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FUNDAMENTAL PUSHOUT TOPOSES

MARTA BUNGE

Abstract. The author [2, 5] introduced and employed certain ‘fundamental pushout
toposes’ in the construction of the coverings fundamental groupoid of a locally connected
topos. Our main purpose in this paper is to generalize this construction without the local
connectedness assumption. In the spirit of [16, 10, 8] we replace connected components
by constructively complemented, or definable, monomorphisms [1]. Unlike the locally
connected case, where the fundamental groupoid is localic prodiscrete and its classifying
topos is a Galois topos, in the general case our version of the fundamental groupoid is a
locally discrete progroupoid and there is no intrinsic Galois theory in the sense of [19].
We also discuss covering projections, locally trivial, and branched coverings without local
connectedness by analogy with, but also necessarily departing from, the locally connected
case [13, 11, 7]. Throughout, we work abstractly in a setting given axiomatically by a
category V of locally discrete locales that has as examples the categories D of discrete
locales, and Z of zero-dimensional locales [9]. In this fashion we are led to give unified
and often simpler proofs of old theorems in the locally connected case, as well as new
ones without that assumption.

Introduction

The author [2, 5] introduced certain ‘fundamental pushout toposes’ in the construction
and study of the prodiscrete fundamental groupoid of a locally connected topos. The main
purpose of this paper is to generalize this construction without the local connectedness
assumption.

The key to this program is the theory of spreads in topos theory [7], originating in
[16, 25], and motivated therein by branched coverings. Our main tools are the factorization
theorems [10] and [8] for geometric morphisms whose domains are definable dominances,
a notion which states that the constructively complemented subobjects are well-behaved.

In connection with fundamental pushout toposes we also discuss covering projections
and branched coverings without local connectedness by analogy with, but also departing
from, the locally connected case [7].

The passage from the discrete to the zero-dimensional is not perfect, as the category
of zero-dimensional locales does not have good enough closure properties. For this reason,
we work with the larger category of locally discrete locales, a category that is also suitable
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for discussing localic reflections.
The setting in which we work is that of a category V of (locally discrete) locales, given

axiomatically to model the category of zero-dimensional locales. Since also the category
of discrete locales is an instance of such a V, we are able to discuss the differences between
the discrete and the non-discrete (e.g., zero-dimensional) cases in a unified way.

An outline of the paper follows.
In § 1 we review and update definitions and results from [9] in order to include geo-

metric morphisms. A category V of locally discrete locales is introduced axiomatically.
Its main examples are the categories D of discrete, and Z of zero-dimensional locales. The
key notion in this section is that of a V-localic geometric morphism in TopS . The moti-
vating example for it are the spreads [10]. In the discrete case we prove special properties
of the V-localic reflection of use in connection with the fundamental progroupoid.

In § 2 we generalize definitions and results of [2, 5] to the V-context. For a V-
determined topos E , and a cover U in E , the localic V-reflection of E /U determines a
‘fundamental V-pushout’ topos GU(E ). We use results of [21, 15] in order to obtain, from
the system of toposes GU(E ) indexed by a generating category of covers in E , a limit
topos. Our results show that this topos (or its corresponding progroupoid) represents
first ordered cohomology with coefficients in discrete groups. In the discrete case, we
obtain the familiar result that the progroupoid may be replaced by a prodiscrete localic
groupoid, using results from § 1.

In § 3 we characterize the fundamental V-pushout toposes GU(E ) of § 2 in terms of
what we call V-covering projections. In turn, this notion is given alternative equivalent
versions, analogue to the result of [11] for locally constant coverings. In connection with
the locally constant coverings, we comment on an alternative construction of the funda-
mental progroupoid of a (Grothendieck) topos given in [14] and inspired by shape theory
[17, 18].

In § 4 we first review the V-comprehensive factorization [9] of a geometric mor-
phism. with a V-determined domain into a V-initial geometric morphism followed by
a V-fibration. The V-fibrations are an abstraction of the complete spreads [8], and are
the geometric counterpart of the V-valued Lawvere distributions [23]. We also establish
new closure and stability theorems for the factors of the comprehensive V-factorization.

In § 5 we introduce notions of locally trivial V-coverings and branched V-coverings
suitably generalizing the corresponding notions in the locally connected case [7]. The key
for the passages from one to the other is given by the analogue of a ‘pullback lemma’
from [13]. Beyond that point, we are faced with the two ‘inconvenient truths’ that affect
the non-discrete (or non locally connected) case. In particular, and unlike the locally
connected case [11], there are no good topological invariants. Also unlike the locally
connected case [7], the ‘ideal knot’ need not exist in the general case.

We remark that this paper does not attempt to be self contained, a task which would
have been more suitable for a monograph. A reason for this is that the paper involves a
great deal of material from two different lines of research in which the author has been
involved, to wit, the fundamental groupoid of a locally connected topos, and complete
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topos spreads in the non-locally connected case, up until now unrelated. On the other
hand, all references that are needed for providing the background that is necessary for a
full understanding of this paper are given in the references.

A justification for the work done here is not simply that it provides a construction
of the fundamental groupoid of a topos in the non-locally connected case, but primarily
that this is done in a conceptually simple manner (to replace connected components by
clopen subsets), thereby providing a better understanding of the locally connected case
itself. In addition, the systematic use of the universal property of fundamental pushout
construction renders this work into a purely categorical one.

Rather than collecting remarks and questions in a separate section at the end of the
paper, these are scattered throughout the paper. Some of these remarks constitute ideas
for further research, whereas others are just lose ends which might prove interesting to
certain readers.

1. V-localic reflections

Let S be an elementary topos. Denote by TopS the 2-category of S -bounded toposes,
geometric morphisms over S , and iso 2-cells.

Our motivation for the notion of a V-localic geometric morphism in TopS is the
notion of a spread (with a definable dominance domain) [10, 7], originally due to R. H.
Fox [16] in topology.

A topos f : F //S is a definable dominance [10] if the class of definable monos in
F [1] is well behaved — that is, classifiable and closed under composition. A geometric
morphism over a base topos S is said to be a spread if it has a definable generating family
[7]. Spreads are localic geometric morphisms. The defining locales of spreads are said to
be zero-dimensional. It is shown in [10] that any geometric morphism whose domain is a
definable dominance has a unique pure surjection, spread factorization.

Every Grothendieck topos is a definable dominance since, over Set, the definable sub-
objects of an object are its complemented subobjects. Every locally connected topos is
a definable dominance by the characterization theorem in [1]. For a geometric morphism
whose domain is locally connected, the notion of a spread may be stated in terms of
connected components [7].

We shall work with a category V of locales in the base topos S , modeled on the
category Z of zero-dimensional locales. This generality suits the interplay between the
discrete and the zero-dimensional, that is, between the locally connected and the ‘general’
cases, since the category D, of discrete locales, will also be regarded as a model of such a
V (with special properties).

