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CATEGORY-THEORETIC MODELS OF LINEAR
ABADI & PLOTKIN LOGIC

LARS BIRKEDAL AND RASMUS E. MØGELBERG AND RASMUS L. PETERSEN

Abstract. This paper presents a sound and complete category-theoretic notion of
models for Linear Abadi & Plotkin Logic [Birkedal et al., 2006], a logic suitable for
reasoning about parametricity in combination with recursion. A subclass of these called
parametric LAPL structures can be seen as an axiomatization of domain theoretic models
of parametric polymorphism, and we show how to solve general (nested) recursive domain
equations in these. Parametric LAPL structures constitute a general notion of model of
parametricity in a setting with recursion. In future papers we will demonstrate this by
showing how many different models of parametricity and recursion give rise to parametric
LAPL structures, including Simpson and Rosolini’s set theoretic models [Rosolini and
Simpson, 2004], a syntactic model based on Lily [Pitts, 2000, Bierman et al., 2000] and
a model based on admissible pers over a reflexive domain [Birkedal et al., 2007].

1. Introduction

When Reynolds introduced relational parametricity in 1983 [Reynolds, 1983] he argued
that it could be used to prove representation independence results for abstract data types.
Since then a large number of applications of the abstraction property of parametricity
have been suggested, for example in security [Tse and Zdancewic, 2004] and to model
local variables [O’Hearn and Tennent, 1995]. From a type theoretic perspective, rela-
tional parametricity is interesting because it allows rich type systems to be constructed
from a few basic type constructors. For example in the second order lambda calculus,
general inductive and coinductive types can be constructed using simply polymorphism
and function space type constructors. For real programming, one is of course not just
interested in a strongly terminating calculus such as the second-order lambda calculus,
but also in a language with full recursion. Thus in [Reynolds, 1983] Reynolds also asked
for a parametric domain-theoretic model of polymorphism.

However, relational parametricity is too strong a principle to be simply combined with
recursion in the second order lambda calculus. One way to see this is that parametricity
gives encodings of coproducts, and it is well known that the combination of coproducts,
products, exponentials and fixed points exist only in the trivial case of all types being
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isomorphic [Huwig and Poigné, 1990]. Inspired by domain theory Plotkin suggested an
elegant solution to this problem [Plotkin, 1993a, Plotkin, 1993b], which was to study a dual
intuitionistic / linear lambda calculus with polymorphism and fixed points. Parametricity
should then be available only in the linear part of the calculus and give encodings of
datatypes in this, including initial algebras and final coalgebras. Moreover, by Freyd’s
theory of algebraically compact categories [Freyd, 1990a, Freyd, 1990b, Freyd, 1991] the
inductive and coinductive types in combination with fixed points would give solutions to
recursive type equations in the linear calculus.

Recently, Pitts and coworkers [Pitts, 2000, Bierman et al., 2000] have presented the
language Lily, essentially Plotkin’s polymorphic intuitionistic / linear lambda calculus
equipped with an operational semantics, and shown how Plotkin’s encodings can be used
in the syntactic setting.

In parallel with the work presented here, Rosolini and Simpson [Rosolini and Simpson,
2004] have shown how to construct parametric domain-theoretic models in intuitionistic
set-theory using synthetic domain-theory. Moreover, they have shown how to give a
computationally adequate denotational semantics of Lily.

This paper presents a unifying category-theoretic framework for parametric models of
Polymorphic Intuitionistic / Linear Lambda calculus with a fixed point combinator Y (a
calculus henceforth referred to as PILLY ). The basis is Linear Abadi & Plotkin Logic
(LAPL), an adaptation of Abadi & Plotkin’s logic for parametricity on the second order
lambda calculus [Plotkin and Abadi, 1993] to PILLY , presented by the authors in [Birkedal
et al., 2006]. In LAPL the parametricity principle for PILLY can be formulated and the
above mentioned consequences of parametricity including the solutions to recursive type
equations can be proved valid. In this paper we present the notion of LAPL structure
which is a sound and complete category-theoretic notion of model of LAPL, and we
define a subclass of these called parametric LAPL structures to be LAPL structures in
which the parametricity principle holds and which satisfy a technical condition called
very strong equality. Using reasoning in LAPL we show how to solve recursive domain
equations in parametric LAPL structures, and moreover do so in full generality considering
parametrized recursive domain equations (needed to model nested recursive types). The
recursive types satisfy a parametrised version of the initial dialgebra property, a universal
property generalising initial algebras and final coalgebras to general recursive types. We
formulate and prove this property using fibred category theory. These results show that
the notion of parametric LAPL structure is indeed a useful notion of parametric model of
PILLY , since these satisfy semantic versions of the consequences of parametricity known
from logic.

Forthcoming papers will show how the Lily language and the set theoretic construc-
tions mentioned above can be seen as constructing LAPL structures. In [Birkedal et al.,
2007] we present a parametric LAPL structure based on admissible pers over a reflexive
domain. This model was first suggested by Plotkin [Plotkin, 1993a], but the details have
to our knowledge never been worked out before. In [Møgelberg, 2005b] the second author
shows how the parametric completion process as in [Robinson and Rosolini, 1994] can
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be adapted to construct a parametric LAPL structures from a model of PILLY . The
examples show that the notion of parametric LAPL structure is general enough to cover
many different models, and the general results about parametric LAPL structures apply
to all these models, giving rigourous proofs of consequences of parametricity.

The work presented here builds upon previous work by the first two authors on cate-
gorical models of Abadi-Plotkin’s logic for parametricity [Birkedal and Møgelberg, 2005],
which includes detailed proofs of consequences of parametricity for polymorphic lambda
calculus and also includes a description of a parametric completion process that given an
internal model of polymorphic lambda calculus produces a parametric model. It is not
necessary to be familiar with the details of [Birkedal and Møgelberg, 2005] to read the
present paper, although Appendix A of [Birkedal and Møgelberg, 2005], contains some
definitions and theory concerning composable fibrations which are only briefly summarised
in this paper.

1.1. Outline. The remainder of this paper is organized as follows. Section 2 briefly re-
calls PILLY and Linear Abadi & Plotkin Logic (LAPL), and the main results of [Birkedal
et al., 2006], and Section 3 recalls the definition of PILLY models. Building upon the
notion of PILLY model Section 4 defines the notion of LAPL structure and proves sound-
ness and completeness of the interpretation of LAPL in such structures. In Section 5
we present our definition of a parametric LAPL structure and prove that one may solve
recursive domains equations in such.

2. Linear Abadi-Plotkin Logic

This section briefly recalls Linear Abadi-Plotkin Logic (LAPL) as defined in [Birkedal
et al., 2006]. LAPL is a logic for reasoning about parametricity for Polymorphic Intuition-
istic Linear Lambda calculus with fixed points (PILLY ). The logic is based on Abadi and
Plotkin’s logic for parametricity [Plotkin and Abadi, 1993] for the second-order lambda
calculus.

2.1. PILLY . The calculus PILLY is essentially Barber and Plotkin’s DILL [Barber,
1997] extended with polymorphism and a fixed point combinator. Types are formed
using the grammar

σ ::= α | I | σ ⊗ τ | σ ( τ | !σ |
∏
α. σ.

where α ranges over type variables. PILLY can be seen as a type theory for domain theory
and polymorphism, and even though polymorphism cannot be modelled in ordinary do-
main theory it is useful to keep the domain theoretic intuition in mind: types are domains
(complete partial orders with a least element), ⊗ denotes the smash product, ( the do-
main of strict continuous maps and ! denotes lifting. One can make this intuition precise
by constructing a DILL model based on the category of domains and strict continuous
maps, but we will not do that here. One way to extend the domain theoretic intuition to
polymorphism is by considering partial equivalence relations. This is used to construct a
PILLY model and a parametric LAPL structure in [Birkedal et al., 2007].
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Terms of PILLY are written with explicit contexts as

α1, . . . , αk | x1 : σ1, . . . , xn : σn;x′1 : σ′1, . . . , x
′
m : σ′m ` t : τ,

where the list α1, . . . , αk — called the kind context — contains all the type variables
occurring freely in the types σi, σ

′
i and τ . The term t has two contexts of free term

variables: the list of x’s is called the intuitionistic type context and is often denoted
Γ, and the list of x′’s is called the linear type context, often denoted ∆. Variables in
the linear context can occur linearly in terms and variables in the intuitionistic context
can occur intuitionistically. We use the horizontal line − to denote an empy context, in
particular − | −;− ` t : σ denotes a closed term of closed type.

The grammar for terms is:

t ::=x | ? | Y | λ◦x : σ.t | t t | t⊗ t |!t | Λα : Type. t | t(σ) |
let x : σ ⊗ y : τ be t in t | let !x : σ be t in t | let ? be t in t

The construction λ◦x : σ.t abstracts linear variables in terms and constructs terms of type
σ ( τ , which we think of as a linear function space. Intuitionistic function space can be
defined using the Girard encoding σ → τ =!σ ( τ , and there is a corresponding lambda
abstraction abstracting intuitionistic variables. Because of the encoding of → application
of an intuitionistic function f : σ → τ to an input x : σ becomes f(!x). Using the Girard
encodings, the type of the fixed point combinator Y can be written as

∏
α. (α→ α) → α.

The subset of PILLY without the fixed point combinator is referred to as PILL.
Terms of PILLY are identified up to an equality relation, which we shall call external

equality (as opposed to provable equality in the logic LAPL). Rules for external equality
includes β and η rules, but we refer to [Birkedal et al., 2006] for a definition.

In the domain theoretic intuition, linearity in PILLY is modelled by strictness, i.e., we
think of a term

− | x1 : σ1, . . . , xn : σn;x′1 : σ′1, . . . , x
′
m : σ′m ` t : τ

as a continuous function from
∏

i≤nσi ×
∏

j≤mσ
′
j to τ which maps a tuple

(x1, . . . , xn, x
′
1; . . . , x

′
m)

to the least element ⊥ if any one of the x′j is ⊥.

