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LOCALIZATIONS OF MALTSEV VARIETIES
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Transmitted by Aurelio Carboni

ABSTRACT. We give an abstract characterization of categories which are localiza-
tions of Maltsev varieties. These results can be applied to characterize localizations of
naturally Maltsev varieties.

Introduction

In this paper we study localizations of Maltsev varieties.

A finitary (one sorted) variety V is called a Maltsev variety if its theory is equipped
with a ternary operation p(x, y, z) satisfying the axioms p(x, y, y) = x, p(x, x, y) = y.
The varieties of groups, abelian groups, modules over a fixed ring, crossed modules, rings,
commutative rings, associative algebras, Lie algebras, quasi-groups and Heyting algebras
are all examples of Maltsev varieties. The classical Maltsev theorem [11] asserts that the
existence of such a ternary operation is equivalent to the fact that any reflexive relation
in V is an equivalence relation. This semantical formulation of the Maltsev property has
been the starting point for a purely categorical approach to Maltsev varieties developed
in recent years in [3], [4], [8], [12] and [13].

The second aspect of our work concerns localizations. In 1964 P. Gabriel and N.
Popescu proved that Grothendieck categories are exactly localizations of module cate-
gories [6]. This theorem has been extended to a non-abelian setting by the second author
[16], who has characterized localizations of varieties as exact categories (in the sense of
Barr [1]) with a regular generator and exact filtered colimits.

In this work we show that the categorical approach to Maltsev varieties and the ex-
act completion technique developed in [15] and [16] fit together well, giving an abstract
characterization of localizations of Maltsev varieties. In the first section we characterize
localizations of Maltsev monadic categories, and we then restrict our attention to the
finitary case (recall that varieties are exactly monadic categories over Set for a filtered
colimit preserving monad). In the second section we specialize our results to localizations
of naturally Maltsev monadic categories and naturally Maltsev varieties. These varieties
are very closed to module categories, the only difference consisting in the existence of a
zero object. In fact, the Gabriel-Popescu theorem is an obvious corollary of our result on
naturally Maltsev varieties.
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1. Maltsev monadic categories

Let T be a monad in Set: we denote by KL(T) the Kleisli category of T and by EM(T)
the Eilenberg-Moore category of T. The category KL(T) is a projective cover of EM(T),
this meaning that each object of KL(T) is regular projective in EM(T) and for each
object X in EM(T) there is an object P in KL(T) with a regular epimorphism P → X.
The category EM(T) is the exact completion of KL(T) [14]: this fact has a central role in
the characterization of the localizations of monadic categories over Set (we use the term
“monadic category” for a category equivalent to EM(T) for a monad T in Set). In the
following all categories we consider will be assumed to be locally small.

1.1. Theorem. [15] For a category B the following conditions are equivalent:

1. B is equivalent to a localization of a monadic category over Set

2. B is exact and has a regular generator G which admits all copowers

Let us recall the construction involved in the proof of the previous theorem and fix
some notations. Let B be a category as in condition 2. of the theorem: we denote by C
the full subcategory of B spanned by copowers of G. If S is a set we write S •G for the
S-indexed copower of G. If Cex is the exact completion of C, we denote by Γ and U the
canonical full inclusions as in the diagram

Cex

r

��
C

Γ

����������������������
U

�� B.

i�

��

(1.)

The universal property of Cex gives a unique exact (left exact and regular epimorphism
preserving) functor r : Cex → B with r ◦ Γ = U . Moreover, there is a fully faithful functor
i : B → Cex (right adjoint to r) defined as follows: if A ∈ B, one considers its canonical
cover a : B(G,A) •G → A, then the kernel pair of a

a1, a2 : N(a)
��
�� B(G,A) •G

and finally its canonical cover n : B(G,N(a)) → N(a). The object i(A) in Cex is given by
the pseudo equivalence relation

a1 ◦ n, a2 ◦ n : B(G,N(a)) •G ��
�� B(G,A) •G ,

with a similar definition on arrows.

