or, equivalently by naturality of M w.r.to ζ,

[Y, Z] × [X,Y ]
ζ∗ × 1✲ [Y,GZ] × [X,Y ]

M✲ [X,GZ]. (8)

When restricted along iY,Z×1, the composite (8) yields the same as does (5). We conclude
that (7) and (6) have the same restriction along iY,Z × iX,Y . In formula

ζ∗ ◦M ◦ i× i = ξ∗ ◦ st ◦M ◦ i× i,

which is precisely the condition for m ◦ i × i to factor across the equalizer iX,Z of ζ∗ and
ξ∗ ◦ st.

Remark. It follows that for instance the category G of extension structures, as in
Theorem 2.5, with A a pointed atom, carries two E-enrichments. Also, G is a topos,
hence Cartesian closed, hence enriched in itself. Since the forgetful functor G → E
preserves products (it has, in fact, adjoints on both sides, by the Theorem), it is a closed
functor, in the sense of [4], hence transforms G enrichment into E-enrichment. The E-
enriched category thus arising does not, so far we can see, have G for its underlying
“ordinary” category, so cannot be compared with the enrichment of G we have described
in the present section.

We shall postpone the comparison of our “non-standard” enrichment of G−Coalg with
the standard enrichment of the equivalent category T − Alg until the following section,
where it will be discussed in terms of indexed categories and functors.

4. Indexing

Recall (cf. e.g. [18]) that an indexing of an endofunctor G : E → E (where E is a topos,
say), consists in a family of functors GI : E/I → E/I, one for each object I of E,
commuting up to coherent isomorphisms with the pullback functors f ∗ : E/J → E/I
induced by the morphisms f : I → J of E (with G itself being identified with G1). An
indexing on G implies in a canonical way a strength on G. Conversely if the endofunctor
G is supplied with a strength and preserves pull-backs, there is canonically an indexing
on it. This latter statement is an unpublished result due to Paré, which was dug out
from oblivion by Johnstone [5]. Johnstone pointed out to us that the Paré Theorem
immediately upgrades our result on strength to a result on indexing; we shall be explicit
on this version for the case of an endofunctor G of the form (−)1/A, (A an atom) where
the strength on G comes about from a point 1 → A of the atom, by our recipe in Theorem
3.3.

For the case where G preserves all finite limits, (which surely is the case for (−)1/A),
the description of GI of Paré-Johnstone may be presented as follows (cf. [5] Proposition
3.3). The strength supplies the endofunctor with a point, i.e. with a natural family of
maps tI : I → G(I), namely the composite

I ∼= I ×G(1) → G(I × 1) ∼= G(I),
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(the middle map being the tensorial strength), and if ξ : X → I is an object of E/I,
GI(ξ) is the left hand edge in the pull-back diagram

P ✲ G(X)

I
❄

tI
✲ G(I).

G(ξ)

❄

For the case where G = (−)1/A and the strength of G is derived from a point of
0 : 1 → A, tI is just the transpose of “evaluation at 0”:IA → I.

Combining our result on strength with the Paré-Johnstone construction, we thus get:

4.1. Theorem. Let 0 : 1 → A be a pointed atom in a Cartesian closed category with
pullbacks. Then the endofunctor G = (−)1/A carries a canonical indexing, with GI (or
((−)1/A)I) being the composite

E/I
(−)1/A

✲ E/(I1/A)
t∗I ✲ E/I,

(with tI : I → I1/A being the transpose of evaluation at 0, IA → I).

Recall that IA/A denotes (IA)1/A, so that there is the unit of adjunction I → IA/A,
here denoted u. One may give an alternative description of GI (for G = (−)1/A), namely
as the threefold composite in

E/I
(ev0)

∗
✲ E/IA (−)1/A

✲ E/IA/A u∗
✲ E/I;

for, tI may be described as the composite

I
u ✲ IA/A (ev0)

1/A
✲ I1/A.

So the pulling back along tI may be carried out in two stages, and utilizing that (−)1/A

preserves pull-backs, one gets that equivalence (up to canonical isomorphism) of the two
descriptions of GI .

