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CONGRUENCES OF MORITA EQUIVALENT SMALL CATEGORIES

VALDIS LAAN

Abstract. Two categories are called Morita equivalent if the categories of functors
from these categories to the category of sets are equivalent. We prove that congruence
lattices of Morita equivalent small categories are isomorphic.

1. Preliminaries

Categories A and B are called Morita equivalent if the functor categories Fun(A, Set)
and Fun(B, Set) are equivalent. The basic theory of Morita equivalent categories has
been developed already in 1960s ([Artin, Grothendieck and Verdier, 1972]). One natural
question to ask in Morita theory is that which properties are shared by Morita equivalent
structures. For example, it is well known (see Proposition 21.11 in [Anderson and Fuller,
1974]) that ideal lattices of Morita equivalent rings are isomorphic. We shall prove an
analogue of this result: Morita equivalent small categories have isomorphic congruence
lattices. Although this result can be proved easily by topos-theoretic methods, we give
an elementary proof using Cauchy completions.

In [Elkins and Zilber, 1976], a construction of a Cauchy completion A of a small
category A is given as follows:

• objects of A are idempotents e : A → A of A (i.e. endomorphisms with e2 = e);

• morphism sets are

A(e, e′) = {(e′, a, e) | a ∈ A(A,A′), e′ae = a},

where e : A → A and e′ : A′ → A′;

• composition is given by

(e′′, b, e′)(e′, a, e) = (e′′, ba, e).

The following result is well known.
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1.1. Theorem. Two small categories are Morita equivalent if and only if their Cauchy
completions are equivalent.

We write A0 (A1) for the class of objects (morphisms) of a category A.

1.2. Definition. [See [Mac Lane, 1998], p. 52]A congruence on a category A is a
family ρ = (ρA,B)(A,B)∈A2

0
of equivalence relations ρA,B on morphism sets A(A,B) that

are compatible with the composition of morphisms.

If ρ is a congruence on a category A then one can form a quotient category A/ρ,
where (A/ρ)0 = A0, (A/ρ) (A,B) = A(A,B)/ρA,B and [g][f ] = [gf ] for every f ∈
A(A,B), g ∈ A(B,C).

We say that a congruence ρ is contained in a congruence σ (and denote ρ ⊆ σ) if
ρA,B ⊆ σA,B for all A,B ∈ A0. This is obviously an order relation, and it is not difficult
to see that the set Con(A) of congruences on a small category A is a lattice.

2. Congruence lattices of equivalent small categories

2.1. Proposition. If A and B are equivalent small categories then there is an isomor-
phism Γ : Con(A) → Con(B) between their congruence lattices. Moreover, if ρ ∈ Con(A)
then A/ρ is equivalent to B/Γ(ρ).

Proof. Let A
F //oo
G

B be equivalence functors and let η : 1A ⇒ GF , ε : FG ⇒ 1B be

natural isomorphisms. We define mappings Con(A)
Γ //oo
∆

Con(B) by

Γ(ρ)B,B′ :=
{(

εB′F (f)ε−1
B , εB′F (g)ε−1

B

)
| (f, g) ∈ ρG(B),G(B′)

}
,

∆(σ)A,A′ :=
{(

η−1
A′ G(k)ηA, η

−1
A′ G(l)ηA

)
| (k, l) ∈ σF (A),F (A′)

}
,

ρ ∈ Con(A), σ ∈ Con(B), A,A′ ∈ A0, B,B′ ∈ B0. It is easy to see that Γ(ρ)B,B′ is
an equivalence relation. To prove its compatibility, take (f, g) ∈ ρG(B),G(B′) and b ∈
B(B′, B′′). Then ε−1

B′′bεB′ = F (a) for some a : G(B′) → G(B′′) and (af, ag) ∈ ρG(B),G(B′′).
Consequently,(

bεB′F (f)ε−1
B , bεB′F (g)ε−1

B

)
=

(
εB′′ε−1

B′′bεB′F (f)ε−1
B , εB′′ε−1

B′′bεB′F (g)ε−1
B

)
=

(
εB′′F (af)ε−1

B , εB′′F (ag)ε−1
B

)
∈ Γ(ρ)B,B′′ .