The next simple result is stated separately for future references; it can be proved by
using the explicit description of the exact completion of a category with finite weak limits
[5].
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1.2. Lemma. Let B be an exact category with a regular generator G which admits all
copowers. Then, with the notations as above, one has that Γ = i ◦ U (up to natural
isomorphisms).

We are interested in localizations of Maltsev monadic categories over Set. In a category
with finite limits there are several equivalent definitions of the Maltsev property [3]. We
adopt the simplest one: a category C is Maltsev if any reflexive relation in C is symmetric.

In [13] Pedicchio proved that, for a monadic category, the Maltsev property is com-
pletely determined by the behaviour of the regular projective regular generator P = F (1)
(the free algebra on one generator). In order to state her result we recall that an object
X in a category with finite sums is an internal Maltsev coalgebra if there exists an arrow
t : X → X + X + X such that the following diagram commutes

X

i2
�������������������

i1
�������������������

t

��
X + X X + X + X∇+1

��
1+∇

�� X + X,

where i1 and i2 are the canonical injections in the sum and ∇ is the codiagonal.

1.3. Theorem. [13] The following conditions are equivalent for a category B:
1. B is a Maltsev monadic category over Set

2. B is exact with a regular projective regular generator P which admits all copowers
and P is an internal Maltsev coalgebra

It is then natural to ask whether the Maltsev property can be determined by a con-
dition on the regular generator in the case of localizations of Maltsev monadic categories
as well. A positive answer to this question is given in the Proposition 1.6 below; for this,
the following lemma, which is a special case of Lemma 7. in [12], will be needed.

1.4. Lemma. Let A and B be finitely complete categories and let R
d ��

c
�� A be a relation

in A. If F : A → B is a left exact and conservative functor, then R
d ��

c
�� A is symmetric

precisely when F (R)
F (d) ��

F (c)
�� F (A) is symmetric.

Let us introduce a point of terminology:

1.5. Definition. Let A be a regular category. A graph X1

x0 ��

x1

�� X0 in A is pseudo-

symmetric if its image factorisation I
x0 ��

x1

�� X0 in A is a symmetric relation.

We can now prove our characterization:
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1.6. Proposition. The following conditions are equivalent:

1. B is equivalent to a localization of a Maltsev monadic category over Set

2. B is exact with a regular generator G which admits all copowers and G is an internal
Maltsev coalgebra

3. B is exact with a regular generator G which admits all copowers and the functor
B(G,−) sends reflexive graphs to pseudo-symmetric graphs

Proof. By Theorem 1.1 the category B is equivalent to a localization of a monadic cat-
egory over Set if and only if it is exact with a regular generator G which admits all
copowers.
1. ⇒ 2. By assumption B is a localization of a monadic Maltsev category A as in the
diagram

B
i

�� A⊥
r��

,

where r preserves finite limits. Let P be the regular projective regular generator which is
an internal Maltsev coalgebra in A by Theorem 1.3. The regular generator G = r(P ) is
then an internal Maltsev coalgebra in B, since r preserves sums.

2. ⇒ 3. Let C denote the full subcategory of B spanned by copowers of the regular
generator G. The category B is equivalent to a localization of the exact completion Cex

of the category C (see Proposition 2.1 in [15] for a proof).

Cex

r

��
C

Γ

����������������������
U

�� B

i�

��

(1.)