2.2. LAPL. As mentioned, Linear Abadi-Plotkin Logic is a second order logic suitable
for reasoning about parametricity over PILLY . As in Abadi & Plotkin’s logic for para-
metricity on the second order lambda calculus [Plotkin and Abadi, 1993, Birkedal and
Møgelberg, 2005], the logic contains relations and the relational interpretation of types as
basic building blocks. We mention two peculiarities about the logic. First, unlike the gen-
eral PILLY terms propositions in the logic have no linear context of term variables, only
an intuitionistic one. This means that even though PILLY is dual linear / intuitionistic
the reasoning in the logic is purely intuitionistic. We may still reason about linearity of
terms of PILLY since we may consider terms of linear function space type. This restriction
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of the logic has been chosen for simplicity and because the reasoning that we need in the
logic to prove properties of polymorphic encodings in PILLY is purely intuitionistic.

The second peculiarity is that the logic has two classes of relations, a class of ordinary
relations and a class of ”admissible” relations. In the domain theoretic intuition, a relation
is just a subset of the product of two domains, whereas an admissible relation must relate
⊥ to ⊥ and be closed under least upper bounds of chains. Indeed the main example of
an admissible relation in LAPL is the graph of a linear function f : σ ( τ , and the main
example of a relation that is not in general admissible is the graph of an intuitionistic
function f : σ → τ . The introduction of admissible relations in the logic is necessary
because, as noticed by Plotkin, adding an unrestricted parametricity principle to PILLY

gives an inconsistent logic, a problem which can be remedied by restricting the formulation
of the parametricity principle to the class of admissible relations.

The logic has three types of judgements: one for propositions, one for relations and
one for admissible relations:

Ξ | Γ | Θ ` φ : Prop
Ξ | Γ | Θ ` ρ : Rel(τ, τ ′)

Ξ | Γ | Θ ` ρ : AdmRel(τ, τ ′).

Here, Ξ and Γ are respectively the kind context and the intuitionistic type context as in
PILLY , and Θ is a context of relational variables of the form

R1 : Rel(τ1, τ
′
1), . . . , Rn : Rel(τn, τ

′
n), S1 : AdmRel(ω1, ω

′
1), . . . , Sm : AdmRel(ωm, ω

′
m).

The grammar for propositions is

φ ::= (t =σ u) | ρ(t, u) | φ ⊃ ψ | ⊥ | > | φ ∧ ψ | φ ∨ ψ | ∀α : Type. φ |
∀x : σ. φ | ∀R : Rel(σ, τ). φ | ∀S : AdmRel(σ, τ). φ |
∃α : Type. φ | ∃x : σ. φ | ∃R : Rel(σ, τ). φ | ∃S : AdmRel(σ, τ). φ

where ρ is a relation (admissible or not). As an example of a formation rule we mention
the one for equality

Ξ | Γ;− ` t : σ Ξ | Γ;− ` u : τ

Ξ | Γ | Θ ` t =σ u : Prop

where the judgements in the hypothesis are typing judgements in PILLY .
The grammar for relations is

ρ ::= R | (x : σ, y : τ). φ | σ[~ρ]

Relations can be formed from proposition and vice versa, as determined by the two rules

Ξ | Γ | Θ ` ρ : Rel(σ, τ) Ξ | Γ;− ` t : σ Ξ | Γ;− ` u : τ

Ξ | Γ | Θ ` ρ(t, u) : Prop

Ξ | Γ, x : σ, y : τ | Θ ` φ : Prop

Ξ | Γ | Θ ` (x : σ, y : τ). φ : Rel(σ, τ)
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The admissible relations are a subset of the relations closed under a collection of rules
for which we refer to [Birkedal et al., 2006] as we do for all other details in this section.
Examples of relations include equality relations eqτ defined as (x : τ, y : τ). x =τ y, graphs
of linear maps 〈f〉 : Rel(σ, τ) for f : σ ( τ defined as (x : σ, y : τ). y =τ f(x) and graphs of
intuitionistic maps 〈g〉 : Rel(σ, τ) for g : σ → τ defined as (x : σ, y : τ). y =τ f(!x) of which
the first two are admissible, but the last generally is not.

We introduce some notation that is needed later in the text: if ρ : Rel(σ, τ) and f : σ′ (
σ, g : τ ′ ( τ , we write (f, g)∗ρ for

(x : σ′, y : τ ′). ρ(f(x), g(y))

The relational interpretation of types is the rule

α1, . . . , αn ` σ(~α) : Type Ξ | Γ | Θ ` ρ1 : AdmRel(τ1, τ
′
1), . . . , ρn : AdmRel(τn, τ

′
n)

Ξ | Γ | Θ ` σ[~ρ] : AdmRel(σ(~τ), σ(~τ ′))
(1)

The PILLY type constructors (,⊗, !,
∏
α. (−) may all be given relational interpretations,

by for example defining ρ ( ρ′ for ρ : Rel(σ, τ), ρ′ : Rel(σ′, τ ′) to be

(f : σ ( σ′, g : τ ( τ ′).∀x : σ, y : τ. ρ(x, y) ⊃ ρ′(f(x), g(y)).

Using these, the relational interpretation of types in pure PILLY can be defined by struc-
tural induction. However, the relational interpretation of types in LAPL is stronger. This
is because LAPL can be used for reasoning about not just pure PILLY but also other
PILLY -calculi with added type or term constants, the most prominent example being the
internal language of a given PILLY model. Such models may contain open type constants
such as α `?(−) : Type, and (1) says that each of these need to have a relational inter-
pretation. The inductive definition sketched above is then captured in axioms for LAPL
stating for example that (σ ( τ)[R] ≡ σ[R] ( τ [R].

Implication in the logic is formally written as Ξ | Γ | Θ | φ1, . . . , φn ` ψ, meaning that
in the context Ξ | Γ | Θ the propositions φ1, . . . , φn collectively imply ψ. For ρ, ρ′ : Rel(σ, τ)
we use shorthand Ξ | Γ | Θ | > ` ρ ≡ ρ′ for

Ξ | Γ | Θ | > ` ∀x : σ, y : τ. ρ(x, y) ⊃⊂ ρ′(x, y).

Using this notation we have already informally stated one axiom of the logic, but we refer
to [Birkedal et al., 2006] for details.

In LAPL we can formulate the identity extension schema σ[~eqτ ] ≡ eqσ(~τ). Identity
extension implies the parametricity schema

∀x :
∏
α. σ.∀α, β.∀R : AdmRel(α, β). σ[R](x α, xβ).

Instantiating the parametricity schema with the type of the fixed point combinator

Y :
∏
α. (α→ α) → α
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σ ∼=
∏
α. (σ ( α) ( α

σ ⊗ τ ∼=
∏
α. (σ ( τ ( α) ( α

I ∼=
∏
α. α ( α

0 =
∏
α. α

1 =
∏
α. α

σ + τ =
∏
α. (σ ( α) → (τ ( α) → α

σ × τ =
∏
α. (σ ( α) + (τ ( α) ( α

N =
∏
α. (α ( α) → α ( α∐

α. σ =
∏
β. (

∏
α. σ ( β) ( β

µα. σ =
∏
α. (σ ( α) → α

να. σ =
∐
α. !(α ( σ)⊗ α

Figure 1: Types definable using parametricity

and applying it to the graph of a linear function h : σ ( τ we find Plotkin’s principle:
if f : σ → σ and g : τ → τ are such that h ◦ f = g ◦ h then h(Y (!f)) = Y (!g). The
restriction to admissible relations of the universal quantification in the parametricity
principle restricts us from instantiating it with the graphs of intuitionistic functions, just
like Plotkin’s principle in domain theory only holds for strict maps h.

In [Birkedal et al., 2006] we show how the identity extension schema implies correctness
of encodings of certain datatypes in PILLY , some of which are listed in Figure 1. What
is meant by correctness of these is that it is provable in the logic that these satisfy the
usual universal properties with respect to linear functions. For example, in the last two of
the type encodings in Figure 1, the type variable α is assumed to occur only positively in
σ, and such types induce endofunctors on the category of PILLY types with linear terms
as morphisms, for which the types defined are the inductive and coinductive datatypes
respectively. One might be tempted to try to define initial algebras and final coalgebras
for the functors induced by types on the category of PILLY types and intuitionistic terms
using the encodings from second order lambda calculus. Such an attempt will fail because
the parametricity arguments from second order lambda calculus involve instantiations of
the parametricity principle with graphs of general intuitionistic functions, and so can not
be carried out in LAPL.

The full type theoretical strength of the combination of parametricity and recursion is
however, that we can find solutions to general recursive type equations in PILLY . More
precisely, using Freyd’s theory of algebraically compact categories [Freyd, 1990a, Freyd,
1990b, Freyd, 1991] the combination of initial algebras, final coalgebras and fixed points
allows us to construct, for any type expression α ` σ in pure PILLY , a type τ such that
σ(τ) ∼= τ . The constructed solutions moreover satisfy the initial dialgebra property, a
universal property generalising initial algebras and final coalgebras.

Further details can be found in [Birkedal et al., 2006]. In Section 5.8 we explain in
detail the semantic consequences of this construction, defining a semantic notion of recur-
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sive domain equations that can be solved in parametric LAPL structures and formulating
the universal properties satisfied by the constructed solutions.

As mentioned, the universal conditions satisfied by the polymorphic type encodings,
in particular the initial dialgebra property of the recursive types, are formulated with
respect to linear maps in PILLY rather than intuitionistic maps. This corresponds with
the domain theoretic intuition for PILLY given earlier, as the category Cppo⊥ of domains
and strict continuous maps is algebraically compact and the category Cppo of domains
and continuous maps is not.

3. PILLY models

In this section we recall the category theoretic concept of PILLY model. The theory
draws heavily on prior work on models of intuitionistic / linear lambda calculi in particu-
lar [Barber, 1997, Benton, 1995, Maietti et al., 2005, Maneggia, 2004]. For further details
we refer to loc. cit., but also to the note [Møgelberg et al., 2005] which summarises the
theory needed for PILLY models from the original references.

Since PILLY is a language with polymorphism the notion of model is formulated using
fibred category theory, and since the category theoretic formulation of models of DILL
uses the 2-category of symmetric monoidal categories, we shall use obvious generalisations
of the concepts of monoidal category theory to fibred categories.