(FG)(B) (FG)(B′)
F (f) //

(FG)(B) (FG)(B′)
F (g)

// (FG)(B′) (FG)(B′′)
F (a)

//

B

(FG)(B)

ε−1
B

��

B′

(FG)(B′)

OO

εB′

B′′

(FG)(B′′)

ε−1
B′′

��

B′ B′′b //
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Hence Γ(ρ) (and similarly ∆(σ)) is a congruence. Clearly the mappings Γ and ∆ preserve
order. Note that

ρ(GF )(A),(GF )(A′) =
{(

ηA′uη−1
A , ηA′vη−1

A

)
| (u, v) ∈ ρA,A′

}
for every A,A′ ∈ A0. Using this and properties of equivalence functors we obtain

(∆Γ)(ρ)A,A′ = ∆(Γ(ρ))A,A′

=
{(

η−1
A′ G (k) ηA, η

−1
A′ G (l) ηA

)
| (k, l) ∈ Γ(ρ)F (A),F (A′)

}
=

{(
η−1
A′ G

(
εF (A′)F (f)ε−1

F (A)

)
ηA, η

−1
A′ G

(
εF (A′)F (g)ε−1

F (A)

)
ηA

)
|(f, g) ∈ ρ(GF )(A),(GF )(A′)

}
=

{(
η−1
A′ G

(
εF (A′)F (ηA′uη−1

A )ε−1
F (A)

)
ηA, η

−1
A′ G

(
εF (A′)F (ηA′vη−1

A )ε−1
F (A)

)
ηA

)
|(u, v)∈ρA,A′

}
=

{(
η−1
A′ (GF )(u)ηA, η

−1
A′ (GF )(v)ηA

)
| (u, v) ∈ ρA,A′

}
=

{(
η−1
A′ ηA′u, η−1

A′ ηA′v
)
| (u, v) ∈ ρA,A′

}
= ρA,A′ .

Hence ∆Γ = 1Con(A) and, analogously, Γ∆ = 1Con(B).

To prove the second assertion, take ρ ∈ Con(A), denote σ := Γ(ρ) and define a functor
Fρ : A/ρ → B/Γ(ρ) by

Fρ(A) := F (A),

Fρ

(
[f ]ρA,A′

)
:= [F (f)]σF (A),F (A′) ,

A,A′ ∈ A0, f ∈ A(A,A′). First we show that, for every f, g ∈ A(A,A′),(
ηA′fη−1

A , ηA′gη−1
A

)
∈ ρ(GF )(A),(GF )(A′) ⇐⇒(

εF (A′)F
(
ηA′fη−1

A

)
ε−1
F (A), εF (A′)F

(
ηA′gη−1

A

)
ε−1
F (A)

)
∈ σF (A),F (A′).

Suppose that the last holds. Then(
εF (A′)F

(
ηA′fη−1

A

)
ε−1
F (A), εF (A′)F

(
ηA′gη−1

A

)
ε−1
F (A)

)
=
(
εF (A′)F (f ′) ε−1

F (A), εF (A′)F (g′) ε−1
F (A)

)
for some (f ′, g′) ∈ ρ(GF )(A),(GF )(A′). This implies F

(
ηA′fη−1

A

)
= F (f ′), F

(
ηA′gη−1

A

)
=

F (g′), and hence
(
ηA′fη−1

A , ηA′gη−1
A

)
= (f ′, g′) ∈ ρ(GF )(A),(GF )(A′). The converse is obvious.