Denote by Loc the category of locales in E , a partial ordering of its morphisms given
by

m ≤ l : W // X

if m∗U ≤ l∗U , for any U ∈O(X). It is E -indexed, with Σ satisfying the BCC.
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We shall introduce certain functors V //F from a category V of locales to a topos
F in TopS . Such functors necessarily would have to forget about 2-cells in V. This
suggests that we only consider such V in which the partial ordering of the morphisms is
trivial. This feature justifies restricting our attention to locally discrete locales.

1.1. Definition. We shall say that a locale Z is locally discrete if for every locale X the
partial ordering in Loc(X,Z) is discrete. Likewise, a map p : Z // B is locally discrete
if for every q : X // B, Loc/B(q, p) is discrete.

Let L denote the category of locally discrete locales in S . It is an S -indexed category,
with Σ satisfying the BCC, and small hom-objects. L is closed under limits, which are
created in Loc, the 2-category of locales in S . The category D, of discrete locales is
included in LD.

1.2. Remark. L has the following additional properties:

(i) If Y // Z is a locally discrete map, and Z is locally discrete, then Y is locally
discrete.

(ii) If Y is locally discrete, then any locale morphism Y // Z is locally discrete.

(iii) The pullback of a locally discrete map along another locally discrete map is again
locally discrete.

(iv) If Z is locally discrete, then any sublocale S // // Z is also locally discrete.

1.3. Assumption. In what follows, V denotes a full S -indexed subcategory of Loc
such that, in addition, it satisfies

1. D ⊆ V ⊆ L.

2. V is closed under open sublocales.

3. Let

Y X
p //

W

Y

n

��

W Z
q // Z

X

m

��

be a pullback in Loc in which p is etale. If m ∈ V then n ∈ V.

The interior of a localic geometric morphism ShF (Y ) //F is an object d(Y ) of F
such that

F/d(Y ) ShF (Y )//F/d(Y )

F
$$J

JJJJJJJJJJJ
ShF (Y )

F
��
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commutes, and any F/D // ShF (Y ) over F factors uniquely through F/d(Y ). The
interior of a localic geometric morphism always exists.

For any topos f : F //S in TopS , then there is a functor

F ∗ : Loc //F

such that for X ∈ Loc, F ∗X = d(f#X) is the interior of the locale f#X, where the latter
is defined by the bipullback

F S
f //

ShF (f#X)

F
��

ShF (f#X) ShS (X)// ShS (X)

S
��

in TopS . In particular, for any locale X in S , there is a canonical geometric morphism

F/F ∗X // ShS (X)

over S , which we refer to as ‘the projection’.

1.4. Definition. A topos f : F // E over S is said to be V-determined if there is
an S -indexed left adjoint F! a F ∗ : V //F , such that ‘the BCC for etales holds, in the
sense that for any etale map p : Y // X in V, the transpose (below, right) of a pullback
square (below, left) is again a pullback.

E F ∗X
m //

P

E

q

��

P F ∗Y// F ∗Y

F ∗X

F ∗p

��
F!E X

m̂ //

F!P

F!E

F!q

��

F!P Y// Y

X

p

��
.

1.5. Remark. The definition of a V-determined topos can be relativized to any ge-
ometric morphism. Let E be any topos in TopS . Denote by Loc(E ) the category of
locales in E and, similarly, define D(E ) ∼= E , L(E ), and V(E ), the latter axiomati-
cally by analogy with Assumption 1.3. Let ψ : F // E be a morphism in TopS . We
say that ψ is a V-determined geometric morphism if there is an E -indexed left adjoint
Ψ! a Ψ∗ : V(E ) //F , such that ‘the BCC for etales in V(E ) holds. (For example,
a D-determined geometric morphism in TopS is precisely a locally connected geometric
morphism.)

Let ψ : F // E be a V-determined geometric morphism in TopS . For any object
D of F , let

ρD : F/D // ShE (Ψ!D) (1)

be the composite of the projection F/Ψ∗(Ψ!D) // ShE (Ψ!D) with the unit of adjoint-
ness Ψ! a Ψ∗.
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1.6. Lemma. The inverse image part of ρD : F/D // ShE (Ψ!D) is given as follows.
If p : Y // Ψ!D is an etale map in Loc (E ), then (ρD)∗(p) is the left vertical leg of the
pullback

D Ψ∗Ψ!D
ηD //

(ρD)∗(Y )

D
��

(ρD)∗(Y ) Ψ∗Y// Ψ∗Y

Ψ∗Ψ!D

Ψ∗p

��
(2)

in F .

1.7. Lemma. Let ψ : F // E be a V-determined geometric morphism in TopS .

1. Then, for every object D of F , ρD in (1) is a surjection.

2. If V is such that the BCC holds for all etale morphisms Y // X with X ∈ V(E ),
then ρD in (1) is connected and V-determined in the sense of Remark 1.5.

Proof.

1. If Y // Ψ!D is etale, then Y is locally in V(E ) by Assumption 1.3(2). For each
open inclusion p : U � � // Ψ!D, the BCC for etales in V(E ) implies that the transpose
Ψ!ρD

∗(U) // U of the top horizontal in the diagram (2) is an isomorphism. This
implies that ρD is a surjection.

2. For an arbitrary etale map Y // Ψ!D, the BCC implies that Ψ!ρ
∗(Y ) ∼= Y , so that

ρD : F/D // ShE (Ψ!D) has a fully faithful inverse image part, or is connected.
That ρD is V-determined follows from the same hypothesis, since in that case Ψ!

trivially preserves etaleness.

2

Consider a commutative triangle

F

S
f ##G

GG
GG

GG
GF Eπ // E

S
e{{ww

ww
ww

ww

(3)

in TopS . If Z is a locale in V, then there is a geometric mor-
phism F/π∗(E∗Z) // ShF (Z), which factors through F/F ∗(Z) by a morphism
π∗(E∗Z) // Ψ∗(Z) in F , since Ψ∗(Z) is the interior of ShF (ψ#Z). Thus, there is a
natural transformation

α : (π∗ · E∗) +3 F ∗ : V //F (4)

1.8. Remark. The 2-cell α in (4) is an isomorphism when restricted to discrete locales,
or else when π is a local homeomorphism.
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1.9. Definition. Consider the commutative triangle (3).

1. We shall say that ρ : F // E is V–initial if the transpose α̂ : E∗ +3 (ρ∗ · F ∗) :
V // E of (4) under ρ∗ a ρ∗ is an isomorphism.

2. We shall say that ρ : F // E is V-localic if there is given Z ∈ V(E ) where ϕ :
ShE (Z) // E has a V-determined domain, and an equivalence σ in the commutative
triangle:

F

E
ρ ##G

GGGGGGGF ShE (Z)σ // ShE (Z)

E
ϕ{{wwwwwww

(5)

1.10. Remark. If f : F //X is a geometric morphism between V-determined
toposes, then the canonical geometric morphism ρ in (1) is V-initial iff the canonical
2-cell β : (F! · ρ∗) +3 X! corresponding to α̂ by taking left adjoints, is an isomorphism.

