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A PRESHEAF INTERPRETATION OF THE GENERALIZED FREYD
CONJECTURE

ANNA MARIE BOHMANN AND J. P. MAY

Abstract. We give a generalized version of the Freyd conjecture and a way to think
about a possible proof. The essential point is to describe an elementary formal reduction
of the question that holds in any triangulated category. There are no new results, but
at least one known example drops out very easily.

In algebraic topology, the generating hypothesis, or Freyd conjecture, is a long-standing
conjecture about the structure of the stable homotopy category. It was initially formu-
lated in 1965 [Freyd, 1966] and remains open to this day. Because the original conjecture
has proved difficult to analyze, recent work has turned to studying similar conjectures
in categories that share many properties with the stable homotopy category in hopes of
further understanding the types of categories in which such a conclusion holds. In this
note, we state a version of the generating hypothesis for an arbitrary triangulated cate-
gory and analyze conditions under which this hypothesis holds. We emphasize that we
impose no additional conditions on our triangulated categories, so that our results show
which formal properties of a category imply the Freyd conjecture. Therefore our results
give conceptual insight into the kind of category in which the generating hypothesis can
be expected to hold.

1. The generalized Freyd conjecture

Let T be a triangulated category and write [X, Y ] for the abelian group of maps X → Y in
T . Let B be a (small) full subcategory of T closed under its translation (or shift) functor
Σ and let C be the thick full subcategory of T that is generated by B; write ι : B → C
for the inclusion. For emphasis, we often write B(X, Y ) = [X, Y ] when X, Y ∈ B and
C (X, Y ) = [X, Y ] when X, Y ∈ C . The category B is pre-additive (enriched over Ab),
and C is additive (has biproducts). Let PB and PC denote the categories of abelian
presheaves defined on B and C . They consist of the additive functors from Bop or C op

to Ab and the additive natural transformations between them.

1.1. Definition. Define the Freyd functor F : T →PB by sending an object X to the
functor FX specified on objects and morphisms of B by FX(−) = [−, X] and sending a
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map f : X → Y to the natural transformation f∗ = [−, f ]. Define Y : T →PC similarly.
We are only interested in the restrictions of F and Y to C , and then Y : C →PC is the
standard Yoneda embedding.

1.2. Conjecture. [The generalized Freyd conjecture] The functor F : C → PB is
faithful. Equivalently, Ff = 0 if and only if f = 0. We then say that the Freyd conjecture
holds for the pair (C ,B).

The conjecture is also called the “generating hypothesis” since it is equivalent to the
assertion that the set of objects of B forms a generator for the category C . This means
that if there are distinct maps f, g : X → Y in C , then there is a map e : W → X in C
such that W ∈ B and f ◦ e 6= g ◦ e.

We hasten to add that the conjecture is false in this generality. Additional hypotheses
are needed, but none will be relevant to our formal analysis. For example, we might as
well assume that a map f : X → Y in C is an isomorphism if and only f∗ : FX → FY is
an isomorphism, as holds in the stable homotopy category. This condition is necessary
but not sufficient for the Freyd conjecture to hold. Indeed, if Z is the third term in an
exact triangle with one map f , then f is an isomorphism if and only if Z = 0 and Ff is
an isomorphism if and only if FZ = 0. If FZ = 0 and the Freyd conjecture is true, then
Z = 0 since its identity map is the zero map.

1.3. Example. Take T = HoS to be the stable homotopy category. Let B consist
of the sphere spectra Sn for integers n. Then C is the homotopy category of finite CW
spectra. Freyd [Freyd, 1966] conjectured that a map f in C is zero if and only if it
induces the zero homomorphism f∗ : π∗(X) → π∗(Y ). By the following observation, this
is a special case of our Conjecture 1.2.

1.4. Lemma. In Example 1.3, the category PB is isomorphic to the category M of right
modules over the ring π∗ of stable homotopy groups of spheres. Under this isomorphism,
the Freyd functor F coincides with the stable homotopy group functor π∗ : HoS →M .

Proof. We have B(Sm, Sn) = πm(Sn) ∼= πm−n. For T ∈ PB, let Tn = T (Sn). The
additive contravariant functor T gives homomorphisms

T : πm−n ∼= B(Sm, Sn)→ Ab(Tn, Tm).