In this paper we make the general assumption that all fibrations and all fibred structure
is split. The assumption of cleavage is similar to the assumption of chosen structure in
cartesian closed categories, which is necessary to define an interpretation of simply typed
lambda calculus. We assume a split cleavage to avoid having to carry isomorphisms
around. All examples of LAPL structures that we are aware of are split.

3.1. Definition. A fibred linear adjunction is a fibred symmetric monoidal adjunction

C

p ��?
??

??
?? G

33⊥ D
F

ss

����
��

��
�

B,
where C is fibred symmetric monoidal closed and the fibred monoidal structure on D is a
fibred cartesian structure.

3.2. Definition. A fibred linear category is a fibred symmetric monoidal closed category
C → B together with a fibred symmetric monoidal comonad ! on C and fibred symmetric
monoidal natural transformations e : !(−) → I, d : !(−) →!(−)⊗!(−) such that

• For each object A in C, (!A, eA, dA) is a commutative comonoid

• For each object A in C, eA, dA define coalgebra maps from the free coalgebra δA : !A→
!!A to the coalgebras mI : I →!I and

!A⊗!A
δA⊗δA// !!A⊗!!A

m // !(!A⊗!A)



124 LARS BIRKEDAL AND RASMUS E. MØGELBERG AND RASMUS L. PETERSEN

respectively, where mI and m are the comparison functors corresponding to the fibred
symmetric monoidal functor !.

• In each fibre, all comonad maps between free coalgebras preserve the comonoid struc-
ture.

In the following we shall often denote a fibred linear category simply by C → B letting
the rest of the data being given implicitely.

Given a fibred linear adjunction as in Definition 3.1 the induced fibred comonad on
C gives a fibred linear category. On the other hand there may be several fibred linear
adjunctions inducing the same linear category structure. One extreme is letting D be the
co-Eilenberg-Moore category for the comonad, as this is fibred cartesian for any fibred
linear category.

From here on we name the categories according to their role in the interpretation of
PILLY . We explain the names later.

3.3. Definition. A PILL model is a fibred linear category p : LinType → Kind such
that

• The category Kind is cartesian

• LinType → Kind has a generic object O and, writing Ω for pO, has products with
respect to the projections of the form K × Ω → K in Kind. These products must
satisfy the Beck-Chevalley condition.

A morphism of PILL models from LinType → Kind to LinType′ → Kind′ is a strong
fibred morphism of fibred symmetric monoidal closed categories

LinType K //

��

LinType′

��
Kind

L //Kind′

preserving generic object, the cartesian structure in the base categories and products in
the fibration.

In the following we shall often talk about a fibred adjunction

LinType

p
&&MMMMMMMMMM

G

11⊥ Type
Fqq

zzttttttttt

Kind,

being a PILL model. By that we shall mean that LinType → Kind together with the
induced fibred comonad is a PILL model in the sense of Definition 3.3, and moreover, that
Type is the closure of the fibred coKleisli category for the fibred comonad under finite
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coproducts inside the coEilenberg-Moore category, which as mentioned above is fibred
cartesian. The reason for this is that the category Type will turn out to be useful in
further developments as we shall see shortly. Notice further that since Type is specified
there is no ambiguity in this convention. Using this notion of PILL models as fibred
adjunctions, specifying Type we are following [Maietti et al., 2005].

We sketch how PILL is interpreted in PILL models. Kind contexts are interpreted in
Kind as [[α1, . . . , αn]] = Ωn, and a type in kind context α1, . . . , αn ` σ is interpreted as
an object of LinTypeΩn . A type variable α1, . . . , αn ` αi is interpreted as π∗i (O), where
πi : Ωn → Ω is the i’th projection. Polymorphic types are interpreted using products
with respect to projections in Kind in the usual way. The type constructors ⊗,(, I are
interpreted using the fibred symmetric monoidal closed structure and the fibred comonad
on LinType to interpret !. A term

~α | ~x : ~σ; ~x′ : ~σ′ ` t : τ

is interpreted as a vertical morphism

![[σ1]]⊗ . . .⊗![[σn]]⊗ [[σ′1]] ⊗ . . .⊗ [[σ′m]] ( [[τ ]]

in LinType. Here we have denoted the morphisms in LinType by (.
Notice how this corresponds to the domain theoretic intuition given earlier for PILLY :

in domain theory strict continuous maps

!A1 ⊗ . . .⊗!An ⊗B1 ⊗ . . .⊗Bm ( C

correspond to continuous maps

A1 × . . .× An ×B1 × . . .×Bm → C

strict in each of the Bj variables.
As mentioned earlier, the viewpoint of PILLY models as adjunctions is often practical

even though in the interpretation given above the category Type has not been used.
Type is useful because it models the purely intuitionistic terms of PILLY . To be precise,
a PILLY -term Ξ | ~x : ~σ;− ` t : τ is modeled in LinType as a morphism

[[Ξ | ~x : ~σ;− ` t : τ ]] : ⊗i![[Ξ ` σi]] ( [[Ξ ` τ ]],

and since one can prove ⊗i![[Ξ ` σi]] ∼= F (
∏

iG([[Ξ ` σi]])), we have, using the fibred ad-
junction F a G, that such a term corresponds to

[[Ξ | ~x : ~σ;− ` t]]Type :
∏

iG([[Ξ ` σi]]) → G([[Ξ ` τ ]])

in Type.
The interpretation justifies the suggestive notation used in the definition of PILL mod-

els: Kind models kinds, LinType models types and linear maps, and Type models types
and intuitionistic maps. We shall continue to use similar suggestive notation throughout
the paper, to help the reader keep track of the several categories involved in the definition
of the concept of LAPL structure.
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3.4. Definition. A PILLY model is a PILL model, which models the fixed point oper-
ator

Y : Πα. (α→ α) → α

4. LAPL structures

This section builds on the notion of PILLY model to define the notion of LAPL structure,
which we will prove is a sound and complete category theoretic notion of model for LAPL.
The definition proceeds in two steps. First we define the notion of pre-LAPL structure
with notion of admissible relations, which models the fraction of LAPL excluding the
relational interpretation of types, i.e., the rule (1). In the second step we identify the
extra structure required to interpret the relational interpretation of types, and use this to
define the notion of LAPL structure. The second step is described in Section 4.5.

The definition of pre-LAPL structure uses two non-standard notions from fibred cat-
egory theory, that we explain briefly here. The first concerns a notion of contravariant
morphisms of fibrations. We would like to define these to be families of contravariant
functors between fibre categories respecting reindexing, just like ordinary maps of fibra-
tions can be described as families of functors respecting reindexing. To make sense of
this definition we define a construction, which given a fibration p : E → B produces a
fibration pfop : Efop → B where the fibres are the opposite of the fibres of p and reindexing
is as in p. Under our standing assumption that all fibrations are split this is easy: by
the Grothendieck construction a split fibration p corresponds to a functor p̂ : Bop → Cat,
and we define pfop to be the fibration corresponding to the functor (−)op ◦ p̂, where
(−)op : Cat → Cat is the functor mapping a category to its opposite. In fact pfop can be
defined for more general fibrations as described in Appendix A.

The second non-standard notion used in the definition of pre-LAPL structure is the
notion of indexed first order logic fibration defined in detail in [Birkedal and Møgelberg,
2005, Appendix A]. This relatively involved categorical notion is needed to model the
double indexing occuring here: propositions live in contexts of types and relations which
in turn are indexed by contexts of free type variables. We sketch the definitions needed
here, but refer to loc. cit. for details. An indexed first order logic fibration is a composition
of fibrations

P r // E
q // B

such that each restriction of r to a fibre of q is a first order logic fibration, i.e., a fibred
bicartesian closed preorder, which models universal and existential quantification and
equality, subject to the usual Beck-Chevalley conditions, but moreover subject to extra
Beck-Chevalley conditions corresponding to reindexing in B. We also talk about (r, q)
having products and coproducts with respect to classes of maps in B. This means that for
every map u in the class in question r has respectively right and left adjoints to reindexing
with respect to the cartesian lift of u. These left and right adjoints are subject to two
variants of the Beck-Chevalley condition corresponding to maps in B and E respectively.
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A pre-LAPL structure contains a model of PILLY that the logic will reason about.
Moreover, it contains a logic fibration modelling the higher order logic present in LAPL.
But LAPL is a higher order logic fibration because of the use of relations, and since
relations do not exist naturally in PILLY models, a pre-LAPL structure contains an extra
category called Ctx, which the reader should think of as containing the PILLY types as
well as objects modelling collections of relations. In Definition 4.1 below the collections of
objects of relations is given by the functor U , which should be thought of as a contravariant
power set functor. The contexts of the mentioned fragment of LAPL are interpreted in
Ctx, and the propositions of LAPL are modeled in the fibration Prop → Ctx.

4.1. Definition. A pre-LAPL-structure is

1. a diagram of categories and functors

Prop

r

��
LinType

p
**UUUUUUUUUUUUUUUUUU

55Type
uu

$$J
JJJJJJJJ

I // Ctx

q

��
Kind

such that

• the diagram

LinType

p
&&MMMMMMMMMM

G

11⊥ Type
Fqq

zzttttttttt

Kind

is a model of PILLY .

• q is a fibration with fibred finite products

• (r, q) is an indexed first-order logic fibration [Birkedal and Møgelberg, 2005]
which has products and coproducts with respect to projections K × Ω → K in
Kind [Birkedal and Møgelberg, 2005], where Ω again is the p applied to the
generic object.

• I is a faithful product-preserving map of fibrations.

2. a morphism of fibrations:

(LinType×Kind LinType)fop U //

**TTTTTTTTTTTTTTTT
Ctx

{{www
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ww
ww

w

Kind
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3. a family of bijections

ΨX,A,B : HomCtxK
(X,U(A,B)) → Obj(PropX×I(G(A)×G(B)))

for A and B in LinTypeK and X in CtxK for some K, which

• is natural in X,A,B with respect to vertical maps

• commutes with reindexing functors; that is, if u : K ′ → K is a morphism in
Kind and f : X → U(A,B) is a morphism in CtxK, then

Ψu∗(X),u∗(A),u∗(B)(u
∗(f)) = (ū)∗(ΨX,A,B(f))

where ū is the cartesian lift of u.