We now state a factorization theorem for V-determined geometric morphisms (see
Remark 1.5).

1.11. Theorem. Let ψ : F // E in TopS be a V-determined geometric morphism.
For any object D of F , let

F/D
ρD // ShE (Ψ!D)

ϕD // E

be the canonical factorization.

1. For a general V, the first factor is surjective V-initial over E , and the second factor
is V-localic. Such a factorization is unique up to equivalence.

2. If V is closed under all etale p : Y // X with X ∈ V(E ), then the V-initial first
factor ρD : F/D // ShE (Ψ!D) is (furthermore) connected and V-determined, and
the second factor is V-localic. Such a factorization is unique up to equivalence.

1.12. Corollary. Any locally connected geometric morphism in TopS factors
uniquely into a connected locally connected geometric morphism followed by a local home-
omorphism.

1.13. Example. The main examples of a category V satisfying the clauses in Assump-
tion 1.3 are :

1. V = D. Any discrete locale is locally discrete. Notice that any open inclusion
U � � // X in Loc is etale. In this example, (2) may be strengthened to any etale
p : Y // X in Loc.
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2. V = Z. Any zero-dimensional locale X is locally discrete since O(X) has a basis
consisting of (constructibly) complemented opens. In this example, (2) holds since
any open sublocale of a spread is a spread. However, (2) cannot be strengthened to
any etale p : Y // X in Loc(E ), since there exists a zero-dimensional space X and
an etale map p : Y // X of locales, where Y is not zero-dimensional [9].

As for (3), indeed, in TopS , the pullback of a spread with a definable dominance
domain along a local homeomorphism is again one such. We give a proof of (3)
below in Proposition 1.14.

1.14. Proposition. Consider a bipullback in TopS , in which ξ is a local home-
omorphism:

F E
ξ //

X

F

ϕ

��

X Yπ // Y

E

ψ

��

If ψ : Y // E is a spread then ϕ is spread .

Proof.

In the bipullback, π is a local homeomorphism since ξ is one. Thus, X ∼= Y /B
and π is identified via this equivalence with the canonical local homeomorphism
ΣB a B∗ a ΠB : Y /B // Y . A monomorphism m in Y /B is S -definable iff
ΣB(m) is S -definable in Y . This implies that Y /B is a definable dominance since
Y is one.

Since X is a definable dominance, we may factor ϕ into its pure surjection ρ :
X // W and a spread τ : W //F parts: ϕ ∼= τ · ρ. Then, since V is a definable
dominance, we may factor the composite ξ · τ into its pure surjection and spread
parts. This is represented in the diagram below, where ζ is uniquely defined using
orthogonality, since ψ is a spread and η · ρ is the composite of two pure surjections
hence a pure surjection.

F E
ξ

//

X

F

ϕ

��

X Yπ // Y

E

ψ

��

Z

  A
AA

AA
Z

>>

ζ}}
}}

}

W

τ~~}}
}}

}
W

ρ

  A
AA

AA

η //

Since the outer square is a pullback, there is V θ //X such that π · θ ∼= ζ · η and
ϕ · θ ∼= τ . The universal property of the pullback implies that θ · ρ ∼= idX . Hence,
ρ · θ · ρ ∼= ρ. Therefore, the two geometric morphisms ρ · θ and idW from the spread
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τ to itself agree when precomposed with the pure surjection ρ. They must therefore
agree: ρ · θ ∼= idW . We have shown that ρ is an equivalence, so that ϕ is a spread.

2

3. V = L. In this case, (2) and (3) may both be strengthened to any p : Y // X ∈ L.

1.15. Example. We recall the following example (due to Peter Johnstone and included
in [9]). Let X be the subspace {0}∪{ 1

n
| n ≥ 1} of R, and let Y = X+X/ ∼, obtained by

identifying the two 1
n
’s, for every n. The topology on Y is T1, but not Hausdorff. The map

Y // X identifying the two 0’s is etale, X is 0-dimensional, but Y is not 0-dimensional.
The converse for spaces (due to Gábor Lukács) holds in the following form. Let X be a

zero-dimensional space that has the property: if for all etale maps Y // X of spaces, with
Y regular, Y is zero-dimensional, then X is discrete. The argument is by contradiction.
Assume that X is zero-dimensional but not discrete. Let p ∈ X be an isolated point.
Construct Y // X etale as above, letting p take the role of 0. The space Y is not zero-
dimensional, but (by etaleness) it is locally zero-dimensional. The proof clearly reduces
to showing that Y locally zero-dimensional and regular implies that Y is globally zero-
dimensional, thus contradicting the assumption. This is shown to be the case. It is an
open question whether the analogous statement for arbitrary locales is true and if so in
what form.

2. The fundamental V-progroupoid

In this section we abstract the fundamental pushouts of [2, 5] in the V-context of § 1.
We recall that for E locally connected in TopS , the terminology ‘fundamental pushout’

was applied to refer to any pushout

E /e!U GU(E )pU

//

E /U

E /e!U

ρU

��

E /U E
ϕU // E

GU(E )

σU

��
(6)

where U // // 1 in E , ϕU : E /U // E is the canonical local homeomorphism, and ρU is the
first factor in the canonical factorization of the locally connected geometric morphism

E /U
ϕU // E e //S

into a connected locally connected geometric morphism followed by a local homeomor-
phism.

This factorization is an instance of Theorem 1.11(2). This suggests that we give a more
general notion of ‘fundamental pushout’ in the V-context, by using Theorem 1.11(1).
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2.1. Definition. Let E be a V-determined topos over S . For an epimorphism U // // 1
in E , the following pushout in TopS

ShE (E!U) GU(E )pU

//

E /U

ShE (E!U)

ρU

��

E /U E
ϕU // E

GU(E )

σU

��
(7)

where ψU : E /U // E is the canonical local homeomorphism, and where ρU was defined

in (1) applied to the V-determined topos E /U
ϕU // E e //S , is said to be a fundamental

V-pushout .

2.2. Theorem. Let E be a V-determined topos, and let U be a cover in E . Then,

1. The topos GU(E ) in the fundamental V-pushout is the classifying topos B(GU) of
an etale complete groupoid GU , by an equivalence

GU(E ) ' B(GU)

which identifies pU with the canonical localic point of B(GU).

2. The localic groupoid GU is locally discrete.

3. The locally discrete groupoid GU classifies U-split K-torsors in E for discrete groups
K.

Proof.
For the morphism ϕU : E /U // E in TopS , there is an induced truncated simplicial

diagram, namely the kernel of ϕU , denoted Ker(ϕU):

E /U ×E E /U ×E E /U

π01 //
π02 //
π12 //

E /U ×E E /U

π0 //

π1 //
E /Uioo

where, for example, E /U ×E E /U denotes the bipullback of ϕU along itself.
There is a category D(ϕU), an object of which consists of an object y of E /U equipped

with an isomorphism η : π0
∗(y) ∼= π1

∗(y) satisfying the cocycle and normalization con-
ditions. A morphism in D(ϕU) from (y, η) to (z, ζ) is a morphism f : y // z in E /U
compatible in the obvious sense with η and ζ.