The Maltsev coalgebra structure t : G → G + G + G on the generator G induces a
Maltsev coalgebra structure on Γ(G), simply because Γ preserves all sums that exist in C
[5]. By Theorem 1.3 the category Cex is accordingly Maltsev: indeed, C is equivalent to
KL(T) for a monad T over Set and Cex is then equivalent to EM(T) (by the way, this
proves the implication 2. ⇒ 1.). Let us then consider a reflexive graph

X1

c ��

d ��
X0

e��

in B. The reflexive graph i(X1)
��
�� i(X0) can be factorised in Cex as in the diagram

i(X1)
i(c) ��

i(d)
��

p

����������������
i(X0)

I,

�� ��
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where p is a regular epi and I
��
�� i(X0) is a reflexive relation in Cex. Cex is Maltsev so

that I
��
�� i(X0) is also symmetric: since Γ(G) is regular projective, it follows that the

image factorisation in Set of the reflexive graph Cex(Γ(G), i(X1))
��
�� Cex(Γ(G), i(X0))

is a symmetric relation. By Lemma 1.2 one has that the graph

Cex(Γ(G), i(X1))
��
�� Cex(Γ(G), i(X0))

is isomorphic to the graph

Cex(i(G), i(X1))
��
�� Cex(i(G), i(X0)) .

The functor i is fully faithful: it follows that the graph B(G,X1)
��
�� B(G,X0) is a

pseudo-symmetric graph in Set.

3. ⇒ 1. Let X1

c ��

d
�� X0 be a reflexive relation in Cex (with the same notations as above)

and we are going to prove that it is symmetric. Recall that there is a commutative diagram
of functors

SetT = Cex
V �� Set

−•G
		�

��
��

��
��

�
F �� Cex = SetT

C
Γ



������������

where V is the forgetful functor and F is the “free algebra” functor. The reflexive relation
above can be covered by a regular epi between reflexive graphs, as in the diagram

Γ(X ′
1)

��

��

εX1

��

Γ(X ′
0)��

εX0

��
X1

��

��
X0,��

where the functor ( )′ is the composite (− •G) ◦ V and the vertical arrows are the counit
components of the adjunction F � V . By applying the functor Cex(Γ(G),−) to the com-
mutative diagram above and by taking the regular image factorisation J of the reflexive
graph on the top one gets the diagram

Cex(Γ(G),Γ(X1
′)) ��

��

��

p

���������������
Cex(Γ(G),Γ(X0

′))

��

J

���������������

���������������

α


Cex(Γ(G), X1)

��
�� Cex(Γ(G), X0).
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The factorization α making commutative the diagram above comes from the fact that

Cex(Γ(G), X1)
��
�� Cex(Γ(G), X0)

is a relation; the arrow α is surjective because εX1 is a regular epi and Γ(G) is regular
projective. Since Γ and U are full and faithful, the reflexive graph

Cex(Γ(G),Γ(X1
′))

��
�� Cex(Γ(G),Γ(X0

′))

is isomorphic to the reflexive graph

B(G,X1
′)

��
�� B(G,X0

′) .

By assumption this latter is a pseudo-symmetric graph, so that the relation

J
��
�� Cex(Γ(G),Γ(X ′

0)) is symmetric. In the category of sets one can easily check that
the symmetry of this relation induces a symmetry on the relation

Cex(Γ(G), X1)
��
�� Cex(Γ(G), X0),

by using the fact that the regular epimorphism α splits. The functor Cex(Γ(G),−) is left
exact and conservative (it is isomorphic to the forgetful functor V ), so that by Lemma
1.4 the proof is complete.

We remark that the condition 3. in the Proposition 1.6 implies in particular that B is
Maltsev. However, this property on reflexive graphs does not seem to be equivalent to the
Maltsev property, since the functor B(G,−) does not preserve regular epimorphisms. In
other words, we don’t know if an exact Maltsev category with a regular generator (with
copowers) is necessarily a localization of a Maltsev monadic category.

1.7. Corollary. The following conditions are equivalent:

1. B is a Maltsev monadic category over Set

2. B is exact with a regular projective regular generator G which admits all copowers
and the functor B(G,−) sends reflexive graphs to pseudo-symmetric graphs

Proof. With the same notations as above, this follows from the fact that when G ∈ B is
regular projective, then the adjunction

B
i

�� Cex⊥
r��

is an equivalence.
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In the following we shall use the term variety for a finitary variety in the sense of
universal algebra. An application of our previous result can be given to characterize
localizations of Maltsev varieties.