Notice that Ψ is only defined on vertical morphisms.

In this definition LinType×Kind LinType is defined as the pullback

LinType×Kind LinType //

��

LinType

p

��
LinType

p //Kind.

Since U is uniquely defined by the requirements on the rest of the structure we will often
refer to a pre-LAPL structure simply as the diagram in item 1. Very often we shall omit
the indexing of Ψ to ease notation.

We shall use K,K ′ . . . to denote objects of Kind, A,B, . . . to denote objects of
LinType and X, Y, . . . to denote objects of Ctx.

We now explain how to interpret the fragment of LAPL excluding the relational in-
terpretation of types (1) and excluding admissible relations in a pre-LAPL structure. A
context

Ξ | x1 : σ1, . . . xn : σn | R1 : Rel(τ1, τ
′
1), . . . , Rm : Rel(τm, τ

′
m)

is interpreted in Ctx[[Ξ]] as ∏
i≤nIG([[σi]])×

∏
j≤mU([[τj]], [[τ

′
j]]),

where the interpretations of the types is the usual interpretation of types in LinType →
Kind.

4.2. Lemma. If Ξ | Γ | Θ is well formed and π : Ωn+1 → Ωn is the projection onto the n
first coordinates then [[Ξ, α | Γ | Θ]] = π∗[[Ξ | Γ | Θ]].

For notational convenience we shall write [[Ξ | Γ | Θ ` t : τ ]] for the interpretation of t
in Ctx, that is for

I([[Ξ | Γ;− ` t : τ ]]Type) ◦ π
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(note the subscript Type), where π is the projection

π : [[Ξ | Γ | Θ]] → [[Ξ | Γ | −]]

in Ctx[[Ξ]].
The propositions in the logic are interpreted in Prop. Most of the constructions of

the logic are interpreted using standard methods from categorical logic, but we present
the details here for completeness.

To interpret equality we define

[[Ξ | x : τ, y : τ ` x =τ y]] =
∐

〈id [[τ ]],id [[τ ]]〉(>),

where
∐

〈id [[τ ]],id [[τ ]]〉 denotes the left adjoint to reindexing along 〈id [[τ ]], id [[τ ]]〉 : [[τ ]] → [[τ ]] ×
[[τ ]]. Now we can define

[[Ξ | Γ | Θ ` t =σ u]] = 〈[[Ξ | Γ | Θ ` t]], [[Ξ | Γ | Θ ` u]]〉∗[[Ξ | x : τ, y : τ ` x =τ y]].

To interpret ∀x : σi0 .φ, recall that a context Ξ | x1 : σ1, . . . , xn : σn | Θ is interpreted as∏
i≤nIG[[σi]]× [[Θ]],

where [[σi]] is the usual interpretation of types in LinType and the product refers to the
fibrewise product in Ctx. We may therefore interpret ∀x : σi0 .φ using the right adjoint to
reindexing along the projection

π :
∏

i≤nIG[[σi]]× [[Θ]] →
∏

i6=i0,i≤nIG[[σi]]× [[Θ]].

Likewise, ∀R : Rel(σ, τ). φ is interpreted using right adjoints to reindexing functors re-
lated to the appropriate projection in Ctx. The existential quantifiers ∃x : σi0 .φ and
∃R : Rel(σ, τ.)φ are interpreted using left adjoints to the same reindexing functors.

Quantification over types ∀α.φ and ∃α.φ is interpreted using respectively right and
left adjoints to π̄∗ where π̄ is the lift of the projection π : [[Ξ, α : Type]] → [[Ξ]] in Kind
to Ctx. The existence of these adjoints is the requirement that (r, q) has products and
coproducts. To be more precise, by Lemma 4.2 the cartesian lift of π is a map:

π̄ : [[Ξ, α | Γ | Θ]] → [[Ξ | Γ | Θ]]

and we define
[[Ξ | Γ | Θ ` ∀α. φ]] =

∏
π̄[[Ξ, α | Γ | Θ ` φ]],

where
∏

π̄ is the right adjoint to π̄∗.
Relations with domain σ and codomain τ in contexts Ξ | Γ | Θ are interpreted as maps

from [[Ξ | Γ | Θ]] into U([[σ]], [[τ ]]). The relation

Ξ | Γ | Θ, R : Rel(σ, τ) ` R : Rel(σ, τ)



130 LARS BIRKEDAL AND RASMUS E. MØGELBERG AND RASMUS L. PETERSEN

is interpreted as the projection, and

[[Ξ | Γ | Θ ` (x : σ, y : τ). φ : Rel(σ, τ)]] = Ψ−1([[Ξ | Γ, x : σ, y : τ | Θ ` φ]]).

We now define the interpretation of ρ(t, s), for a relation ρ and terms t, s of the appropriate
types. First, for Ξ | Γ | Θ ` ρ : Rel(σ, τ), we define

[[Ξ | Γ, x : σ, y : τ | Θ ` ρ(x, y)]] = Ψ([[Ξ | Γ | Θ ` ρ : Rel(σ, τ)]]).

Next, if Ξ | Γ ` t : σ, s : τ , then

[[Ξ | Γ | Θ ` ρ(t, s)]] =
〈〈π, 〈[[Ξ | Γ | Θ ` t]], [[Ξ | Γ | Θ ` s]]〉〉, π′〉∗[[Ξ | Γ, x : σ, y : τ | Θ ` ρ(x, y)]],

where π, π′ are the projections

π : [[Ξ | Γ | Θ]] → [[Ξ | Γ]] π′ : [[Ξ | Γ | Θ]] → [[Ξ | − | Θ]].

To interpret admissible relations, we need a little more structure than just a pre-LAPL
structure. We need a subfunctor V of U , i.e., a map of fibrations V with domain and
codomain as U and a fibred natural transformation V ⇒ U whose components are all
monomorphic. Thus, for all K in Kind and all A,B in CtxK , we can consider V (A,B) as
a subobject of U(A,B). We think of V (A,B) as the subobject of all admissible relations
from A to B (since the isomorphism Ψ allows us to think of U(A,B) as the object of all
relations).

Given such a V we can interpret S : AdmRel(σ, τ) as V ([[σ]], [[τ ]]). Admissible relations
ρ : AdmRel(σ, τ) are interpreted as maps into V ([[σ]], [[τ ]]). For this to make sense we need,
of course, to make sure that the admissible relations in the model in fact contain the
relations that are admissible in the logic. We need to assume that of the functor V .

4.3. Definition. A pre-LAPL structure together with a subfunctor V of U is said to
model admissible relations, if V is closed under the rules for admissible relations
in [Birkedal et al., 2006].

We say that an implication

Ξ | Γ | Θ | φ1, . . . , φn ` ψ,

in the fragment of LAPL excluding the relational interpretation of types, holds in a given
pre-LAPL structure with notion of admissible relations, if∧

i≤n

[[Ξ | Γ | Θ ` φi]] ≤ [[Ξ | Γ | Θ ` ψ]]

where ≤ refers to the ordering in the preorder Prop[[Ξ|Γ|Θ]], and the
∧

refers to the
intersection in the same preorder.
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4.4. Proposition. For any pre-LAPL structure with given notion of admissible rela-
tions the interpretation presented above of the fragment of LAPL excluding the relational
interpretation of types is sound in the sense that any implication which is provable in the
fragment of the logic also holds in the pre-LAPL structure.

Most of the proof of Proposition 4.4 is straightforward and very similar to the sound-
ness proof of [Birkedal and Møgelberg, 2005], so we omit it here. Details can be found
in [Møgelberg, 2005a].

As a consequence of Proposition 4.4 it makes sense to talk about the internal language
of a pre-LAPL structure. In this language we may use types and terms from the PILLY

model and propositions and relations from the model to form propositions using the con-
structions of the mentioned fragment of LAPL. We say that an implication of propositions
formed in the internal language holds in the internal logic if it holds in the model.

4.5. Semantics of the relational interpretation of types. In this section we
define the extra structure needed to interpret the relational interpretation of types. As in
Ma & Reynolds work [Ma and Reynolds, 1992] this data is given by a reflexive graph

LinType

��
Kind

 //


LinAdmRelations

��
AdmRelCtx

 ,
oo

oo
(2)

this time of PILL models. But unlike in Ma & Reynold’s work, we construct the PILL
model on the right hand side from the data of the pre-LAPL structure. For more on
relations between our approach to models of parametricity and that of Ma & Reynolds,
we refer to [Birkedal and Møgelberg, 2005].

We remark that the reason we need this extra structure is that the relational inter-
pretation of types is not just an inductive construction definable only for types of pure
PILLY . The functor going left to right in (2) will map each type in the PILLY model to
its relational interpretation.

We now aim to define the fibration LinAdmRelations → AdmRelCtx from a given
pre-LAPL structure with a notion of admissible relations. The idea is, that it should be
a PILL model in which the objects of the total category are admissible relations in the
sense of the pre-LAPL structure. The category AdmRelCtx is defined as the pullback

AdmRelCtx

〈∂0,∂1〉
��

// Ctx

��
Kind×Kind

× //Kind.