One early category theoretic investigation of the extra right adjoint functors arising
from atoms was undertaken by Freyd and Yetter, [19]; a main result in [19] (attributed
to Freyd) is that if A is an atom in an elementary topos E, then AI (i.e. the projection
A × I → I) is an atom in the slice topos E/I. The construction of the right adjoints in
E/I of Freyd-Yetter utilizes the subobject classifier of E; a simpler construction, which
only depends on E being a locally cartesian closed category, was given by Johnstone,
and quoted in Yetter’s [20]; it will be recalled below. Let us denote the right adjoint of
(−)AI : E/I → E/I by (−)1/AI . Yetter observed ([19] Theorem 2.4) that the family of
these functors (as I ranges over E) only in trivial cases provide an indexing of (−)1/A, (in
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fact, more precisely, the square whose commutativity expresses compatibility of (−)1/A

with (−)1/AI (i.e. the square for index change along I → 1) commutes (with the canonical
2-cell) precisely when I is A-discrete in the sense that the canonical ∆ : I → IA is an
isomorphism.) In particular, the right adjoint (−)1/AI does not in general agree with our
indexed GI from the Theorem above. The following more precise comparison of these two
functors was indicated to us by Peter Johnstone. He kindly consented to let us include it
here. Consider the diagram

E/I
ev∗0✲
Π∆

✲ E/(IA)
(−)1/A

✲ E/(IA/A)
u∗

✲ E/I

Then the bottom composite is, according to Yetter, [20] the (Johnstone-) description of
the right adjoint witnessing atomicity of AI in E/I. (Here, Π∆ denotes the right adjoint of
pulling back along the canonical ∆ : I → IA.) The top composite is one of the equivalent
descriptions of GI which we gave above, i.e. expresses the indexed nature of the functor
(−)1/A.

There is a comparison 2-cell in the diagram, from the top composite to the bottom; in
fact, there is a 2-cell ev∗0 ⇒ Π∆: just precompose the adjointness unit idE/IA ⇒ Π∆ ◦ ∆∗

with ev∗0 : E/I → E/IA and use that ∆ ◦ ev0 is the identity map on I.
Now the way in which the indexed functor GI gives rise to an indexed category of

coalgebras is simply that the fibre over I ∈ E is the category of objects in E/I equipped
with a coalgebra structure for the endofunctor GI . For fixed I, the comparison 2-cell just
described gives rise to a functor from the category of GI-coalgebras to the category of
coalgebras for the fractional exponent (−)1/AI . This latter is equivalent to the category
of algebras for its left adjoint, i.e. to the category of algebras for the “fibrewise exponent”
functor (−)AI . So an object in this category is simply an object x : X → I in E/I, together
with a structure of the following kind (expressed in “synthetic” or “set theoretic” terms):
to each i ∈ I, a map (Xi)

A → Xi. So the structure only accepts as inputs maps A → X
which are “fibrewise” or “vertical with respect to x : X → I”.

This is to be contrasted with what a GI structure on X means: it is a map in E/I, ξ :
X → GI(X). Consider the pull-back diagram which defines GI in the case of G = (−)1/A,

GI(X) ✲ X1/A

I
❄

tI
✲ I1/A,

x1/A

❄

and recall that tI corresponds to ev0 : IA → I under the adjointness (−)A  (−)1/A.
Then we see that such a GI-structure ξ is equivalent to a map ξ′ : X → X1/A making
an evident square with codomain I1/A commute; passing to the transpose under the
adjointness (−)A  (−)1/A, such datum ξ′ is in turn equivalent to a map ξ′′ : XA → X



Theory and Applications of Categories, Vol. 5, No. 10 264

making the square

XA ξ′′ ✲ X

IA

xA

❄

ev0

✲ I

x

❄

commutative. Such ξ′′ take value also on maps A → X which are not “vertical”. Its value
on vertical A → X provides X with the structure for the endofunctor (−)A, giving an
alternative description of the comparison functor between the two coalgebra categories,
alluded to above. Hence it also provides a comparison between the two ways of indexing
the coalgebra categories.

We hope to investigate the role of the “non-standard” indexing of the category of
second order differential equations in [14].
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[18] R. Paré and D. Schumacher, Abstract Families and the Adjoint Functor Theorems, in: Indexed
Categories and their Applications, Lecture Notes in Math., Vol. 661 (Springer, Berlin, 1978),
1-125.

[19] D. Yetter, On right adjoints to exponential functors, J. Pure Appl. Alg. 45 (1987), 287-304.
Corrections: J. Pure Appl. Alg. 58 (1989), 103-105.

[20] D. Yetter, Corrections to “On Right Adjoints to Exponential Functors”, Journ. Pure Appl. Alge-
bra 58 (1989), 103-105.

Institut for Matematiske Fag,
Aarhus Univ.,
DK 8000 Aarhus C, Denmark
and
Dept. de Mathématiques,
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