1.8. Proposition. The following conditions are equivalent:

1. B is a localization of a Maltsev variety

2. B is exact with a regular generator G which admits all copowers, G is an internal
Maltsev coalgebra and filtered colimits commute with finite limits in B

3. B is exact with a regular generator G which admits all copowers, the functor B(G,−)
sends reflexive graphs to pseudo-symmetric graphs and filtered colimits commute with
finite limits in B

Proof. The implications 1. ⇒ 2. and 1. ⇒ 3. follow from Proposition 1.6 above and
Corollary 1.2 in [16]. To see that 2. ⇒ 1., we first fix some notations. Let C ′ be the
subcategory of C (as in Proposition 1.6) with same objects as C and arrows f : R•G → S•G
the arrows in C such that, for each r ∈ R, f ◦ σr : G → R •G → S •G factorises through
S ′ • G for some finite subset S ′ of S, where σr : G → R • G is the rth injection in the
coproduct. We denote by C′

ex the exact completion of the category C′ and by Γ′ : C′ → C′
ex

the canonical embedding. We know that C′
ex is the category of algebras for the finitary

part T
′ of the monad T which has Cex as category of algebras.

C′
ex

q
� �� Cex

r

��

j��

C′
U ′

��

Γ′

��															
C

U
��

Γ

��















 B

i�

��

(2.)

In the diagram above the forgetful functor U ′ gives rise to a morphism from T
′ to T,

inducing an adjunction q � j : Cex → C′
ex. Observe that B is a localization of the Maltsev

monadic category Cex and it is also a localization of the variety C′
ex by Corollary 1.2 in [16].

The regular generator G has an internal Maltsev coalgebra operation t : G → G+G+G,
and this t is an arrow that belongs to C′. It follows that Γ′(t) : Γ′(G) → Γ′(G) + Γ′(G) +
Γ′(G) is an internal Maltsev coalgebra operation in C′

ex, proving that C′
ex is Maltsev.

3. ⇒ 2. By Proposition 1.6 Cex is a Maltsev monadic category. Accordingly, the object
r(P ) = r(Γ(G)) = r(i(G)) = G (using Lemma 1.2) is an internal Maltsev coalgebra.

2. Naturally Maltsev varieties

We first recall the notion of naturally Maltsev category introduced by Johnstone in [9]:
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2.1. Definition. A finitely complete category C is naturally Maltsev if there exists a
natural transformation µ from the functor A → A× A× A to the identity functor on C,
such that µA : A× A× A → A is a Maltsev operation on A, for any A ∈ C.

Let us denote by Grpd(C) and by RG(C) the categories of internal groupoids and
internal reflexive graphs in a finitely complete category C. We shall need the following
results:

2.2. Theorem. [9] For a finitely complete category C the following conditions are equiv-
alent:

1. C is naturally Maltsev

2. the forgetful functor U : Grpd(C) → RG(C) is an isomorphism

2.3. Theorem. [7] If C is an exact Maltsev category, then the category Grpd(C) is closed
in RG(C) under quotients.

We can now prove our result on localizations of naturally Maltsev monadic categories.
Observe that, unlike the Maltsev case, the condition is now given on the subcategory B
and not on the regular generator G.

2.4. Proposition. The following conditions are equivalent:

1. B is equivalent to a localization of a naturally Maltsev monadic category over Set

2. B is exact naturally Maltsev with a regular generator G which admits all copowers

Proof. 1. ⇒ 2. Trivial.
2. ⇒ 1. In the proof we shall refer to the diagram (1.). First remark that any reflexive
graph in B is symmetric by Theorem 2.2. Accordingly, the functor B(G,−) sends re-
flexive graphs to pseudo-symmetric graphs in Set so that the category Cex is Maltsev by
Proposition 1.6. Let us then prove that any reflexive graph