To define the category LinAdmRelations we consider the construction of vertical
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comma category: suppose F is a fibred functor as in

D

p
  @

@@
@@

@@
@

F // E

q
~~~~

~~
~~

~~

B.

(3)

The vertical comma category V (E ↓ F ) has as objects vertical morphisms triples (E,D, ξ)
where E,D are objects in E,D respectively and ξ : E → F (D) is a vertical map in E.
A morphism from (E,D, ξ) to (E ′, D′, ξ′) is a pair of maps g : E → E ′, f : D → D′ in
E,D respectively such that ξ′ ◦ g = F (f) ◦ ξ. Note that f, g need not be vertical. The
vertical comma category construction has been studied before, and in fact there is a
fibration V (E ↓ F ) → B making it a comma object in the 2-category of fibrations over
B [Jacobs, 1993, Sec 9.4], but that is not important for our application. Instead we need
the following.

4.6. Lemma. Suppose F is a fibred functor as in (3), and denote by a : V (E ↓ F ) → D
and b : V (E ↓ F ) → E the projections. Then b is a fibration and (a, q) is a morphism of
fibrations:

V (E ↓ F ) a //

b

��

D
p

��
E

q // B.
Now, the functor V in the definition of pre-LAPL structure induces a fibred functor

(LinType× LinType)fop V ′
//

(p×p)fop **UUUUUUUUUUUUUUUUU
AdmRelCtx

vvlllllllllllllll

Kind×Kind

contravariant in each fibre. Using Lemma 4.6, define LinAdmRelations → AdmRelCtx
to be V (AdmRelCtx ↓ V ′)fop → AdmRelCtx. From Lemma 4.6 we also obtain a fi-
bred functor from LinAdmRelations → AdmRelCtx to LinType × LinType →
Kind×Kind. We denote by ∂0, ∂1 the two compositions of this fibred functor with the
first and second projection respectively:

LinAdmRelations

��
AdmRelCtx

 ∂0 //

∂1

//


LinType

��
Kind

 .

Writing out the construction we see that the objects of AdmRelCtx are triples
(K,K ′, X) where K,K ′ are objects in Kind and X is an object of the fibre category
CtxK×K′ . Since such an object can be considered a context in the internal language of
the pre-LAPL structure, we write them as K,K ′ | X. The fibre of LinAdmRelations
over an object K,K ′ | X has as
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Objects: triples (ρ,A,B) where A and B are objects in LinType over K and K ′

respectively and ρ is a vertical map

ρ : X → V (π∗A, π′∗B)

in Ctx. Here π, π′ are first and second projection respectively out of K ×K ′.

Morphisms: A morphism (ρ,A,B) → (ρ′, A′, B′) is a pair of morphism

(t : A ( A′, u : B ( B′)

in LinTypeK and LinTypeK′ respectively, such that

Ψ(ρ) ≤ Ψ(V (t, u) ◦ ρ′)),

where we have left the inclusion of V into U implicit.

Expressed in the internal language of the pre-LAPL structure objects of the category
LinAdmRelations are admissible relations in context, which we shall write as K,K ′ |
X ` ρ : Rel(A,B) where A is in LinTypeK and B is in LinTypeK′ , and vertical mor-
phisms are pairs of morphisms t : A ( A′, u : B ( B′ preserving relations in the sense
that

∀x : A, y : B . ρ(x, y) ⊃ ρ′(t x, u y)

holds. The fibred functors ∂0, ∂1 map K,K ′ | X ` ρ : Rel(A,B) to A and B respectively.
The following series of lemmas show that the fibration

LinAdmRelations → AdmRelCtx

is a PILL-model and that the maps ∂0, ∂1 are morphisms of PILL-models. The proofs
of these lemmas express most of the necessary constructions using LAPL as an internal
language. In fact the proofs will show that the PILL-model structure of

LinAdmRelations → AdmRelCtx

is given by the relational interpretations of the type constructors of PILLY , as defined
in [Birkedal et al., 2006].

4.7. Lemma. The fibration LinAdmRelations → AdmRelCtx has a fibrewise SMCC-
structure and the two maps ∂0, ∂1 are fibred strict symmetric monoidal functors.

Proof. The symmetric monoidal closed structure is given by the operations ⊗,( defined
on admissible relations in LAPL for ρ : AdmRel(σ, τ), ρ′ : AdmRel(σ′, τ ′) as

ρ ( ρ′ = (f : σ ( σ′, g : τ ( τ ′).∀x : σ.∀y : τ. ρ(x, y) ⊃ ρ′(fx, gy).

and
ρ⊗ ρ′ = (fσ,τ , fσ′,τ ′)∗(∀(α, β,R : AdmRel(α, β)). (ρ ( ρ′ ( R) ( R),
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where fσ,τ : σ ⊗ τ (
∏
α. (σ ( τ ( α) ( α is the canonical map defined as

fσ,τ x = let x′ ⊗ x′′ : σ ⊗ τ be x in Λα. λ◦h : σ ( τ ( α. h x′ x′′.

The unit for the tensor product is the admissible relation IRel : AdmRel(I, I) defined as

IRel = (f, f)∗(∀(α, β,R : AdmRel(α, β)). R ( R),

where f : I (
∏
α. α ( α is defined as λ◦x : I. let ? be x in id , for id = Λα. λ◦x : α. x.

As proved in [Birkedal et al., 2006] these map admissible relations to admissible re-
lations and so do indeed define constructions on LinAdmRelations → AdmRelCtx.
It is an easy exercise to show that these define functors, and that ⊗ defines a symmetric
monoidal structure (this simply involves showing that the maps of the symmetric monoidal
structure on LinType preserve relations).

We show that ρ ( − is right adjoint to −⊗ρ. Since we are given a similar adjunction
in LinType, all we need to show is that

(t, s) : ρ ( (ρ′ ( ρ′′)

iff
(t̂, ŝ) : ρ⊗ ρ′ ( ρ′′,

where t̂, ŝ are the maps corresponding to t, s in the adjunction on LinType. Suppose
first that

(t, s) : ρ ( (ρ′ ( ρ′′) and x(ρ⊗ ρ′)y.

The definition of the latter says exactly that, for all (t, s) : ρ ( (ρ′ ( ρ′′), we must have
ρ′′(t̂ x, ŝ y).

Now, suppose (t̂, ŝ) : ρ ⊗ ρ′ ( ρ′′ and xρy ∧ x′ρ′y′. Since ρ ⊗ ρ′(x ⊗ x′, y ⊗ y′) also
ρ′′(t̂(x⊗ x′), ŝ(y ⊗ y′)). Hence, since t̂(x⊗ x′) = t x x′ (likewise for s), we are done.

4.8. Lemma. The fibration LinAdmRelations → AdmRelCtx has a fibred comonad
structure. This structure extends to a fibred linear structure, and the maps ∂0, ∂1 preserve
all this structure on the nose.

Proof. The operation ! on relations is defined in [Birkedal et al., 2006] as

(fσ, fτ )
∗∀(α, β,R : Rel(α, β)). (ρ→ R) ( R.

where fσ : !σ (
∏
α. (σ → α) ( α is defined as

λ◦x : !σ.Λα. λ◦g : σ → α. g(x).

and for any ρ, ρ′ the relation ρ→ ρ′ is defined as

ρ→ ρ′ = (f : σ → σ′, g : τ → τ ′).∀x : σ, y : τ. ρ(x, y) ⊃ ρ′(f(!x), g(!y)).
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We need to check that ! defines a functor, i.e., that if (f, g) : ρ ( ρ′, then (!f, !g) : !ρ (
!ρ′. From [Birkedal et al., 2006] we know that it suffices to show (!f, !g) : ρ→!ρ′, i.e.,

∀x, y. !ρ(!x, !y) ⊃!ρ′((!f)(!x), (!g)(!y)).

But this holds since (!f)(!x) =!(f(x)).
The rest of the proof is a simple check that the counit and comultiplication as well

as the underlying structure maps of the fibred linear structure on LinType all preserve
relations.

4.9. Lemma. The fibration LinAdmRelations → AdmRelCtx has products in the
base, a generic object and, writing Ω′ for the fibration applied to the generic object, simple
products with respect to projections in AdmRelCtx of the form (K,K ′ | X) × Ω′ →
(K,K ′ | X). The maps ∂0, ∂1 preserve this structure.

Proof. The category AdmRelCtx has products:

(K1, K
′
1 | X1)× (K2, K

′
2 | X2) = K1 ×K2, K

′
1 ×K ′

2 | π∗(X1)× π′∗(X2)

by [Jacobs, 1999, Proposition 9.2.1].
The generic object of the fibration is the triple (idV (π∗O,(π′)∗O), O,O) where π, π′ : Ω×

Ω → Ω are the projections, since a morphism into that object from K,K ′ | X in
AdmRelCtx is a pair of maps (f : K → Ω, g : K ′ → Ω) in Kind together with a
morphism from X to V (π∗(f ∗O), (π′)∗(g∗O)) in CtxK×K′ .

We now show that the fibration has the mentioned products. The generic object can
be expressed in the internal language as α, β | − | R : AdmRel(α, β), and so we write a
product

(K,K ′ | X)× (α, β | − | R : AdmRel(α, β))

in AdmRelCtx as (K,α;K ′, β | X,R : AdmRel(α, β)). We must show that for any pro-
jection in AdmRelCtx of the form π : (K,α;K ′, β | X,R : AdmRel(α, β)) → (K;K ′ | X)
the weakening functor π∗ mapping a relationK,K ′ | X ` ω : AdmRel(A,A′) to the relation

K,α;K ′, β | X,R : AdmRel(α, β) ` ω : AdmRel(A,A′)

has a right adjoint. We define this right adjoint to map a relation

K,α;K ′, β | X,R : AdmRel(α, β) ` ρ : AdmRel(B,B′)

to the relation

K,K ′ | X ` ∀(α, β,R : AdmRel(α, β)). ρ : AdmRel((
∏
α : Type. B), (

∏
β : Type. B′))

defined in [Birkedal et al., 2006] to be

(x, y).∀α, β : Type.∀R : AdmRel(α, β). (xα)ρ(yβ).



136 LARS BIRKEDAL AND RASMUS E. MØGELBERG AND RASMUS L. PETERSEN

In the PILLY model LinType → Kind polymorphic types are modelled using products
with respect to projections K × Ω → Ω. This gives for any object A in LinTypeK a
bijective correspondence between morphisms t : A ( B in LinTypeK×Ω and morphisms
t̂ : A (

∏
α.B in LinTypeK . In fact t̂ can be expressed in PILLY as

K | − ` t̂ = λ◦x : A.Λα. (t x) : A (
∏
α.B.

Given a relation K,K ′ | X ` ω : AdmRel(A,A′) and a pair of morphisms t : A ( B,
u : A′ ( B′, one can easily check in LAPL that the pair (t, u) preserves relations iff (t̂, û)
does, i.e.,

K,α;K ′, β | x : A, y : A′ | X,R : AdmRel(α, β) | xωy ` (t x)ρ(u y)

iff

K,K ′ | x : A, y : A′ | X | xωy ` ∀α, β : Type.∀R : AdmRel(α, β). (t̂ x α)ρ(û y β),