Let ΦU : D(ϕU) // E /U be the canonical geometric morphism Since ϕU is a locally
connected surjection, it is of effective descent. In other words, ΦU is an equivalence.

Consider now a similar diagram for the morphism pU : ShS (E!U) // GU(E ). By
methods of classifying toposes [24], we extract from it an etale complete groupoid GU in
GU :
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G2

p //
m //
q //

G1

d //

c //
G0

ioo

Denote by D(pU)the descent category for Ker(pU) and by PU : D(pU) // GU(E )
the canonical geometric morphism. We wish to prove any of the following equivalent
statements:

(i) B(GU) ∼= GU(E )

(ii) pU is of effective descent.

(iii) PU : D(pU) // GU(E ) is an equivalence.

First, notice that ρU : E /U // ShS (E!U), alternatively denoted ρ0 : E /U // Sh(G0)
induces a morphism of truncated simplicial objects in TopS (in simplified notation)
depicted together with the pushout diagram.

Sh(G2) Sh(G1)//

(E /U)3

Sh(G2)

ρ2

��

(E /U)3 (E /U)2// (E /U)2

Sh(G1)

ρ1

��
Sh(G0)//

E /U// E /U

Sh(G0)

ρ0

��
GU(E )

pU //

E
ϕU // E

GU(E )

σU

��

Let λ : Sh(G0) //K satisfy the descent conditions for Ker(pU). Then, the composite

E /U
ρ0 // Sh(G0)

λ //K

satisfies the descent conditions for Ker(ϕU). (For instance, for y an object of K , and
η : d∗0λ

∗(y) ∼= c∗λ∗(y) in Sh(G1), then ρ0
∗η : ρ1

∗d∗0λ
∗(y) ∼= ρ1

∗d∗1λ
∗(y) and, in turn,

d∗0ρ0
∗λ∗(y) ∼= d∗1ρ0

∗λ∗(y).) Since ϕU is of effective descent, there exists a unique τ :
E //K , such that the square

Sh(G0) K
λ

//

E /U

Sh(G0)

ρU

��

E /U E
ϕU // E

K

τ

��
(8)

commutes up to an iso 2-cell.
By the universal property of the pushout (7), there exists a unique κ : GU //K such

that κ ·pU ∼= λ and κ ·σU ∼= τ . Since both ϕU and ρU are surjections, we have the following

(κσU ∼= τ) ⇔ (κσUϕU ∼= τϕU) ⇔ (κpUρU ∼= λρU) ⇔ (κpU ∼= λ)

Thus, we may rephrase the comment above as follows. There exists a unique κ :
GU(E ) //K such that κ · pU ∼= λ. This shows that pU is of effective descent and it
establishes the first claim.
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We observe that since ShGU
(G0) ∼= ShS (E!U) //S is localic defined by a (zero-

dimensional, hence) locally discrete locale E!U , then also pU : Sh(E!U) // GU(E ) is
localic defined by a locally discrete locale G0 in GU(E ), by Remark 1.2.

It also follows from Remark 1.2 that all objects and morphisms defining GU are locally
discrete, that is, GU is a locally discrete groupoid in GU(E ). (For instance, in the pullback

Sh(G0) GU(E )
pU //

Sh(G1)

Sh(G0)

π1

��

Sh(G1) Sh(G0)
π0 // Sh(G0)

GU(E )

pU

��

G1 is locally discrete.) This establishes the second claim.
We now argue that GU (or, equivalently, B(GU)) classifies U -split K torsors for dis-

crete groups K. Crucial for this is that D ⊆ V in Assumption 1.3 and the universal
property of the V-reflection.

For any cover U = 〈U // // 1, I, U
ζ // e∗I〉 in a topos E e //S , the topos PU (E )

in the following pushout is equivalent to the category Split(U ) [11]:

S /I PU (E )pU

//

E /U

S /I

λU

��

E /U E
ϕU // E

PU (E )

σU

��
. (9)

For a group K in S , we consider the K-torsors in E split by a cover U = 〈U, ζ〉,
where U // // 1 and ζ : U // e∗I in E . By Diaconescu’s theorem, a K-torsor in E is
equivalently given by a geometric morphism τ : E //B(K). A morphism of K-torsors
in E corresponds to a natural transformation. There is a category

Tors(E ;K)U

of K-torsors in E split by U .
To say that the K-torsor (represented by) τ is U -split is to say that there is a factor-

ization

PU (E ) B(K)
λ
//

E

PU (E )

σU

��

E

B(K)

τ

$$J
JJJJJJJJJJJ

where the ‘point’ pU : S //PU (E ) plays no role.
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There is induced a double pushout diagram

Sh(E!U) GU(E )
qU //

E /U

Sh(E!U)

ρU

��

E /U E
ϕU // E

GU(E )

σU

��

S /I PU (E )
pU //S /I

κU

��
PU (E )

χU

��

λU

��

τU

��
(10)

where κU is induced the universal property of the V-localic reflection, and χU by the
pushout property.

It follows from the commutative square

Sh(E!U) B(K)γ
//

E /U

Sh(E!U)

ρU

��

E /U E
ϕU // E

B(K)

τ

��
(11)

where γ = λ · pU · κU and the pushout property of (7), that there exists a unique δ :
GU(E ) //B(K) such that the diagram

GU(E ) B(K)
δ
//

E

GU(E )

σU

��

E

B(K)

τ

$$J
JJJJJJJJJJJ

commutes up to an iso 2-cell. This shows the third claim. 2

2.3. Corollary. For any group K and any cover U // // 1 in a V-determined topos E ,
there is an equivalence

TopS (B(GU),B(K)) ' Tors(E ;K)U

natural in K, where we write simply U for the canonical cover U = 〈U // // 1, η :
E!U,U // E∗E!U〉.

We proceed to define, for Cov(E ) a small generating category of covers in E and
morphisms α : U // V witnessing (not uniquely) that U ≤ V , a functor

G : Cov(E ) // TopS .

We let G (U ) = GU (E ). Let U ≤ V , where U and V are covers in E , and let
α : U // V be a given morphism in Cov(E ) witnessing the relation. Then there is an
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induced geometric morphism ϕα : GU(E ) // GV (E ) over S which commutes with the
canonical localic points pU and pV .

This is clear from the cube below (in simplified notation), using the pushout property
(7) of the back face:

E /V //

��

E

��

E /U

??����
//

��

E

�����
�����

��

Sh(E!V ) // GV

Sh(E!U) //

??����
GU

??�����

Recall that the geometric morphisms ρU : E /U // Sh(E!U) are (in general) sur-
jective by Lemma 1.7. It follows from the pushout that each σU : E // GU(E ) is
also surjective and, in particular, for each α as above, also the geometric morphisms
ϕα : GU(E ) // GV (E ) are surjective.