X1

c ��

d ��
X0

e��

in Cex is an internal groupoid. As in the proof of Proposition 1.6, one can apply the functor
( )′ = (− • G) ◦ V to this reflexive graph and the counit components of the adjunction
F � V give a regular epimorphism of reflexive graphs

Γ(X ′
1)

��

��

εX1

��

Γ(X ′
0)��

εX0

��
X1

��

��
X0.��
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By Theorem 2.3 to complete the proof it suffices to show that

Γ(X ′
1)

��
�� Γ(X ′

0)

is an internal groupoid in Cex. The reflexive graph

U(X ′
1)

��
�� U(X ′

0)

is an internal groupoid in B, the category B being naturally Maltsev by assumption. It
follows that

iU(X ′
1)

��
�� iU(X ′

0)

is an internal groupoid in Cex, and this latter is isomorphic to the graph

Γ(X ′
1)

��
�� Γ(X ′

0)

by Lemma 1.2.

2.5. Proposition. The following conditions are equivalent:

1. B is equivalent to a localization of a naturally Maltsev variety

2. B is exact naturally Maltsev with a regular generator G which admits all copowers
and filtered colimits commute with finite limits

Proof. The non trivial implication is 2. ⇒ 1. We use the same notations as in the proof
of Proposition 1.8 and we first consider the diagram (2.): the category Cex is naturally
Maltsev by Proposition 2.4 and C′

ex is Maltsev by Proposition 1.8. The rest of the proof
runs as in Proposition 2.4, once one has proved that there exists a natural transformation
from the functor j ◦ i◦U ◦U ′ to the functor Γ′ such that any component αA : jiUU ′(A) →
Γ′(A) is a split epimorphism. We leave this verification to the reader (hint: use the explicit

description of the composite functor B i �� Cex
j �� C′

ex given in [16]). Any reflexive
graph

X1

c ��

d ��
X0

e��

in C′
ex is accordingly covered by a regular epi between reflexive graphs as the vertical

composite in the diagram

jiUU ′(X ′
1)

��

��

αX′
1

��

jiUU ′(X ′
0)��

αX′
0

��
Γ′(X ′

1)
��

��

εX1

��

Γ′(X ′
0)��

εX0

��
X1

��

��
X0.��
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The reflexive graph

jiUU ′(X1
′)

��

��
jiUU ′(X ′

0)��

is an internal groupoid in the exact Maltsev category C′
ex and by Theorem 2.3 the proof

is complete.

As a corollary we get the classical Gabriel-Popescu characterization of Grothendieck
categories [6]. Recall that by the Tierney theorem [2] a category is abelian if and only if
it is exact and additive, while Johnstone proved that a category with products is additive
if and only if it is naturally Maltsev and has a zero object [9]. With the same notations as
above, the result follows by Proposition 2.5 and the fact that B has a zero object precisely
when C′

ex has one. Indeed, Proposition 2.5 states that C′
ex is an abelian variety and then,

by Lawvere theorem in [10], it is equivalent to the category of modules over a unital ring.
We have then proved the following result:

2.6. Corollary. [6] The following conditions are equivalent:

1. B is equivalent to a localization of a module category

2. B is abelian with a regular generator G which admits all copowers and filtered colimits
commute with finite limits
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Robert Paré, Dalhousie University: pare@mscs.dal.ca
Andrew Pitts, University of Cambridge: ap@cl.cam.ac.uk
Robert Rosebrugh, Mount Allison University: rrosebrugh@mta.ca
Jiri Rosicky, Masaryk University: rosicky@math.muni.cz
James Stasheff, University of North Carolina: jds@charlie.math.unc.edu
Ross Street, Macquarie University: street@math.mq.edu.au
Walter Tholen, York University: tholen@mathstat.yorku.ca
Myles Tierney, Rutgers University: tierney@math.rutgers.edu
Robert F. C. Walters, University of Sydney: walters b@maths.usyd.edu.au
R. J. Wood, Dalhousie University: rjwood@mscs.dal.ca