and so the correspondence between (t, u) and (t̂, û) gives a bijective correspondence be-
tween maps π∗ω ( ρ in the fibre of LinAdmRelations over

K,α;K ′, β | X,R : AdmRel(α, β)

and maps ω ( ∀(α, β,R : Rel(α, β)). ρ in the fibre over K;K ′ | X proving that we have
in fact defined a product.

The Lemmas 4.7, 4.8, 4.9 collectively state the following.

4.10. Proposition. The fibration LinAdmRelations → AdmRelCtx is a PILL
model

This model need not be a PILLY -model, since for general pre-LAPL structures Y does
not necessarily preserve relations.

4.11. Definition. An LAPL structure is a pre-LAPL structure modeling admissible
relations, together with a map of PILL-models

LinType

��
Kind

 J //


LinAdmRelations

��
AdmRelCtx


extending ∂0, ∂1 to a reflexive graph, i.e., ∂0 ◦ J = ∂1 ◦ J = id.

Full LAPL can be interpreted in any LAPL structure. To see this we need to show
how to interpret the rule

α1, . . . , αn ` σ(~α) : Type Ξ | Γ | Θ ` ρ1 : AdmRel(τ1, τ
′
1), . . . , ρn : AdmRel(τn, τ

′
n)

Ξ | Γ | Θ ` σ[~ρ] : AdmRel(σ(~τ), σ(~τ ′))
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We first define

[[~α, ~β | − | ~R : AdmRel(~α, ~β) ` σ[~R]]] = J([[~α | σ(~α)]])

Note that this makes sense since J is required to preserve products in the base and
generic objects, and so J([[~α ` σ(~α)]]) is an admissible relation from σ(~α) to σ(~β) in

context [[~α; ~β | ~R : AdmRel(~α, ~β)]]. The general σ[ρ] is defined as follows: first reindex
J([[~α ` σ(~α)]]) to the right Kind context using

〈[[~τ ]], [[~τ ′]]〉 : [[Ξ]] → Ω2n,

thus obtaining

[[Ξ | − | ~R : AdmRel(~τ , ~τ ′) ` σ[~R] : Rel(σ(~τ), σ(~τ ′))]] = 〈[[~τ ]], [[~τ ′]]〉∗J([[~α ` σ(~α)]])

and finally we define

[[Ξ | Γ | Θ ` σ[~ρ] : AdmRel(σ(~τ), σ(~τ ′))]] =

[[Ξ | − | ~R : AdmRel(~τ , ~τ ′) ` σ[~R]]] ◦ [[Ξ | Γ | Θ ` ~ρ : AdmRel(~τ , ~τ ′)]].

where by [[Ξ | Γ | Θ ` ~ρ : AdmRel(~τ , ~τ ′)]] we mean the pairing

〈[[Ξ | Γ | Θ ` ρ1]], . . . , [[Ξ | Γ | Θ ` ρn]]〉.

4.12. Remark. Linear Abadi & Plotkin Logic can be modified to include arities of
parametricity other than binary. To accomodate such modifications in the definition of
LAPL structure, the domain of the functors U and V in the definition of pre-LAPL
structure with notion of admissible relations must be changed accordingly.

We define the notion of an implication of LAPL holding in an LAPL structure sim-
ilarly to the notion of implication holding in a pre-LAPL structure as we did before
Proposition 4.4.

4.13. Theorem. [Soundness] The interpretation given above of LAPL in LAPL struc-
tures is sound in the sense that any implication provable in LAPL also holds in any LAPL
structure.

Proof. This theorem extends Proposition 4.4, and like for the proof of Proposition 4.4
we refer to [Møgelberg, 2005a] for details, but do sketch the soundness proof of a few
rules.

The rules capturing the inductive definition of relational interpretation of types all
hold since J preserves SMCC-structure, generic objects, simple products and !.

Concerning the axiom stating (
∏
α. (α → α) → α)(Y, Y ) , notice that J is required

to be a functor. This means that it maps [[Y ]] : I ( [[
∏
α. (α→ α) → α]] to a morphism

from IRel to the relational interpretation of
∏
α. (α → α) → α. By the requirement,

that (J, ∂0, ∂1) is a reflexive graph, this map must be ([[Y ]], [[Y ]]). Since IRel(?, ?) and
[[Y ]](?) = Y we get (

∏
α. (α→ α) → α)(Y, Y ).
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4.14. Completeness. The completeness theorem states an inverse to the soundness
theorem, namely that any LAPL implication holding in any LAPL structure is also prov-
able in LAPL. In fact an even stronger result holds:

4.15. Theorem. [Completeness] There exists an LAPL structure with the property that
any formula of LAPL over pure PILLY holds in this model iff it is provable in LAPL.

Note that Theorem 4.15 only concerns LAPL as a logic on pure PILLY . One can also
formulate LAPL as a logic for the internal language of any PILLY model, but we do not
have a proof of a similar completeness result for this case. The main problem is that we
have no way of constructing, for general models of PILLY , a relational interpretations as
in Section 4.5.

Proof. We construct the LAPL structure syntactically, giving the categories in question
the same names as in the diagrams of the definitions of pre-LAPL and LAPL structures.
The PILLY model in the LAPL structure is a fibred version of the syntactic DILL con-
structed in [Barber, 1997].

• The category Kind has as objects PILLY kind contexts Ξ. A morphism from Ξ to
α1, . . . , αn is an n-vector of PILLY types (σ1, . . . , σn) such that all σi are well-formed
in context Ξ. Composition is by substitution.

• Objects in the fibre of LinType over Ξ are well-formed types in this context.
Morphisms in this fibre from σ to τ are equivalence classes of terms t such that
Ξ | −;x : σ ` t : τ , under the equivalence relation on PILLY terms given by external
equality. Composition is by substitution, and reindexing with respect to morphisms
in Kind is by substitution.

• Objects in the fibre of Type over Ξ are well-formed sequences of types in this
context. Morphism in this fibre from σ1, . . . , σn to τ1, . . . , τm are equivalence classes
of sequences of terms (ti)i≤m, such that for each i the term

Ξ | ~x : ~σ;− ` ti : τi

is well-formed, under the equivalence relation relating sequences (ti) and (t′i) if, for
each i, ti is externally equal to t′i. Reindexing with respect to morphisms in Kind
is by substitution.

• The functor LinType → Type maps a morphism −;x : σ ` t : τ to x : σ;− ` t : τ .
The functor going the other way maps a sequence of objects (σi) to ⊗i!σi. It maps
a morphism represented by (ti) from (σi) to (τi) to the morphism represented by

Ξ | −; y : ⊗i!σi ` let ⊗i x
′
i : ⊗i!σi be y in let !~x be ~x′ in ⊗i!ti.

• The category Ctx has as objects in the fibre over Ξ well-formed contexts of LAPL:
Ξ | Γ | Θ. A vertical morphism from Ξ | Γ | Θ to

Ξ | Γ′ | R1 : Rel(σ1, τ1), . . . , Rn : Rel(σn, τn), S1 : AdmRel(σ′1, τ
′
1), . . . , Sm : AdmRel(σ′m, τ

′
m)
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is an equivalence class of triples, consisting of a vertical morphism Ξ | Γ → Ξ | Γ′ in
Type, a sequence of definable relations (ρ1, . . . , ρn), and a sequence of admissible
relations (ω1, . . . , ωm), such that Ξ | Γ | Θ ` ρi : Rel(σi, τi) and Ξ | Γ | Θ `
ωi : AdmRel(σ′i, τ

′
i). The equivalence relation relates two such morphisms represented

by the same type morphism and the definable relations (ρ1, . . . , ρn) and (ρ′1, . . . , ρ
′
n)

and admissible relations (ω1, . . . , ωm) and (ω′1, . . . , ω
′
m), respectively, if, for each i, j,

the formulas ρi ≡ ρ′i and ωj ≡ ω′j are provable in the logic, where, as usual, ρi ≡ ρ′i
is short for

∀x : σi, y : τi. ρi(xi, yi) ⊃⊂ ρ′i(xi, yi),

and likewise for ωj ≡ ω′j. The inclusion functor I is the obvious one. Reindexing is
by substitution.

• The fibre of the category Prop over a context Ξ | Γ | Θ has as objects equivalence
classes of formulas Ξ | Γ | Θ ` φ : Prop, under the equivalence relation given by prov-
able equivalence in LAPL. Each fibre of Prop is a preorder, ordered by implication
in the logic: φ ≤ ψ iff φ ⊃ ψ holds in LAPL. Reindexing is done by substitution:
each map in Ctx can be written as a composition of a vertical map followed by a
cartesian lift of a map in Kind, and reindexing with respect to cartesian lifts of
morphisms from Kind is done by substitution in type-variables, whereas reindex-
ing with respect to vertical maps in Ctx is by substitution in term variables and
relation variables.

An easy fibred version of the completeness proof in [Barber, 1997] shows that Kind,Type,
LinType together with the functors described above form a PILLY model. The fibration
Ctx → Kind clearly has fibred products formed by appending contexts, and the inclusion
functor I is clearly faithful and product-preserving.

We need to prove that Prop → Ctx → Kind is an indexed first-order logic fibration
with products and coproducts with respect to simple projections in Kind. The fibrewise
bicartesian structure is given by ∨,∧,⊃,⊥,>. Fibred simple products and coproducts
are given by quantifying over relations and variables, simple products in the composite
fibration is given by quantifying over types. We can in fact prove that the composite
fibration has all indexed products and coproducts (in particular, that it has equality).

Suppose (~t, ~ρ) represents a vertical morphism from Ξ | ~x : ~σ | ~R to Ξ | ~y : ~τ | ~S in Ctx

(the vectors ~R, ~S consist of both relations and admissible relations, and the vector ~ρ is a
concatenation of the corresponding vectors of relations and admissible relations from the
definition above). We can then define the product functor in Prop as:∏

(~t,~ρ)(Ξ | ~x | ~R ` φ(~x, ~R)) =

Ξ | ~y | ~S ` ∀~x.∀~R(~t~x = ~y ∧ (~ρ(~x, ~R) ≡ ~S) ⊃ φ(~x, ~R)).