Using the proved fact together with

(f, g) ∈ ρA,A′ ⇐⇒
(
ηA′fη−1

A , ηA′gη−1
A

)
∈ ρ(GF )(A),(GF )(A′)

and (
εF (A′)F

(
ηA′fη−1

A

)
ε−1
F (A), εF (A′)F

(
ηA′gη−1

A

)
ε−1
F (A)

)
= (F (f), F (g))

we conclude that
(f, g) ∈ ρA,A′ ⇐⇒ (F (f), F (g)) ∈ σF (A),F (A′).
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Thus Fρ is well defined and faithful. It clearly is dense. To prove that Fρ is full, take a
morphism k ∈ B(F (A), F (A′)). Then

Fρ

([
η−1
A′ G(k)ηA

]
ρA,A′

)
=

[
F (η−1

A′ )(FG)(k)F (ηA)
]
ρA,A′

=
[
F (ηA′)−1(FG)(k)ε−1

F (A)

]
ρA,A′

=
[
εF (A′)ε

−1
F (A′)k

]
ρA,A′

= [k]ρA,A′ .

3. Congruence lattices of Morita equivalent small categories

Our main result is the following.

3.1. Theorem. If A and B are Morita equivalent small categories then there is an
isomorphism Π : Con(A) → Con(B) between their congruence lattices. Moreover, if
ρ ∈ Con(A) then A/ρ is Morita equivalent to B/Π(ρ).

It follows from Theorem 1.1, Proposition 2.1 and the next proposition.

3.2. Proposition. If A is a small category then there is an isomorphism Π : Con(A) →
Con(A) between congruence lattices. Moreover, if ρ ∈ Con(A) then A/ρ is Morita equiv-
alent to A/Π(ρ).

Proof. Let E be the set of idempotents of A. Define a mapping Π : Con(A) → Con(A)
by

Π(ρ)e,e′ := {((e′, e′se, e), (e′, e′te, e)) | (s, t) ∈ ρA,A′} ,

where ρ ∈ Con(A), e, e′ ∈ E, e : A → A and e′ : A′ → A′. It is not difficult to
see that Π(ρ)e,e′ is a reflexive and symmetric relation on A(e, e′). To prove transitivity
of Π(ρ)e,e′ , take (p, q), (q, r) ∈ Π(ρ)e,e′ . Then there exist (s, t), (u, v) ∈ ρA,A′ such that
(p, q) = ((e′, e′se, e), (e′, e′te, e)) and (q, r) = ((e′, e′ue, e), (e′, e′ve, e)), in particular e′te =
e′ue. Since ρ is a congruence, we have e′se ρA,A′ e′te = e′ue ρA,A′ e′ve, and hence
(e′se, e′ve) ∈ ρA,A′ . Consequently,

(p, r) = ((e′, e′se, e), (e′, e′ve, e)) = ((e′, e′(e′se)e, e), (e′, e′(e′ve)e, e)) ∈ Π(ρ)e,e′ .

If (s, t) ∈ ρA,A′ and (e′′, a, e′) : e′ → e′′ in A, where e′′ : A′′ → A′′, then a : A′ → A′′ in A,
hence (as, at) ∈ ρA,A′′ and

((e′′, a, e′)(e′, e′se, e), (e′′, a, e′)(e′, e′te, e)) = ((e′′, ae′se, e), (e′′, ae′te, e))

= ((e′′, e′′ase, e), (e′′, e′′ate, e)) ∈ Π(ρ)e,e′′ .

Similarly Π(ρ) is compatible with precomposition and thus Π(ρ) ∈ Con(A).
We also define a mapping Ω : Con(A) → Con(A) by

Ω(τ)A,B := {(a, b) | ((1B, a, 1A), (1B, b, 1A)) ∈ τ1A,1B} ,
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where τ ∈ Con(A), A,B ∈ A0. Clearly Ω(τ)A,B is an equivalence relation. Let us show
that Ω(τ) is compatible with precomposition. Take (a, b) ∈ Ω(τ)A,B and c ∈ A(C,A).
Note that

((1B, ac, 1C), (1B, bc, 1C)) = ((1B, a, 1A)(1A, c, 1C), (1B, b, 1A)(1A, c, 1C)) ∈ τ1C ,1B ,

because τ ∈ Con(A). Consequently, (ac, bc) ∈ Ω(τ)C,B. The proof that Ω(τ) is compatible
with postcomposition is symmetric. Hence Ω(τ) = (Ω(τ)A,B)(A,B)∈A2

0
∈ Con(A).