Since each induced geometric morphism ϕα : GU(E ) //GV (E ) over S commutes with
the localic points pU and pV , it may therefore be interpreted as an object of the full
subcategory

TopS [B(GU),B(GV )]+

of TopS [B(GU ,B(GV )] whose objects are geometric morphisms commuting with the
canonical localic points [3]. The square brackets in both cases indicate that the morphisms
in those Hom-categories are to be taken to be iso 2-cells in TopS .

As shown in [5] there is a strong equivalence of categories:

Hom(GU ,GV ) ' TopS [B(GU),B(GV )]+.

We derive from it that there are induced groupoid homomorphisms gα : GU
//GV , for each

α. Furthermore, since the geometric morphisms ϕα are surjective, the homomorphisms
gα are also surjective.

The system consisting of the locally discrete groupoids GU and the surjective homo-
morphisms gα is not filtered in general. Nevertheless, the system is a bifiltered 2-category
in the sense of [21] or, equivalently, a 2-filtered 2-category in the sense of [15]. As in [15],
the bicolimit of the 2-functor exists.

Let G = lim{GU | U ∈ Cov(E )}. This is a locally discrete groupoid. There is a
canonical geometric morphism

B(lim{GU | U ∈ U }) // lim{B(GU) | U ∈ U }

Since the transition geometric morphisms ϕα : B(GU) //B(GV ) for U ≤ V are only
surjective, this canonical geometric morphism need not be an equivalence.

In spite of this, the locally discrete progroupoid P = {GU | U ∈ Cov(E )} represents
cohomology of E with coefficients in discrete groups. Explicitly, the claim is that for a
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discrete group K, there is an isomorphism

H1(E ;K) ' [P, K].

This is shown as in [14].

2.4. Remark. There is a case of special interest, namely when V = D, the category
of discrete locales. A D-determined topos E is precisely a locally connected topos. In
this case, there are additional properties of the fundamental progroupoid P = 〈GU | U ∈
Cov(E )〉 of E , which we proceed to indicate.

1. Firstly, the fundamental progroupoid P may in this case be equivalently replaced
by a prodiscrete localic groupoid G. That the localic groupoids GU are discrete
follows from the fact that the pU : S /e!U // GU(E ) are local homeomorphisms, in
turn since the S /e!U //S are local homeomorphisms. Further, it follows from
Lemma 1.7(2) and properties of the pushouts (7) that each σU , hence also the
transition geometric morphisms ϕα : B(GU) //B(GV ), are connected. This in
turn implies that the canonical geometric morphism

B(lim{GU | U ∈ U }) // lim{B(GU) | U ∈ U }

is an equivalence. In particular, G = lim{GU | U ∈ U } is a prodiscrete localic
groupoid which represents cohomology of E with coefficients in discrete groups.

2. Secondly, in addition to the fundamental theorem of Galois theory, in the form
G (E ) ∼= B(G ), there is implicit a Galois theory in the sense of [19]. From
Lemma 1.7(2) we deduce that the ρU : E /U //S /e!U are D-determined, that
is, locally connected. This fact, applied to the fundamental pushout (7) gives, using
a result from [2], that pU : S /e!U // GU(E ) (and σU : E // GU(E )) is locally
connected and a surjection, hence an S -essential surjection, therefore with a rep-
resentable inverse image part. The representor is a locally constant object 〈A, σ〉,
which is a ‘normal’ object in the sense of [19]. In particular, each GU(E ) ∼= B(GU)
is a Galois topos, from which it follows that also the limit lim{B(GU) | U ∈ U } is
a Galois topos. The reader is referred to [5] for details.

2.5. Remark. The fundamental pushout definition of the coverings fundamental
groupoid of a locally connected topos [2] became a useful tool in the comparison the-
orems between the coverings and the paths versions of the fundamental groupoid [4, 12].
Such a comparison could not be attempted in this context without a prior generalization
of the paths fundamental groupoid to the non-locally connected case. The latter might
prove to be an interesting project.

3. V-covering projections

In this section we introduce and discuss a notion of V-covering projection and use it to
analyze the fundamental V-pushout toposes of Definition 2.1.
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3.1. Definition. Let E be a V-determined topos. An object A of E is said to be a
V-covering projection object split by a cover U = 〈U // // 1, X, η : U // E∗U〉 in E if A
is part of a 3-tuple 〈A,α, θ〉 where α is an etale morphism Y // X in Loc, with X ∈ V,
and θ is an isomorphism

E∗Y ×E∗X U
θ // A× U

over U . We call the corresponding geometric morphism E /A // E a V-covering projec-
tion split by U .

A morphism 〈A,α, θ〉 // 〈B, β, κ〉 between V-covering projection objects split by U =
〈U // // 1, X, η : U // E∗X〉 is given by a pair (f , γ) with f : A // B a morphism in E
and γ : Y // Z a morphism in Loc over X, such that

E∗Y ×E∗X U
θ //

E∗γ×U
��

A× U

f×U
��

E∗Z ×E∗X U κ
// B × U

commutes.

3.2. Proposition. Let ϕ : F // E be a local homeomorphism in TopS . Let U =
〈U // // 1, X, η : U // E∗U〉 be a cover in E . Then

(i) ϕ∗U = 〈ϕ∗U // ϕ∗1 ∼= 1, X, ϕ∗η : (ϕ∗ · E∗)X ∼= F ∗X〉 is a cover in F .

(ii) If A is V-covering projection object in E split by U , then ϕ∗A is a V-covering
projection object in F , split by ϕ∗U .

Proof. The conclusion is easily checked using Definition 3.1, and the fact that the 2-cell
ϕ∗E∗ +3 F ∗ is an isomorphism when ϕ is a local homeomorphism (see Remark 1.8). 2

The following statement is similar to one shown in [11] for locally constant coverings
(or covering projections). Due to the restricted nature of the BCC in the V-case the
proof given therein is not directly applicable. We give one which relies directly on the
V-reflection universal property.

3.3. Proposition. If e : E //S is V-determined, A an object of E , and U // // 1 (a
‘cover’) in E , the following are equivalent:

(i) A is a V-covering projection object split by U .

(ii) There is an etale morphism Y α // E!U in Loc(S ), and a pullback

A× U
π2 //

��

U

ηU

��
E∗Y

E∗α
// E∗E!U

where ηU is the unit of adjointness E! a E∗ evaluated at U .
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(iii) There is an etale morphism Y
β // X in Loc(S ) with X ∈ V(S ), a morphism

η : U // E∗X, and a pullback

A× U
π2 //

��

U

η

��
E∗Y

E∗β
// E∗X

Proof. The items (i) and (iii) are equivalent. Trivially, (ii) ⇒ (iii) As for (iii) ⇒ (ii),
suppose that A is U -split via β : Y //X, ζ : U //E∗X and an iso θ : E∗Y ×E∗XU //A×U
over U . Then the composite rectangle

A× U
π2 //

��

U

ηU

��
E∗Y

E∗α //

=

��

E∗E!U

E∗ζ′

��
E∗Y

E∗β
// E∗X

is a pullback and, in the lower ‘square’, ζ ′ : E!U // X exists and is the unique such that
ζ ′ · α = β is obtained from the universal property of the V-localic reflection. it follows
easily that the top square is a pullback. 2

Let E be an V-determined topos. Denote by CV(E )(U ) the category of the V-covering
projections objects split by U = 〈U // // 1, η : U // E∗E!U〉 and their morphisms. There
is a forgetful functor ΨU : CV(U ) // E defined by 〈A,α, θ〉 7→ A and (f, γ) 7→ f . This
functor is in general neither full nor faithful.