We define coproduct as: ∐
(~t,~ρ)(Ξ | ~x | ~R ` φ(~x, ~R)) =

Ξ | ~y | ~S ` ∃~x.∃~R.~t~x = ~y ∧ ~ρ(~x, ~R) ≡ ~S ∧ φ(~x, ~R)).
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We remark that the special case of equality in the model is the obvious

(Ξ | Γ, x : σ | Θ ` φ) 7→ (Ξ | Γ, x : σ, y : σ | Θ ` φ ∧ x =σ y)

The fibred functor U of item 2 in Definition 4.1 is defined as

U(σ, τ) = R : Rel(σ, τ)

and
U(t : σ ( σ′, u : τ ( τ ′) = Ξ | R : Rel(σ′, τ ′) ` (x : σ, y : τ). R(tx, uy),

where x, y are fresh variables.
The required isomorphism Ψ maps Ξ | Γ | Θ ` ρ : Rel(σ, τ) to Ξ | Γ, x : σ, y : τ | Θ `

ρ(x, y). The functor V is defined as

V (σ, τ) = R : AdmRel(σ, τ)

and

V (t : σ ( σ′, u : τ ( τ ′) = Ξ | R : AdmRel(σ′, τ ′) ` (x : σ, y : τ). R(tx, uy).

We have defined a pre-LAPL structure modeling admissible relations. If we construct
AdmRelCtx as in the definition of LAPL structure, we obtain:

Objects: ~α, ~β | Γ | ~R : AdmRel(~σ(~α), ~τ(~β)), ~R′ : Rel(~σ′(~α), ~τ ′(~β)).

Morphisms: A morphism from

~α, ~β | Γ | ~R : AdmRel(~σ(~α), ~τ(~β)), ~R′ : Rel(~σ′(~α), ~τ ′(~β))

to
~α′, ~β′ | Γ′ | ~S : AdmRel(~ω(~α′), ~κ(~β′)), ~S ′ : Rel(~ω′(~α′), ~κ′(~β′))

consists of two morphism in Kind:

~µ : ~α→ ~α′

and
~ν : ~β → ~β′,

a morphism from ~α, ~β | Γ to ~α, ~β | Γ′[~µ, ~ν/~α′, ~β′] in LinType~α,~β, and a sequence of
admissible relations ~ρ and a sequence of relations ~ρ′ such that, for all i,j,

~α, ~β | Γ | ~R : AdmRel(~σ(~α), ~τ(~β)), ~R′ : Rel(~σ′(~α), ~τ ′(~β)) ` ρi : AdmRel(ωi(~µ), κi(~ν))

~α, ~β | Γ | ~R : AdmRel(~σ(~α), ~τ(~β)), ~R′ : Rel(~σ′(~α), ~τ ′(~β)) ` ρ′j : Rel(ω′j(~µ), κ′j(~ν)).

As in Ctx these morphisms are identified up to provable equivalence of the relations.
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The fibre of LinAdmRelations over an object

~α, ~β | Γ | R : AdmRel(~σ(~α), ~τ(~β)), ~R′ : Rel(~σ′(~α), ~τ ′(~β))

in AdmRelCtx becomes:

Objects: Equivalence classes of admissible relations

~α, ~β | ~Γ | R : AdmRel(~σ(~α), ~τ(~β)), ~R′ : Rel(~σ′(~α), ~τ ′(~β)) ` ρ : AdmRel(σ(~α), τ(~β)).

Morphisms: A morphism from ρ : AdmRel(σ(~α), τ(~β)) to ρ′ : AdmRel(σ′(~α), τ ′(~β)) is a
pair of morphisms t : σ ( σ′, u : τ ( τ ′ such that it is provable in the logic that:

∀x : σ.∀y : τ. ρ(x, y) ⊃ ρ′(tx, uy)

We will construct the map J as a map of fibred linear categories from LinType → Kind
to LinAdmRelations → AdmRelCtx as follows. On the base categories J is defined
on objects as

J(α1, . . . , αn) = α1, . . . , αn; β1, . . . , βn | R1 : AdmRel(α1, β1), . . . , Rn : AdmRel(αn, βn),

where the ~β are fresh variables. We define J on the objects of the total categories (and
on the morphisms of the base category) as

J(~α ` σ : Type) = ~α, ~β | ~R : AdmRel(~α, ~β) ` σ[R] : AdmRel(σ(~α), σ(~β)).

To define J on morphisms of the fibre categories, suppose ~α | −;− ` t : σ ( τ . We define

J(t) = (t, t). To see that (t, t) in fact is a map from σ[~R] to τ [~R], notice that the Logical
Relations Lemma [Birkedal et al., 2006, Lemma 1.39] tells us that

Λ~α. t(
∏
~α. σ ( τ)Λ~α. t,

which means exactly that (t, t) : σ[~R] ( τ [~R].
The rules for the relational interpretation of types tell us that J is a strict fibred

symmetric monoidal closed functor preserving products and ! on the nose. Since the counit
and comultiplication of the fibred comonad on LinAdmRelations → AdmRelCtx are
simply (ε, ε) and (δ, δ), for ε and δ the counit and comultiplication of LinType → Kind
respectively, it is clear that J preserve these as well.

Now, by definition, a formula holds in this LAPL structure iff it is provable LAPL.
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5. Parametric LAPL structures

This section defines the notion of parametric LAPL structure. These are LAPL structures
in which the identity extension schema holds and which satisfy a condition called very
strong equality. Identity extension allows us to reason using parametricity in the internal
logic of the LAPL structure, and very strong equality allows us to transfer the results from
the internal logic to results about the PILLY model. The need for very strong equality is
perhaps best illustrated by an extreme case: suppose we are given an LAPL structure in
which Prop = Ctx and the fibration r : Prop → Ctx is the identity functor. In this case
the fibres of the fibration are all trivial, and so any proposition in LAPL holds in such a
model. In particular, being able to prove that two vertical morphism of LinType with
the same domain and codomain are equal in the internal language of the LAPL structure
says nothing about them being equal morphisms in LinType.

5.1. Definition. A preorder fibration E → B modelling equality has very strong equality
if for every two morphisms f, g in B with same domain and codomain, f = g holds in
the logic of the fibration only if f and g are in fact equal. An LAPL structure has very
strong equality if each restriction of r : Prop → Ctx to a fibre of q : Ctx → Kind has
very strong equality.

As argued in [Birkedal and Møgelberg, 2005] very strong equality implies that the two
extensionality schemes

∀α, β : Type.∀f, g : α ( β. (∀x : α. f(x) =τ g(x)) ⊃ f =α(β g
∀x, y :

∏
α. σ. (∀α : Type. x α =σ y α) ⊃ x =Q

α.σ y

hold in the internal logic of the LAPL structure.

5.2. Definition. A parametric LAPL structure is an LAPL structure with very
strong equality in which identity extension holds in the internal logic.

5.3. Solving recursive domain equations in parametric LAPL structures.
This section identifies the semantic notion of recursive domain equation that can be solved
using parametricity in LAPL structures. This can be also seen as an example of how we
can reason in the internal logic of parametric LAPL structures and use very strong equality
to transfer these results to results about the PILLY model in question.

Below we shall use the notation AB for the closed structure in symmetric monoidal
closed categories. This is meant to simplify otherwise lengthy notation.

5.4. Definition. An endofunctor F : Bop × B → B, for B a linear category, is called
strong if there exists a natural transformation tA,B,A′,B′ :!(AA′

)⊗!((B′)B) ( F (A′, B′)F (A,B)

preserving identity and composition:

I
!didA⊗!didB ◦

îdFA ◦Q
QQQQQQQQQQQQQQQ !(AA)⊗!(BB)

tA,B,A,B

◦
F (A,B)F (A,B)

!(AA′
)⊗!((B′)B)⊗!((A′)A′′

)⊗!((B′′)B′
)

comp
◦

t⊗t

◦

!(AA′′
)⊗!((B′′)B)

t

◦
F (A′, B′)F (A,B) ⊗ F (A′′, B′′)F (A′,B′) comp

◦F (A′′, B′′)F (A,B).
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The natural transformation t is called the strength of the functor F .

One should note that t in the definition above represents the morphism part of the
functor F in the sense that it makes the diagram

I
! bf⊗!bg

◦

F̂ (f,g)
◦R

RRRRRRRRRRRRRRRR !(AA′
)⊗!((B′)B)

tA,B,A′,B′

◦
F (A′, B′)F (A,B)

(4)

commute, for any pair of morphisms f : A′ ( A, g : B ( B′. This follows from the
commutative diagram

I bid
◦

! bid⊗! bidKKKK

◦K
KKK

! bf⊗!bg
◦

!AA⊗!BB t ◦

!(Af )⊗!(gB)

◦

F (A,B)F (A,B)

F (f,g)F (A,B)

◦
!AA′⊗!(B′)B t ◦F (A′, B′)F (A,B).

In fact, (4) shows that we can define the action of F on morphisms from the strength.

5.5. Definition. If E → B is a fibred SMCC, then a fibred functor

Efop ×B E

$$I
IIIIIIIII

F // E

����
��

��
��

B

is called strong fibred if there exists a fibred natural transformation t from

!((=)(−))⊗!((=′)(−′)) to F (−,=′)F (=,−′)

satisfying commutativity of the two diagrams of Definition 5.4 in each fibre. The natural
transformation t is called the strength of the functor F .

The fibred strength t is a natural transformation between two fibred functors

E×B Efop ×B Efop ×B E //

((QQQQQQQQQQQQQQQ E

����
��

��
��

B

For example, in the case of a PILLY -model, the interpretation of any inductively con-
structed type α, β ` σ(α, β) with α occurring only negatively and β only positively
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induces a strong fibred functor, since as described in [Birkedal et al., 2006], for each such
type we can define a closed term

t :
∏
α, β, α′, β′. (α′ ( α) → (β ( β′) → σ(α, β) ( σ(α′, β′)

The object part of the functor F is then defined as

F (A,B) = [[σ(A,B)]]

and the strength s of the functor is defined as

(sK)A,A′,B,B′ = [[K | −;− ` t A A′ B B′]].

The morphism part of the functor is induced by the strength.
In fact, in a sense these are the only strong fibred functors on PILL-models.

5.6. Lemma. Suppose

LinTypefop ×Kind LinType
F //

**TTTTTTTTTTTTTTTT
LinType

xxrrrrrrrrrr

Kind

is a strong fibred functor on a PILL-model. Then there exists a type α, β ` σ and a closed
term

t :
∏
α, β, α′, β′. (α′ ( α) → (β ( β′) → σ(α, β) ( σ(α′, β′)

in the internal language of LinType → Kind inducing F .

Proof. Let O : LinTypeΩ denote the generic object of the fibration LinType → Kind.
For each type A : LinTypeK there exists a map K → Ω, which we will denote Â such