By adjunction, these give homomorphisms Tn ⊗ πm−n → Tm. The functoriality gives
the formula (tx)y = t(xy). No signs appear since we are taking right modules, as is
dictated categorically by contravariance. Conversely, given a right π∗-module M , define
T (Sn) = Mn and, for t ∈Mn and x ∈ πm−n ∼= B(Sm, Sn) define T (x)(t) = tx ∈Mm. The
module axioms ensure that T is a functor. This specifies the isomorphism of categories,
and the consistency of F and π∗ is clear.
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The following example originally prompted us to take a presheaf perspective on the
Freyd conjecture.

1.5. Example. LetG be a compact Lie group and take T = HoGS to be the equivariant
stable homotopy category. Let GB consist of the orbit G-spectra

Sn[G/H] ≡ ΣnΣ∞(G/H)+

for integers n and closed subgroups H of G. The thick subcategory GC generated by
GB is the category of retracts of finite G-CW spectra. The equivariant version of the
Freyd conjecture asserts that a map f in GC is zero if and only if it induces the zero
homomorphism f∗ : π

H
∗ (X)→ πH

∗ (Y ) for all H, where

πH
n (X) ≡ πn(XH) ∼= [Sn[G/H], X]G.

Again, this is a special case of our Conjecture 1.2. This example is the focus of [Bohmann,
2010].

1.6. Remark. The full subcategory B0 of B whose objects are the S[G/H] ≡ S0[G/H] is
called the Burnside category. A Mackey functor (or G-Mackey functor) M is by definition
an object of PGB0. When G is finite, this agrees with the more usual algebraic definition
([Lewis et al, 1986, V§9] or [May, 1996, IX§4, XIX§3]). A map of Mackey functors is a
natural transformation, that is, a map of presheaves.

1.7. Definition. The graded Burnside category Gπ∗ has objects the S[G/H]. Its abelian
group of maps of degree n from S[G/H] to S[G/J ] is

πH
n (S[G/J ]) = [Sn[G/H], S[G/J ]]G.

Composition is induced by suspension and composition in GB in the evident fashion.
Define a right Gπ∗-module M to be a graded presheaf, that is, a contravariant functor
Gπ∗ → Ab∗, where Ab∗ is the category of graded abelian groups.

1.8. Lemma. In Example 1.5, the category PGB is isomorphic to the category GM
of right Gπ∗-modules. Under this isomorphism, the Freyd functor F coincides with the
equivariant stable homotopy group functor π

(−)
∗ : HoGS → GM .

The proof is the same as that of Example 1.3. In this case, the presheaf formulation
of the Freyd conjecture appears more natural to us than the equivalent homotopy group
reformulation.

1.9. Example. In the rational equivariant stable homotopy category, the Freyd conjec-
ture is true if G is finite [Greenlees and May, 1995] and is false if G = S1 [Bohmann,
2010].

Here is another example where the presheaf formulation, and the use of many objects
and their shifts rather than a single object and its shifts in B, may be more natural than
the formulation of the Freyd conjecture studied so far.
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1.10. Example. In several recent papers, Benson, Carlson, Chebolu, Christensen and
Mináč [Benson et al, 2007, Carlson et al, 2009, Chebolu et al, 2007] study the Freyd
conjecture in the stable module category of a finite group G over a field k whose charac-
teristic divides the order of G. This is a triangulated category StModkG obtained from
the category of kG–modules by modding out by maps that factor through a projective
module. They restrict to the thick subcategory generated by the trivial representation k
and ask whether the Tate cohomology functor is faithful on this subcategory. Since the
Tate cohomology of a module M is given by maps out of k in the stable module category,

Ĥ i(G,M) = StmodkG(Ωik,M),

their formulation is equivalent to our Conjecture 1.2 with B = {Ωik}. In this context,
they prove that the Freyd conjecture holds in the stable module category of kG–modules
if and only if the p–Sylow subgroup of G is either C2 or C3, where p is the characteristic of
k [Carlson et al, 2009]. Their proof in fact shows that this variant of the Freyd conjecture
holds if and only if the thick subcategory generated by k consists of finite direct sums of
suspensions of k.

For p-groups, the trivial module is the only irreducible module over kG, and the thick
subcategory generated by k is the subcategory of compact objects in the stable module
category. For non-p-groups, other irreducible modules exist. It is thus natural to gener-
alize the Freyd conjecture to our presheaf context by letting B be the category whose
objects are the suspensions of the irreducible kG–modules. The thick subcategory C
generated by this B is then the subcategory of compact objects in the stable module cat-
egory and one can ask when Conjecture 1.2 holds. This presheaf version of the generating
hypothesis in StModkG takes into account all the generating objects in the stable module
category.