Clearly Π and Ω preserve order.
Now, for ρ ∈ Con(A) and A,B ∈ A,

(ΩΠ)(ρ)A,B = Ω(Π(ρ))A,B = {(a, b) | ((1B, a, 1A), (1B, b, 1A)) ∈ Π(ρ)1A,1B}
= {(a, b) | (a, b) ∈ ρA,B} = ρA,B.

On the other hand, if τ ∈ Con(A) and e, e′ ∈ E, e : A → A, e′ : A′ → A′, then

(ΠΩ)(τ)e,e′ = Π(Ω(τ))e,e′ = {((e′, e′se, e), (e′, e′te, e)) | (s, t) ∈ Ω(τ)A,A′} .

Let us prove the inclusion (ΠΩ)(τ)e,e′ ⊆ τe,e′ . Note that (s, t) ∈ Ω(τ)A,A′ if and only
if ((1A′ , s, 1A), (1A′ , t, 1A)) ∈ τ1A,1A′ . Composing with (e′, e′, 1A′) and (1A, e, e) we obtain
((e′, e′se, e), (e′, e′te, e)) ∈ τe,e′ .

To prove the converse, let ((e′, u, e), (e′, v, e)) ∈ τe,e′ . Then ((1A′ , u, 1A), (1A′ , v, 1A)) ∈
τ1A,1A′ implies (u, v) ∈ Ω(τ)A,A′ . Thus ((e′, u, e), (e′, v, e)) = ((e′, e′ue, e), (e′, e′ve, e)) ∈
(ΠΩ)(τ)e,e′ , and we have proven the equality (ΠΩ)(τ) = τ .

Let us now prove the second assertion. We denote Ã := A/ρ, Ã := A/Π(ρ) and

τ := Π(ρ). Thus Ã(A,B) = A(A,B)/ρA,B and Ã(e, e′) = A(e, e′)/τe,e′ , A,B ∈ A0,
e, e′ ∈ E.

We shall show that the Cauchy completions Ã and Ã (constructed as in Section 1)
are equivalent.

Observe that the the objects of Ã are the idempotents of Ã, that is, the equivalence
classes of endomorphisms e : A → A in A such that e2 ρA,A e. The morphism sets are

Ã([e]ρA,A
, [e′]ρA′,A′ ) = {([e′]ρA′,A′ , [a]ρA,A′ , [e]ρA,A

) | e, e′, a ∈ A1, e
2 ρ e, (e′)2 ρ e′, e′ae ρ a}.

The objects of Ã are the idempotents of A and the morphisms are the equivalence classes
[e′, a, e]τe,e′ of morphisms (e′, a, e) in A, where e2 = e, (e′)2 = e′ and e′ae = a in A. Hence

the idempotents of Ã (i.e. the objects of Ã) are the classes [e, a, e]τe,e such that e2 = e,

eae = a in A and (e, a2, e) τe,e (e, a, e). If [e, a, e]τe,e and [e′, a′, e′]τe′,e′ are two objects of Ã

then the morphism set Ã
(
[e, a, e]τe,e , [e

′, a′, e′]τe′,e′

)
is{(

[e′, a′, e′]τe′,e′ , [e
′, x, e]τe,e′ , [e, a, e]τe,e

)
| x ∈ A1, e

′xe = x, (e′, a′xa, e) τe,e′ (e
′, x, e)

}
.



336 VALDIS LAAN

Note that if e : A → A and e′ : A′ → A′ in A then

(e′, u, e) τe,e′ (e
′, v, e) =⇒ u ρA,A′ v. (1)

Indeed, (e′, u, e) τe,e′ (e
′, v, e) if and only if there exists (s, t) ∈ ρA,A′ such that e′se = u

and e′te = v. Due to compatibility, also (u, v) = (e′se, e′te) ∈ ρA,A′ .