that Â∗O = A.

Define σ = F ([[α, β ` α]], [[α, β ` β]]). Then

F (A,A′) = F (〈Â, Â′〉∗([[α, β ` α]], [[α, β ` β]])) = 〈Â, Â′〉∗σ

for any pair of types (A,A′) ∈ (LinTypefop ×Kind LinType)K , since F is fibred. In the
internal language K ` σ(A,A′) is interpreted as 〈Â, Â′〉∗σ and so indeed σ induces the
action of F on objects.

Let s denote the strength of the fibred functor F . Consider the component

(sΩ4)[[α,β,α′,β′`α]],[[α,β,α′,β′`β]],[[α,β,α′,β′`α′]],[[α,β,α′,β′`β′]]

and denote it by t′. In the internal language, t′ is a term, and we can consider the
polymorphic term

− ` t = Λα.Λβ.Λα′.Λβ′. t′ :
∏
α, β, α′, β′. (α′ ( α) → (β ( β′) → (σ(α, β) ( σ(α′, β′)).

We just need to show that the strength induced by the term t is in fact s, but

[[K ` t A A′ B B′]] = 〈Â, Â′, B̂, B̂′〉∗t′ = (sK)A,A′,B,B′

since s is preserved by reindexing.
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5.7. Theorem. In a parametric LAPL structure, for any strong fibred functor F there
exists a closed type rec α. F (α, α) such that

F (rec α. F (α, α), rec α. F (α, α)) ∼= rec α. F (α, α)

in LinType1 for 1 the terminal object of Kind. The isomorphism is an initial dialgebra
for the functor F1 : LinType1

op × LinType1 → LinType1.
Moreover, for any object K in Kind,

F (!∗K(rec α. F (α, α)), !∗K(rec α. F (α, α))) ∼=!∗K(rec α. F (α, α)),

where !K is the unique map K → 1 in Kind, holds in LinTypeK and is an initial
dialgebra for FK.

Proof. Since by Lemma 5.6 we can express F in the internal language, the construc-
tion of solutions to recursive domain equations and the proofs of correctness in [Birkedal
et al., 2006] goes through in the internal language of the LAPL structure, if we substi-
tute the functorial interpretation of types as constructed in PILLY by the polymorphic
term provided by Lemma 5.6. This gives the closed type rec α. F (α, α) and the isomor-
phism F (rec α. F (α, α), rec α. F (α, α)) ∼= rec α. F (α, α) provable in LAPL. Finally, by
very strong equality the isomorphism F (rec α. F (α, α), rec α. F (α, α)) ∼= rec α. F (α, α)
not only holds in LAPL but also in the category LinType1.

The rest of the theorem can be proved likewise.

5.8. Parametrized recursive type equations. An inductively constructed type
α1, β1, . . . , αn, βn ` σ with 2n free type variables, in which the variables ~α occur only
negatively and the variables ~β only positively induces a fibred functor

(LinTypefop ×Kind LinType)n F //

**UUUUUUUUUUUUUUUUU
LinType

xxqqqqqqqqqqq

Kind.

On the other hand Definition 5.5 can easily be extended to define what it means that a
functor F as above is strong fibred, and Lemma 5.6 extends to show that such strong
fibred functors correspond to types σ as above and closed polymorphic terms of type∏
~α, ~β, ~α′, ~β′. (α′1 ( α1) → (β1 ( β′1) → . . .→ (α′n ( αn) → (βn ( β′n) → σ(~α, ~β) ( σ(~α′, ~β′)

in the internal language. The following theorem is then the corresponding extension of
Theorem 5.7 obtained using the analysis of [Birkedal et al., 2006].

5.9. Theorem. In a parametric LAPL structure, for any strong fibred functor

(LinTypefop ×Kind LinType)n+1 F //

**UUUUUUUUUUUUUUUUUU
LinType

xxqqqqqqqqqqq

Kind.
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there exists a strong fibred functor

(LinTypefop ×Kind LinType)n FixF //

**UUUUUUUUUUUUUUUUU
LinType

xxqqqqqqqqqqq

Kind.

and a fibred natural isomorphism

F (A1, B1, . . . , An, Bn,FixF (B1, A1, . . . , Bn, An),FixF (A1, B1, . . . , An, Bn))
∼= FixF (A1, B1, . . . , An, Bn).

Moreover, if G is a strong fibred functor

(LinTypefop ×Kind LinType)m G //

**UUUUUUUUUUUUUUUUU
(LinTypefop ×Kind LinType)n

ttiiiiiiiiiiiiiiiii

Kind.

then Fix(F ◦ (G× id)) = FixF ◦G.

The universal condition satisfied by the functor FixF is a parametrized version of
dinaturality. It has been described in [Birkedal et al., 2006], but for completeness we
repeat it here in a semantic formulation.

For any objectK ∈ Kind, all objectsA1, . . . An, B1, . . . , Bn, C, C
′ in the fibre LinTypeK

and all morphisms
g : F (A1, B1, . . . , An, Bn, C

′, C) ( C
g′ : C ′ ( F (B1, A1, . . . , Bn, An, C, C

′)

also in the fibre LinTypeK , there exist unique maps h, h′ making the diagrams

F (A1, B1, . . . ,FixF (B1, A1, . . .),FixF (A1, B1, . . .))

F (A1,B1,...,An,Bn,h′,h)

◦

∼= ◦FixF (A1, B1, . . . , An, Bn)

h

◦
F (A1, B1, . . . , An, Bn, C, C)

g
◦C

C ′ g′
◦

h′

◦

F (B1, A1, . . . , Bn, An, C, C
′)

F (B1,A1,...,Bn,An,h,h′)

◦
F (B1, A1, . . . ,FixF (A1, B1, . . .),FixF (B1, A1, . . .))

∼= ◦FixF (B1, A1, . . . , Bn, An)

commute in the fibre category LinTypeK .

6. Conclusions

We have defined the category-theoretic notion of LAPL structure, and proved that this
is a sound and complete notion of model for LAPL, a logic for parametricity and domain
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theory. We propose that parametric LAPL structures be used as a notion of domain
theoretic models of parametric polymorphism. This notion is useful, because, as we have
showed, semantic versions of the consequences for parametricity provable logically hold
in parametric LAPL structures.

In forthcoming papers we show that the notion of parametric LAPL structure is also
a general notion of domain theoretic models of parametricity, by giving a series of exam-
ples of parametric LAPL structures. These examples include a model constructed using
partial equivalence relations over a domain theoretic model of the untyped lambda cal-
culus, Simpson and Rosolini’s construction of models in intuitionistic set theory, a model
constructed using the syntax of Lily and a general parametric completion process as in
[Robinson and Rosolini, 1994]. In all these cases the notion of admissible relation is in-
terpreted differently, and a central part of each of these verifications, is to show that the
concrete notions of admissible relations satisfy the axioms of [Birkedal et al., 2006].
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A. Fibrations of opposite fibres

This appendix describes how the construction taking a fibration p : E → B producing a
fibration of opposite fibres pfop : Efop → Bfop, defined in the text for split fibrations only,
can be extended to general fibrations. (The construction of Efop depends not only on E
but also on p, but we leave p implicit in notation.) Recall that since split fibrations p as
above correspond to functors p̂ : Bop → Cat (where Cat is the category of categories) via
the Grothendieck construction, we could define pfop in this special case to be the fibration
corresponding to (−)op ◦ p̂, where (−)op : Cat → Cat is the functor mapping a category
to its opposite.

Suppose now p : E → B is a fibration which is not assumed to be split. Recall that
any map f : A→ B in E can be written as a composition g ◦h where g is cartesian and h
is vertical. This composition is not unique, but for any given two such compositions g ◦h,
g′ ◦ h′ there exists an isomorphism k such that g′ ◦ k = g and h′ = k ◦ h. Note that k is
necessarily vertical. This information tells us, that we can construct an isomorphic copy
of E which has the same objects as E but with morphisms from A to B being equivalence
classes of triples (C, h : A → C, g : C → B) where h is vertical and g is cartesian, under
the equivalence relation relating (C, h, g) to (C ′, h′, g′) if there exists an isomorphism
k : C → C ′ such that g′ ◦ k = g and h′ = k ◦ h.

Using this we can define Efop by just reversing the vertical arrows, defining it to be:

Objects: Objects of E

Morphisms: A morphism from A to B is an equivalence class of triples (C, h : C →
A, g : C → B) where h is vertical and g is cartesian, under the equivalence relation
relating (C, h, g) and (C ′, h′, g′) if there exists an isomorphism k : C → C ′ such that
g = g′ ◦ k and h = h′ ◦ k.

Composition in Efop is defined as follows: given a map from A to B represented by
(D, h, g) and a map from B to C represented by (D′, h′, g′) we define the composition of
the two to be the map represented by (D′′, h ◦ h′′, g′ ◦ g′′) as in the diagram

A

D

h

OO

g // B

D′′

h′′

OO

g′′ // D′

h′

OO

g′ // C

where g′′ is a cartesian lift of p(g) and h′′ is the unique vertical map making the square
commute. The functor pfop : Efop → B is defined to map a morphism represented by
(C, h, g) to p(g). The next theorem tells that all this structure is well defined. The proof
is omitted.
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A.1. Theorem. The above defines a category Efop and a fibration pfop : Efop → B. More-
over, (−)fop extends to an endofuntor on the category Fib(B) of fibrations over B.
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Lawrence Breen, Université de Paris 13: breen@math.univ-paris13.fr
Ronald Brown, University of North Wales: ronnie.profbrown (at) btinternet.com
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