3.4. Proposition. Let GU(E ) be the topos in the fundamental pushout applied to a
V-determined topos E and a cover U . Then there exists an equivalence functor ΦU :
GU(E ) // CV(E )(U). Under this equivalence, the functor σU

∗ : GU(E ) //E corresponds
to the forgetful functor ΨU : CV(E )(U) // E , defined by 〈A,α, ζ〉 7→ A and 〈a, γ〉 7→ a.
This functor is in general neither full nor faithful.

Proof. An object of GU(E ) in the fundamental pushout of toposes is precisely a locally
V-trivial object split by U in the sense of Definition 3.3. A similar observation applies
to morphisms in the category GU(E ). This is a consequence of the well-known fact that
pushouts in TopS are calculated as pullbacks in CAT of the inverse image parts. 2

3.5. Remark. An alternative construction of the fundamental progroupoid of a general
Grothendieck topos E which also uses pushout toposes is that of [14]. However, the
locally constant pushouts employed therein (albeit as a first approximation) just give the
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toposes PU (E ) for a cover U = 〈U // // 1, I, U // e∗I〉. That this is not adequate in
the non locally connected case is indicated by the fact that the canonical ‘point’ pU :
S /I //PU (E ) need not be of effective descent . A correction is subsequently made in
[14] by means of categories DU (E ) ⊆ PU (E ), with DU (E ) defined as the full subcategory
of PU (E ) whose objects are sums of U -split ‘covering projections’, a notion that is a
generalization to Grothendieck toposes of the ‘covering projections’ off [18] for localic
toposes, and which is itself inspired by the overlays of [17].

In pictures, the locally split pushout (top) can be completed to a commutative diagram

S /I PU (E )
pU //

E /U

S /I

λU

��

E /U E
ϕU // E

PU (E )

τU

��

S /I DU (E )
rU //S /I

id

��
DU (E )

νU

��

µU

��
(12)

The category DU (E ) ⊆ PU (E ) is then shown to be a topos, that it is atomic, and that
there exists an etale complete localic groupoid DU such that DU (E ) ∼= B(DU ), and such
that it classifies U -split K-torsors in E for discrete groups K.

The construction of the DU (E ) is different from our construction of the GU(E ). For
instance, in our case (first exposed in [4]), the use of the fundamental pushouts requires
no correction.

We also point out that (without further information) we cannot conclude that there
is an equivalence between the toposes DU (E ) and GU (E ). Since both constructions
generalize the locally connected case, these toposes are certainly equivalent when E is
locally connected. For a general E , a property that DU (E ) and GU (E ) both share is
the classification of torsors in E for discrete groups. However, the localic groupoids that
these toposes respectively classify are not in general discrete, so no conclusion about their
possible equivalence can be drawn from this observation alone.

4. The comprehensive V-factorization

We now review and update the V-comprehensive factorization theorem [9], modeled on
the pure, complete spread factorization in case of geometric morphisms with a locally
connected domain [7], and on the hyperpure, complete spread factorization of [8] for
geometric morphisms with a definable dominance domain.

The following is a generalization of the notion of a Lawvere distribution on a topos
[23].

4.1. Definition. A V–distribution on a topos E is an S -indexed functor µ : E //V
with an S -indexed right adjoint µ a µ∗. Denote by EV(E ) the category of V-distributions
on E .
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Let µ be a V-distribution on E ' Sh(C, J). Let M be the category in S with objects

(C,U) with U ∈ O(µ(C)), and morphisms (C,U) // (D,V ) given by C m // D in C such
that U ≤ µ(m)∗(V ). For U ∈ O(µ(C)), denote by U // // µ(C) the corresponding open
sublocale.

Let Z be the topos of sheaves for the topology on M generated by the following
families, which we call weak µ-covers: a family

{(C,Ua)
1C // (C,U) | a ∈A}

is a weak µ-cover if
∨
Ua = U in O(µ(C)). As usual there is a functor M // C that

induces a geometric morphism P(M) // P(C), and hence one Z // P(C).

4.2. Definition. Let µ be a V-distribution on E . The geometric morphism ϕ in the
topos pullback

E P(C)// //

X

E

ϕ

��

X Z// // Z

P(C)
��

is said to be the support of µ, denoted {µ}E . (A priori, this construction depends on a
site presentation of E .)

4.3. Proposition. Consider a topos E ' Sh(C, J). Suppose that F is a V-determined
topos and that ψ : F // E is a geometric morphism. Let µ = F!ψ

∗. As in Def. 4.2,
we may consider the category M, and the support ϕ : X // E associated with µ as in
Def 4.2. Then, X is V-determined.

4.4. Definition. A geometric morphism ϕ : X // E is said to be a V-fibration
if its domain F is a V-determined topos and furthermore ϕ equals the support of the
V-distribution µ = F!ψ

∗ .

The following is the analogue of the comprehensive factorization [22, 29, 7] in the
V-setting. It was established in [9].

4.5. Theorem. Any geometric morphism ψ : F // E with a V-determined domain
F admits a factorization

F

E
ψ ##G

GGGGGGGF X
η //X

E
ϕ{{wwwwwwww

(13)

into a first factor η that is V-initial followed by a V-fibration ϕ. This factorization, said
to be comprehensive, is unique up to equivalence.

In the rest of this section we obtain several new results about the factors in the V-
comprehensive factorization, needed in the rest of the paper.
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4.6. Lemma. Let π : F // E be a local homeomorphism. If E is V-determined then
also F is V-determined.

Proof. We observed (Remark 1.8) that since π is a local homeomorphism, the 2-cell α in
(4) is an isomorphism. Hence, a left adjoint F! to F ∗ ∼= (π∗ ·E∗) is given by the composite
(E! · π!). The BCC for etales holds for F! a F ∗ since it does for E! a E∗ and since π is in
particular locally connected, π! a π∗ is an E -indexed adjointness.

2

4.7. Proposition. The pullback of a V-initial geometric morphism along a local home-
omorphism is V-initial.

Proof. This is a straightforward diagram chase, using the fact that (4) is an isomorphism
when ψ is a local homeomorphism. 2

4.8. Lemma. Consider a triangle of geometric morphisms

X Z//
τ

//

F

X

η

��

F

Z

p

$$J
JJJJJJJJJJJJ

in which τ is an inclusion.