2. A general line of argument

The presheaf perspective suggests a method of attack on the generalized Freyd conjecture.
We have the forgetful functor

U = ι∗ : PC →PB

given by restricting presheaves defined on C op to the full subcategory Bop. The functor
U has a left adjoint prolongation functor

P = ι! : PB →PC .

For T ∈PB and K ∈ C , PT (K) is the categorical tensor product

PT (K) = T ⊗B C (K,−).

This is an example of a left Kan extension, and it is one used extensively in recent work on
spectra (e.g. [Mandell and May, 2002, Mandell et al, 2001]). Since B is a full subcategory
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of C , the unit η : Id → UP of the adjunction is a natural isomorphism [Mandell et al,
2001, I.3.2].

We focus attention on the counit ε : PU→ Id of the adjunction. By its definition, we
see that the Freyd functor F : C →PB coincides with the composite UY. We therefore
have the map

ε : (PFX)(K) = (PUYX)(K)→ (YX)(K) = [K,X] (1)

for K,X ∈ C . Note in particular that if K ∈ B, then this map is an isomorphism.
Indeed, we then have (PFX)(K) = (UPFX)(K) and ε = Uε. By one of the triangle
identities, Uε : UPU→ U is an isomorphism since η : Id→ UP is an isomorphism.

Consider a map f : X → Y in C . Since F ∼= UPF, Ff = 0 if and only if PFf = 0. If
the map (1) is an epimorphism for all K,X ∈ C , then PFf = 0 implies Yf = 0. By the
Yoneda lemma, Yf = 0 if and only if f = 0. Therefore this epimorphism condition gives
a sufficient condition for the Freyd conjecture for (C ,B) to hold. Moreover, for any map
g : K → X in C , we have the commutative diagram

PFX(X)

g∗

��

ε // YX(X) = [X,X]

g∗

��
PFX(K) ε

// YX(K) = [K,X].

Since g∗ on the right takes the identity map of X to g, ε is an epimorphism in general
if the identity map of X is in the image of ε. These elementary formal considerations
already give the following conclusion.

2.1. Proposition. The Freyd conjecture holds for (C ,B) if for all X ∈ C the identity
map of X is in the image of ε : (PFX)(X)→ [X,X].

To see what is involved in verifying the hypothesis, consider an exact triangle

K //L //M //ΣK (2)

in T , where K, L, and M are in C . We have the commutative diagram

· · · // PFX(ΣK) //

ε

��

PFX(M) //

ε

��

PFX(L) //

ε

��

PFX(K) //

ε

��

· · ·

· · · // YX(ΣK) // YX(M) // YX(L) // YX(K) // · · · .

(3)

Since YX(K) = [K,X], the lower row is exact. By definition, C is the smallest
subcategory of T that contains B, is closed under retracts, and has the property that if
two terms of an exact triangle are in C then so is the third. By an easy retract argument
and the five lemma, this gives the following conclusion.
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2.2. Proposition. If the top row of Diagram (3) is exact for every exact triangle (2)
and every X ∈ C , then ε : PFX → YX is an isomorphism for every X ∈ C and the Freyd
conjecture holds for (C ,B).

There is a reinterpretation of the exactness hypothesis that makes it reminiscent of
the standard result that the adjoint (if it exists) of an exact functor between triangulated
categories is exact. For K and X in C , the abelian group PFX(K) is the coequalizer in
Ab displayed in the diagram∑

I,J∈B C (J,X)⊗B(I, J)⊗ C (K, I)

����∑
J∈B C (J,X)⊗ C (K, J)

��
C (−, X)⊗B C (K,−),

(4)

where the parallel arrows are given by composition in C .
Let us write PdB and PdC for the categories of covariant additive functors on B and

C , and similarly write Ud, Pd, Fd, and Yd for the corresponding functors. (The d stands
for dual.) We are just interchanging B and C with their opposite categories. Visibly,
we again have UdYd = Fd and again have an adjunction (Pd,Ud) with UdPd

∼= Id. By
symmetry, we have

PFX(K) = PdFdK(X). (5)

But in this dual reformulation, the exactness hypothesis on K for fixed X is now a
levelwise exactness statement about the composite functor PdFd : C op → PdC . Since
FdK(J) = C (K, J) for J ∈ B, Fd clearly takes exact triangles in the variable K to
exact sequences for each fixed J . Thus a more general question to ask is whether or not
Pd : PdB →PdC preserves levelwise exactness. That is, is it true that if T ′ → T → T ′′

is a sequence of diagrams B → Ab such that the sequence T ′(J) → T (J) → T ′′(J) is
exact for each J ∈ B, then the sequence PT ′(X) → PT (X) → PT ′′(X) is exact for all
X ∈ C ?