Define a functor F : Ã → Ã by the assignment

[e′, a′, e′]τe′,e′ [a′]ρA′,A′
� //

[e, a, e]τe,e

[e′, a′, e′]τe′,e′

([e′,a′,e′]τ ,[e′,x,e]τ ,[e,a,e]τ )

��

[e, a, e]τe,e [a]ρA,A

� // [a]ρA,A

[a′]ρA′,A′

([a′]ρ,[x]ρ,[a]ρ)

��

where e : A → A and e′ : A′ → A′ in A. If [e, a, e]τe,e is an object of the category

Ã then (e, a2, e) τe,e (e, a, e), hence a2 ρA,A a by (1), and so [a]ρA,A
is an object of Ã. If

(e, a, e) τe,e (e, a1, e) then again a ρA,A a1, and therefore F is well defined on objects. A si-
milar argument shows that the definition of F on morphisms does not depend on the choice

of the representatives of τ -classes. Moreover, if
(
[e′, a′, e′]τe′,e′ , [e

′, x, e]τe,e′ , [e, a, e]τe,e

)
is a

morphism in Ã then (e′, a′xa, e) τe,e′ (e
′, x, e), so a′xa ρA,A′ x and

(
[a′]ρA′,A′ , [x]ρA,A′ , [a]ρA,A

)
is indeed a morphism in Ã. Straightforward calculations show that F is a functor.

If [a]ρA,A
is an object in Ã then a2 ρA,A a, hence (1A, a

2, 1A) τ1A,1A (1A, a, 1A). Conse-

quently, [1A, a, 1A]τ1A,1A
is an object of Ã which maps to [a]ρA,A

. So F is dense.

To prove that F is full, let [e, a, e]τe,e , [e
′, a′, e′]τe′,e′ be two objects in Ã and con-

sider a morphism
(
[a′]ρA′,A′ , [x]ρA,A′ , [a]ρA,A

)
in Ã. Then a′xa ρA,A′ x, e2 = e, (e′)2 =

e′, eae = a, e′a′e′ = a′, (e, a2, e) τe,e (e, a, e) and (e′, (a′)2, e′) τe′,e′ (e
′, a′, e′). We have

e′(e′xe)e = e′xe and (e′, e′a′xae, e) = (e′, a′(e′xe)a, e) τe,e′ (e
′, e′xe, e), because a′xa ρA,A′ x

implies (e′, e′(a′xa)e, e) τe,e′ (e
′, e′xe, e). Also, e′xe ρA,A′ e′a′xae = a′xa ρA,A′ x. Thus we

have shown that
(
[e′, a′, e′]τe′,e′ , [e

′, x, e]τe,e′ , [e, a, e]τe,e

)
is a morphism in Ã which maps to(

[a′]ρA′,A′ , [e
′xe]ρA,A′ , [a]ρA,A

)
=

(
[a′]ρA′,A′ , [x]ρA,A′ , [a]ρA,A

)
.

To show that F is faithful, suppose that
(
[e′, a′, e′]τe′,e′ , [e

′, x, e]τe,e′ , [e, a, e]τe,e

)
and(

[e′, a′, e′]τe′,e′ , [e
′, x′, e]τe,e′ , [e, a, e]τe,e

)
are two morphisms in Ã that map to the same

morphism
(
[a′]ρA′,A′ , [x]ρA,A′ , [a]ρA,A

)
=

(
[a′]ρA′,A′ , [x

′]ρA,A′ , [a]ρA,A

)
in Ã. Then x ρA,A′ x′

and hence (e′, e′xe, e) τe,e′ (e
′, e′x′e, e). But e′xe = x and e′x′e = x′, so [e′, x, e]τe,e′ =

[e′, x′, e]τe,e′ .
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