1. If p and τ are both V-initial, then so is η.

2. If p is V-initial and τ ∗Z∗ +3 X∗ is an isomorphism, then η is V-initial.

Proof. 1. Consider

τ∗X
∗ τ∗η∗F

∗+3

Z∗

τ∗X
∗
��

Z∗

τ∗η∗F
∗

 (I
IIIIIIII

IIIIIIIII

If p = τη is V-initial, then the hypotenuse is an isomorphism. If τ is V-initial, then the
vertical is an isomorphism. Therefore, the horizontal is an isomorphism, and therefore η
is V-initial since τ is an inclusion.

2. Applying τ ∗ to the isomorphism Z∗ ∼= p∗F
∗ ∼= τ∗η∗F

∗ gives the top horizontal in
the following diagram, which is an isomorphism.

X∗ η∗F
∗+3

τ ∗Z∗

X∗
��

τ ∗Z∗ τ ∗τ∗η∗F
∗+3 τ ∗τ∗η∗F
∗

η∗F
∗
��

The right vertical is the counit of τ ∗ a τ∗, which is an isomorphism since τ is an inclusion.
The left vertical is an isomorphism by assumption. We conclude the bottom horizontal is
an isomorphism, which says that η is V-initial. 2
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4.9. Proposition. Consider a commutative triangle

G Zη
//

X

G

ρ

��

X

Z

δ

$$J
JJJJJJJJJJJJ

where X , G , and Z are V-determined toposes. If ρ and η are V-initial, so is the
composite δ.

Proof. From Remark 1.8, we have the canonical isomorphisms X! · ρ∗ ∼= G! and G! · η∗ ∼=
Z!. It follows that

X! · δ∗ ∼= X! · (ρ∗ · η∗) ∼= (X! · ρ∗) · η∗ ∼= G! · η∗ ∼= Z!

and this is also given by a canonical (iso) 2-cell. Hence the result. 2

4.10. Proposition. Consider a bipullback in TopS , in which ψ : Y // E is a V-
fibration and ξ is a local homeomorphism:

F E
ξ //

X

F

ϕ

��

X Yπ // Y

E

ψ

��

Then ϕ is a V-fibration.

Proof. First factor the V-determined ϕ into its V-initial and V-fibration parts: ϕ ∼= τ ·ρ.
Then factor the V-determined ξ · τ into its V-initial and V-fibration parts.

We now have a diagram as follows.

F E
ξ

//

X

F

ϕ

��

X Yπ // Y

E

ψ

��

Z

  A
AA

AA
Z

>>

ζ}}
}}

}

W

τ~~}}
}}

}
W

ρ

  A
AA

AA

η //

There is such a ζ because ψ is a V-fibration and since η · ρ is the composite of two
V-initial hence a V-initial (by Proposition 4.9).

Since the outer square is a pullback, there is W θ //X such that π · θ ∼= ζ · η and
ϕ · θ ∼= τ . The universal property of the pullback implies that θ · ρ ∼= idX . Hence,
ρ · θ · ρ ∼= ρ. Therefore, the two geometric morphisms ρ · θ and idW from the V-fibration
τ to itself agree when precomposed with the V-initial ρ. They must therefore agree:
ρ · θ ∼= idW . We have shown that ρ is an equivalence, so that ϕ is a V-fibration. 2
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We have already considered the transpose α̂ : F ∗ +3 ρ∗G
∗ of α : ρ∗F ∗ +3 G∗ under

ρ∗ a ρ∗.

ρ∗ρ
∗F ∗ ρ∗G

∗
ρ∗α
+3

F ∗

ρ∗ρ
∗F ∗

ηF ∗

��

F ∗

ρ∗G
∗

α̂

 (I
IIIIIIII

IIIIIIIII

Recall that ageometric morphism G
ρ //F is V-initial if α̂ is an isomorphism .

4.11. Definition. A geometric morphism G
ρ //F is such that its direct image part

ρ∗ preserves V-coproducts if ηF ∗ is an isomorphism.

4.12. Proposition. Assume that the 2-cell α of (4) is an isomorphism. Then, the
following are equivalent:

1. ρ is V-initial.

2. ρ∗ preserves V-coproducts.

Proof.
Consider

ρ∗ρ
∗E∗ ρ∗F

∗+3

E∗

ρ∗ρ
∗E∗
��

E∗

ρ∗F
∗

 (I
IIIIIIII

IIIIIIIII

where the bottom 2-cell is ρ∗(α), hence an isomorphism by assumption. Then, the vertical
2-cell ηE∗ is an isomorphism iff the hypothenuse α̂ is an isomorphism. 2

5. Branched V-coverings

The following ‘pullback lemma’ follows an argument similar to that employed in [13]
(Proposition 8.2), shown therein in the locally connected case.

5.1. Lemma. Let E /S // // E be a local homeomorphism which is also a V-initial subto-
pos, where E is V-determined. Let ψ : E /T // E /S be induced by a morphism
p : T // S in E . Assume that ψ is a V-fibration. Then the associated V-fibration ϕ
of i · ψ (exists and) forms a topos pullback square.

E /S E//
i
//

E /T

E /S

ψ

��

E /T Y
ρ // Y

E

ϕ

��

Consequently, the V-initial factor ρ is an inclusion.
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Proof.
We claim that in the diagram below, where the bottom square is a bipullback, the

induced geometric morphism τ is an equivalence.

E /S E//
i

//

G

E /S

ζ

��

G Y//
j

// Y

E

ϕ

��

E /T

Y

ρ

))RRRRRRRRRRRRRRRRRRRRRE /T

G

τ
??

??

��?
??

?

E /T

E /S

ψ

��-
--

--
--

--
--

--
--

--
--

-

First, observe that, since E is V-determined, so is the slice topos E /T , by Lemma 4.6.
Hence the comprehensive V-factorization of the composite

E /T
ψ // E /S i // E

exists as indicated, with ρ a V-initial geometric morphism, and ϕ a V-fibration.
That τ is a V-fibration follows from the equation ψ ∼= ζ · τ and the facts that ψ

is a V-fibration by assumption, and that ζ is a V-fibration as it is obtained from the
V-fibration ϕ by pullback along a local homeomorphism geometric morphism. For this,
quote Proposition 4.10.

That τ is V-initial follows from the fact that j · τ ∼= ρ, ρ V-initial, and j an inclusion,
using Lemma 4.8. Therefore, τ is both V-initial and a V-fibration hence an equivalence.
This completes the proof. 2

5.2. Definition. Let E be a V-determined topos. An object A of E is said to be a
locally V-trivial object split by a cover U = 〈U // // 1, X, η : U // E∗X〉 if A is part of a
3-tuple 〈A,α, θ〉 where α is an etale morphism Y // X in E , with X ∈ V and Y ∈ V,
and θ is an isomorphism

E∗Y ×E∗X U
θ // A× U

over U . We call the corresponding geometric morphism E /A // E a locally V-trivial
covering split by U .

