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ON REFLECTIVE-COREFLECTIVE EQUIVALENCE AND
ASSOCIATED PAIRS

ERIK BÉDOS, S. KALISZEWSKI, AND JOHN QUIGG

Abstract. We show that a reflective/coreflective pair of full subcategories satisfies a
“maximal-normal”-type equivalence if and only if it is an associated pair in the sense of
Kelly and Lawvere.

1. Introduction

In a recent paper [1] we explored a special type of category equivalence between reflec-
tive/coreflective pairs of subcategories that we first encountered in the context of crossed-
product duality for C∗-algebras. Because our main example of this phenomenon involved
categories of maximal and normal C∗-coactions of locally compact groups, we called it a
“maximal-normal”-type equivalence.

Since then, F.W. Lawvere has drawn our attention to [3], where G.M. Kelly and he
introduced the concept of associated pairs of subcategories. The purpose of this short note
is to show that these two notions of equivalence are the same: a reflective/coreflective pair
of full subcategories satisfies the “maximal-normal”-type equivalence considered in [1] if
and only if it is an associated pair in the sense of [3].

As operator algebraists, we had hoped with [1] to initiate a cross-fertilization between
operator algebras and category theory, and we are grateful to Ross Street for the role he
has played in helping this happen. Our understanding of the operator-algebraic examples
has certainly been deepened by this connection; ideally, the techniques and examples of
“maximal-normal”-type equivalence will in turn provide a way of looking at associated
pairs that will also be useful to category theorists.

2. Maximal-normal equivalences and associated pairs

Our conventions regarding category theory follow [4]; see also [1]. Throughout this note,
we let M and N denote full subcategories of a category C, with N reflective and M
coreflective. The inclusion functors I : M → C and J : N → C are then both full and
faithful. We also use the following notation:

• N : C → N is a reflector and θ : 1C → JN denotes the unit of the adjunction N ⊣ J ;
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• M : C → M is a coreflector and ψ : IM → 1C denotes the counit of the adjunction
I ⊣M .

In [1, Corollary 4.4] we showed that the adjunction NI ⊣ MJ is an adjoint equivalence
between M and N if and only if

(I) for each y ∈ ObjN , (y, ψy) is an initial object in the comma category My ↓ N ; and

(F) for each x ∈ ObjM, (x, θx) is a final object in the comma category M ↓ Nx.

In all our examples in [1], the adjoint equivalence NI ⊣ MJ between M and N
was what we called the “maximal-normal” type (recall that this terminology was moti-
vated by the particular example of maximal and normal coactions on C∗-algebras; see [1,
Corollary 6.16]): in addition to (I) and (F), such an adjunction satisfies

(A) for each z ∈ Obj C, (Nz, θz ◦ ψz) is an initial object in Mz ↓ N .

Equivalently, by [1, Theorem 3.4], (I) and (F) hold, and

(B) for each z ∈ Obj C, (Mz, θz ◦ ψz) is a final object in M ↓ Nz.

In fact, conditions (A) and (B) alone suffice:

2.1. Proposition. The adjunction NI ⊣MJ between M and N is a “maximal-normal”
adjoint equivalence if and only if (A) and (B) hold.

Proof. By [1, Theorem 4.3], (I) is equivalent to

(I′) for each y ∈ ObjN , Nψy : NMy → Ny is an isomorphism,

while (F) is equivalent to

(F′) for each x ∈ ObjM, Mθx :Mx→MNx is an isomorphism.

On the other hand, by [1, Theorem 3.4], (A) is equivalent to

(A′) for each z ∈ Obj C, Nψz is an isomorphism,

while (B) is equivalent to

(B′) for each z ∈ Obj C, Mθz is an isomorphism.

Now clearly, (A′) implies (I′) and (B′) implies (F′), so (A) implies (I) and (B) implies (F).
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We now recall from [2, 3] that a morphism f in C(x, y) and an object z of C are said
to be orthogonal when the map Φf,z from C(y, z) into C(x, z) given by Φf,z(g) = g ◦ f is a
bijection. The collection of all morphisms in C that are orthogonal to every object of N
is denoted by N⊥.

As shown in [3, Proposition 2.1], a morphism f : x → y in C belongs to N⊥ if and
only if f is inverted by N , that is, Nf is an isomorphism. (The standing assumption
in [3] that N is replete is not necessary for this fact to be true. To see this, note that
Nf is an isomorphism if and only if the map Ψf,z from N (Ny, z) into N (Nx, z) given
by Ψf,z(h) = h ◦Nf is a bijection for each object z of N . For each such z, the universal
properties of θ imply that the map τw,z fromN (Nw, z) into C(w, z) given by τw,z(g) = g◦θw
is a bijection for each object w of C. Now, as θy ◦ f = Nf ◦ θx, the diagram

N (Ny, z)
Ψf,z //

τy,z

��

N (Nx, z)

τx,z

��
C(y, z)

Φf,z

// C(x, z)

is readily seen to commute. It follows that Ψf,z is a bijection if and only if Φf,z is a
bijection. This shows that Nf is an isomorphism if and only if f is orthogonal to z for
each object z of N , i.e., if and only if f belongs to N⊥.)

Similarly, a morphism f in C(x, y) and an object z in C are co-orthogonal when the
map g → f ◦ g from C(z, x) into C(z, y) is a bijection. The collection of all morphisms
in C that are co-orthogonal to every object in M is denoted by M⊤. Equivalently, a
morphism f : x→ y in C belongs to M⊤ if and only if f is inverted by M , that is, if and
only if Mf is an isomorphism.

The pair (N ,M) is called an associated pair if N⊥ = M⊤; equivalently, if for every
morphism f in C, N inverts f if and only if M does. We refer to [3, Section 2] for more
information concerning this concept (in the case where both M and N are also assumed
to be replete).

2.2. Theorem. The adjunction NI ⊣MJ is a “maximal-normal” adjoint equivalence if
and only if (N ,M) is an associated pair.

Proof. First assume that (N ,M) is an associated pair, and let x be an object in C. As
pointed out above, the map τx,z is a bijection from N (Nx, z) into C(x, z) for each object
z of N . But Φθx,z = τx,z, so this means that θx lies in N⊥, and therefore in M⊤. As
M⊤ consists of the morphisms in C that are inverted by M , we deduce that Mθx is an
isomorphism. This shows that (B′) holds, and therefore that (B) holds. The argument
that (A) holds is similar, so NI ⊣ MJ is a “maximal-normal” adjoint equivalence by
Proposition 2.1.

Now assume that the adjunctionNI ⊣MJ is a “maximal-normal” adjoint equivalence.
Then N ∼= NIM by [1, Proposition 5.3], and NI is an equivalence. So for any morphism f
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of C, we have

Nf is an isomorphism ⇔ NIMf is an isomorphism

⇔Mf is an isomorphism.

Thus (N ,M) is an associated pair.

2.3. Remark. In the examples presented in [1, Section 6], the adjunctions NI ⊣ MJ
are “maximal-normal” adjoint equivalences, so all the pairs (N ,M) there are associated
pairs. Moreover, all these pairs consist of subcategories that are easily seen to be replete.
It follows from [3, Theorem 2.4] that M and N are uniquely determined as subcategories
by each other, a fact that is not a priori obvious in any of the examples.
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