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ON A CONJECTURE BY J.H.SMITH

GEORGE RAPTIS

Abstract. We show that the class of weak equivalences of a combinatorial model
category can be detected by an accessible functor into simplicial sets.

The purpose of this short note is to prove the following result that was conjectured by
J.H. Smith in [[2],p. 460].

0.1. Theorem. For every combinatorial model categoryM, there is an accessible func-
tor F :M→ SSet that detects the weak equivalences, i.e., a morphism f in M is a weak
equivalence if and only if F (f) is a weak homotopy equivalence.

Proof. By [[3], Theorem 1.1], there is a small category C, a set of morphisms S in
SSetC and a Quillen equivalence F : LSSSetC � M : G, where LSSSetC denotes the
left Bousfield localisation of SSetC with the projective model structure at the set of
morphisms S (see [4]). By [[3], Proposition 7.1], there is a fibrant replacement functor
R :M→M that is accessible. Let u : ObC → C denote the inclusion of the objects of
C (as a discrete category) into C. Then let F :M→ SSet be the following composition
of functors

M R→M G→ SSetC u∗→ SSetObC
∏
→ SSet.

F is accessible because it is a composition of accessible functors. The functors G, u∗ and∏
are accessible because they are right adjoints between locally presentable categories

(see [[1], 1.66]). Since G is a right Quillen equivalence, a morphism f in M is a weak
equivalence if and only if GR(f) is a weak equivalence in LSSSetC . The functor GR maps
into the category of fibrant (or S-local) objects, therefore GR(f) is a weak equivalence
in LSSSetC (i.e. S-local equivalence) if and only if it is a weak equivalence in SSetC ,
i.e., a pointwise weak equivalence (see [[4], Theorem 3.2.13]). The morphism GR(f) is
a pointwise weak equivalence if and only if u∗GR(f) is a pointwise weak equivalence in
SSetObC . By the combinatorial definition of homotopy groups, the product functor

∏
detects the pointwise weak equivalences between pointwise fibrant objects. Since u∗GR
takes values in pointwise fibrant objects, it follows that F detects the weak equivalences.

As an immediate corollary, we have that the class of weak equivalences of a combina-
torial model category is accessible and accessibly embedded. This was proved by different
methods in [[5], Corollary A.2.6.6] and [[6], Theorem 4.1].
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0.2. Corollary. The class of weak equivalences W of a combinatorial model category
M is accessible and accessibly embedded in M→.

Proof. By the previous theorem, there is an accessible functor F : M → SSet that
detects the class of weak equivalencesW . The full inverse image of an accessible, accessibly
embedded subcategory of an accessible category by an accessible functor is again accessible
and accessibly embedded [[1], Remark 2.50]. Hence the corollary follows, because the class
of weak homotopy equivalences in SSet is known to be accessible and accessibly embedded
in SSet→ by [[2], Example 3.1]. As pointed out by the referee, there is an alternative
way to see this as follows. A map f : X → Y between Kan-fibrant simplicial sets is a
weak homotopy equivalence if and only if (i) π0(f) is a bijection of sets, and (ii) for every
n > 0, there is a pullback square

πn(X)

��

// πn(Y )

��
X0

// Y0

where πn : SSet→ Set→ is the functor that takes a simplicial set X to the bundle of n-th
(combinatorial) homotopy groups, viewed as a set that is indexed by the set of vertices:

πn(X) =
⊔

x∈X0

πn(X, x)→ X0.

The functor π0 and the functors πn, for n > 0, are accessible. The category of pullback
squares of sets and natural transformations is accessible and it is accessibly embedded
in the category of squares of sets because directed colimits commute with finite limits in
Set. Also, Kan’s fibrant replacement functor Ex∞ : SSet→ SSet is accessible. Thus the
full subcategory of weak homotopy equivalences in SSet→ is the intersection of the full
inverse images of accessible, accessibly embedded subcategories of accessible categories by
a set of accessible functors, and the result follows by [[1], Corollary 2.37] and [[1], Remark
2.50] as before.
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Richard Blute, Université d’ Ottawa: rblute@uottawa.ca
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