Observe that we have not yet used any hypothesis on B, other than that it generates
the thick subcategory C of the triangulated category T . Thus all that we have done is
to give a purely formal reduction of the general problem.

3. The derived category of ring

Our framework for understanding the Freyd conjecture leads to a transparent proof of
the result of Lockridge [Lockridge, 2007, 3.9] that the generalized Freyd conjecture holds
in the derived category of a von Neumann regular ring. We simply observe that the
hypotheses of Proposition 2.2 hold in this case by one of the equivalent definitions of a
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von Neumann regular ring. However, our methods do not prove the converse, which is
proved in [Hovey et al, 2007, Lockridge, 2007].

Using right R-modules for definiteness, let D(R) be the derived category of a ring R
and let B be the full subcategory of D(R) whose objects are the shifts ΣiR of the chain
complex that is R concentrated in degree 0. Then C is the category of perfect chain com-
plexes, namely those isomorphic in D(R) to bounded chain complexes of finitely generated
projective R-modules. The Freyd functor assigns the homology groups B(ΣiR,X) = HiX
to a chain complex X, and Conjecture 1.2 is the assertion that a map between per-
fect chain complexes is 0 in D(R) if it induces the zero map on homology. Defining
H i(K) = C (K,ΣiR), as usual, we have the following observation in this case.

3.1. Lemma. For perfect chain complexes K and X, PFX(K) is isomorphic to the abelian
group

∑
iHi(X)⊗R H

i(K).

Proof. By definition, PFX(K) is the coequalizer displayed in the diagram∑
i,j∈Z C (ΣjR,X)⊗B(ΣiR,ΣjR)⊗ C (K,ΣiR)

����∑
i∈Z C (ΣiR,X)⊗ C (K,ΣiR)

��
C (−, X)⊗B C (K,−).

There are no maps ΣiR → ΣjR unless i = j, when B(ΣiR,ΣiR) ∼= R. The composition
maps

C (ΣiR,X)⊗B(ΣiR,ΣiR)→ C (ΣiR,X)

specify the right action ofR onHi(X). Therefore our coequalizer diagram can be rewritten
as ∑

i∈ZHi(X)⊗R⊗H i(K)

����∑
i∈ZHi(X)⊗H i(K)

��∑
i∈ZHi(X)⊗R H

i(K).

The conclusion follows.

3.2. Proposition. If the homology R-modules Hi(X) of any perfect chain complex X
are R-flat, then the Freyd conjecture holds for the pair (C ,B) in D(R).
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Proof. Let K → L → M → ΣK be an exact triangle in D(R). Since the functor
C (−,ΣiR) takes exact triangles to exact sequences, the sequence

H i−1(K)→ H i(M)→ H i(L)→ H i(K)

is exact. By our flatness hypothesis, this sequence remains exact on tensoring with each
Hi(X). By Lemma 3.1, when we take the direct sum over i of these sequences, we obtain
the exact sequence

· · · → PFX(ΣK)→ PFX(M)→ PFX(L)→ PFX(K)→ · · ·

The conclusion follows from Proposition 2.2.

By one definition, the ring R is von Neumann regular if every R-module is flat.

3.3. Corollary. The Freyd conjecture holds for the derived category D(R) of a von
Neumann regular ring R.

By another characterization, R is von Neumann regular if every finitely generated ideal
is generated by an idempotent [Stenström, 1975, 12.1]. As Grigory Garkusha [Garkusha,
2011] pointed out to us, this holds if all finitely generated ideals I of R are FP -injective,
meaning that Ext1R(F, I) = 0 for all finitely presented R-modules F . Indeed, R/I is
finitely presented, and from the short exact sequence 0→ I → R → R/I → 0 we obtain
the short exact sequence

0→ HomR(R/I, I)→ HomR(R/I,R)→ HomR(R/I,R/I)→ Ext1R(R/I,R/I) = 0.

Let π : R → R/I be the quotient map and choose ι : R/I → R such that πι = id. Then
R is the internal direct sum I ⊕ ι(R/I), e = ιπ(1) is an idempotent, and 1 − e is an
idempotent that generates I. Therefore the elementary result of Corollary 3.3 comes
reasonably close to one direction of the best possible result about D(R), namely [Hovey
et al, 2007, Theorem 2.1], which states that the Freyd conjecture holds for D(R) if and
only if all submodules of flat R-modules are flat and all finitely presented R-modules are
FP-injective.
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Clemens Berger, Université de Nice-Sophia Antipolis, cberger@math.unice.fr
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