A morphism 〈A,α, θ〉 // 〈B, β, κ〉 between locally V-trivial objects split by U =
〈U // // 1, X, η : U // E∗X〉 is given by a pair (f , γ) with f : A // B a morphism in E
and γ : Y // Z a morphism in Loc over X, such that

E∗Y ×E∗X U
θ //

E∗γ×U
��

A× U

f×U
��

E∗Z ×E∗X U κ
// B × U

commutes.
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5.3. Remark. The analogue of Proposition 3.3 holds for locally V-trivial objects in
a V-determined topos. Moreover, in this case, the proof is entirely analogous to the
corresponding one in [11] for locally constant objects. This is so on account of the BCC
holding for etale maps Y // X where both X and Y are in V.

Denote by ZV(E )(U) the category of locally V-trivial objects of E split by U =
〈U // // 1, η : U // E∗E!U〉 and their morphisms.

5.4. Remark. There is an inclusion

ZV(E )(U) ⊆ CV(E )(U).

It follows from Example 1.13 that this inclusion is in general proper. For instance, not
every Z-covering projection is locally Z-trivial. On the other hand, every D-covering
projection is locally D-trivial (or locally constant).

5.5. Definition. A geometric morphism ψ : W // E of a V-determined topos E is
said to be an unramified V-covering if it is both a local homeomorphism and a V-fibration.

5.6. Proposition. A locally V-trivial covering is an unramified V-covering.

Proof. Let 〈A,α, θ〉 be a locally V-trivial object of a V-determined topos E , trivialized
by U // // 1, in the sense of Definition 3.1. Recall that α : Y // X, η : U // E∗U , and
that

E∗Y ×E∗X U
θ // A× U

is an isomorphism over U .
For any etale morphism p : Y // X and corresponding geometric morphism

Sh(Y ) // Sh(X), with X in V, we have that for each open inclusion pa : Wa
� � // X,

where lim{Wa} ∼= Y , there is induced an unramified V-covering Sh(Wa) ∼=
Sh(X)/(pa) // Sh(X). For the local homeomorphism Sh(Y ) // Sh(X) to be a V-
fibration, hence an unramified V-covering, we must have that Y ∈ V, by Proposi-
tion 3.3. 2

5.7. Remark. A V-covering projection of E is not necessarily an unramified V-covering.
This follows from the observation, already employed in the proof of Proposition 5.6, that
for a local homeomorphism that Sh(Y ) // Sh(X) to be a V-fibration, hence an unramified
V-covering, we must have, by Proposition 3.3, that Y ∈ V. By Example 1.15 this need
not be the case, for instance for V = Z.

5.8. Definition. Let E be a V-determined topos. A branched V-covering of E (with
‘non-singular part’ i : E /S/ // // E ) is given by the following data:

(i) A V-fibration ψ : F // E .

(ii) A V-initial inclusion i : E /S // // E .

(iii) An locally trivial V-covering ϕ : E /T // E /S induced by a morphism p : T // S.
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(iv) A V-initial geometric morphism π : E /T //F for which the square

E /S E//
i
//

E /T

E /S

ϕ

��

E /T Fπ //F

E

ψ

��
(14)

commutes.

5.9. Corollary. The square (14) is a pullback.

Proof. This is a consequence of Lemma 5.1 and Proposition 5.6. 2

In view of Remark 5.4, Proposition 5.6, and Corollary 5.9, the definition we have given
of a branched V-covering not only generalizes that of [7] in the locally connected case,
but it is also the only possible such. An alternative is to require directly unramified V-
coverings in both the discrete and the general V-case, but unless special assumptions are
made on E (locally paths simply connected) there is no connection with the fundamental
groupoid.

Let E be a V-determined topos in TopS . Denote by BV,S(E ) the full sub 2-category
of TopS whose objects are the branched V-coverings of E with non-singular part i :
E /S // // E .

5.10. Theorem. The category BV,S(E ) is canonically equivalent to the category
ZV(E /S).

Proof. We pass from a branched V-covering ψ of E as given in Definition 5.8 to a locally
V-trivial covering of E /S by pullback.

Conversely, we pass from a locally V-trivial covering ϕ of E /S to a branched covering
of E with non-singular part i : E /S // // E by the comprehensive V-factorization of the
composite

X
ϕ // E /S // // E .

By Lemma 5.9, the square

E /S E//
i
//

X

E /S

ϕ

��

X Y
ρ // Y

E

ψ

��
(15)

is a pullback so that the V-initial ρ is an inclusion. The passages indicated give an
equivalence of categories.

2
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5.11. Corollary. Let E be a V-determined topos. Then, for each cover U in E , there
is an inclusion

BV,S(E )(U) ⊆ CV(E /S)(U).

This inclusion is in general proper.

5.12. Remark. In the locally connected case, the results above reduce to the known
ones [7]. Moreover, If V is the category D, of discrete locales, then there is an equiva-
lence BV,S(E )(U) ∼= CV(E /S)(U) so that the branched fundamental groupoid topos with
respect to a given ‘non-singular part’ i : E /S // // E may be identified with the fundamen-

tal groupoid topos Π
(c)
1 (E /S) = lim{GU(E /S) | U ∈ Cov(E )}, for the pushout toposes

GU(E /S).

We may always consider the largest topology in any Grothendieck topos E for which
certain objects of the topos are sheaves [27]. A monomorphism m : A // // B is dense for
this largest topology iff B∗A // B∗Am (transpose of the projection) is an isomorphism.

We apply this idea, as in [7], to the class of objects of the form E∗X for X ∈ V.
Clearly, a monomorphism m : S // // T in E is dense for such a topology iff the induced
geometric morphism σ : E /S // E /T is such that σ∗ preserves V-coproducts. Let us
call this the V-topology. Consider the topos of sheaves for the V-topology on E , with
inclusion i : EV

// // E .

5.13. Theorem. EV is the smallest subtopos of E whose inclusion preserves V-
coproducts.

Proof.
The unit E∗(ΩS ) // i∗i

∗E∗(ΩS ) for the inclusion i : EV
// // E is an isomorphism

because E∗(ΩS ) is a V-initial-sheaf. But this says that i∗ preserves V-coproducts.
We now show that it is the smallest such subtopos. Let Shj(E ) // // E be an inclusion

for which j∗ preserves V-coproducts. Every E∗(ΩS ) is a j-sheaf. Hence, every j-dense
monomorphism is dense for the V-topology. Therefore, EV is included in Shj(E ). 2

Since for each local homeomorphism i : E /S � � // E is V-initial iff i∗ preserves V-
coproducts, EV

� � // E factors through every V-initial local homeomorphism i : E /S � � // E .
However, EV

� � // E itself can ‘never’ be a local homeomorphism.
It follows that the smallest V-initial subtopos of E does not exist in general and that

therefore the intrinsic characterization of branched coverings [7] does not hold in general
either. In particular, the ‘ideal knot’ does not exist in the general case. We conclude that
the locally connected assumption leads to miracles which we cannot expect without it.
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[26] Robert Paré and Dietmar Schumacher. Abstract families and the adjoint functor
theorem. Indexed categories and their applications, Lecture Notes in Mathematics
661: 1–125, Springer, 1978.
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