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N -TUPLE GROUPOIDS AND OPTIMALLY COUPLED
FACTORIZATIONS

DANY MAJARD

Abstract. In this paper, we prove that the category of vacant n-tuple groupoids is
equivalent to the category of factorizations of groupoids by n factors that satisfy some
Yang-Baxter type equation. Moreover we extend this equivalence to the category of
maximally exclusive n-tuple groupoids, which we define, by dropping one assumption.
The paper concludes by a note on how these results could tell us more about some Lie
groups of interest.

Introduction

Extensions and factorizations of groups are important aspects of group theory as they
allow us to understand a group by knowing some of its constituents and how they fit
together. Agore and Militaru give a good overview of it in [1] but as a quick reminder,
a factorization of a group G (by two factors) is given by two subgroups H and K such
that the map of sets H ×K → G induced by multiplication is invertible. In other words,
every element g ∈ G can be uniquely written as the product hk for some elements h ∈ H
and k ∈ K. In general a factorization is explicitly written :

G = HK

The relationship between factorizations of groups and double groups has been known
for quite some time and carries to smash products of Hopf algebras for the K-linear
case, as shown in Majid’s book [13], Natale and Andruskiewitsch [2] or more recently in
Mackenzie’s article [11].
Our point of view being that groupoids are more fundamental than groups, we consider
that factorizations of groupoids is what ought to be understood. Nonetheless, the article
can safely be read replacing every “groupoid” by “group”. Natale and Andruskiewitsch
give a complete description of the structure of double groupoids and their relations to
factorizations of groupoids by 2 factors in [3]. The aim of this paper is to extend this results
to multiple factorizations and n-tuple groupoids, as much as possible. It is written as an
answer to a note written by Brown [4] speculating on triple groups and matched triples
of groups. Moreover following our previous article [12], we introduce new definitions,
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that of maximal and exclusive n-tuple groupoids, which allow a wider class of n-tuple
groupoids to be analyzed. We show that n-tuple groupoids belonging to both classes can
represent further factorizations of groupoids and show how some semi-simple Lie groups
may provide prime examples of these.
Since the first draft, it was brought to our attention that factorizations of categories into
two factors may be understood as distributive laws, as shown in an article of Rosebrugh
and Wood [15]. To our understanding the results are equivalent in the case of groupoids,
though our approach is more straightforward and geometric. It would be interesting to
investigate this connection for the case with three or more factors but it is out of the
realm of this paper.

1. n-tuple categories

Let [n] be the set of integers from 1 to n, and for a nonempty subset I of [n] define Î :=
[n] \ I. By abuse of notation braces will be omitted in subscripts, for example nij := n{ij}
and nî = n[n]\{i}. Importantly composition will be written in diagrammatic order,
i.e. fg will mean f first and then g, which is more classically written g ◦ f .

1.1. Definition. A n-tuple category C is the collection of:

Sets {CI}, ∀I ⊆ [n]

Maps {sJ,I}, {tJ,I} ∀I ⊆ J ⊆ [n] nonempty

Maps {◦I,i} ∀i ∈ I ⊆ [n]

Maps {ıJ,I} ∀I, J ⊆ [n] s.t. I ∩ J = ∅

where :

• The following maps of sets are the source and target maps:

sJ,I , tJ,I :CJ → CJ\I ∀I ⊆ J ⊆ [n]

The pullback of the pair (tJ,i, sJ,i) is denoted by CJ ×
i
CJ .

• The following maps of sets are the identity maps:

ıJ,I :CJ → CJ∪I ∀I, J ⊆ [n] s.t. I ∩ J = ∅

• The following maps of sets are the composition maps:

◦I,i : CI ×
i
CI → CI ∀I containing i
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• Sources, targets and compositions are compatible the following way:

sJ,IsJ\I,K = sJ,I∪K tJ,ItJ\I,K = tJ,I∪K

(sJ,I ×
j
sJ,I)◦J\I,j = ◦J,jsJ,I (tJ,I ×

j
tJ,I)◦J\I,j = ◦J,jtJ,I

• Compositions are associative and satisfy the interchange laws:

(◦J,i ×
j
◦J,i)◦J,j = (◦J,j ×

i
◦J,j) ◦J,i ∀i 6= j ∈ J ⊆ [n]

• ıJ,i is an identity for the composition ◦J,i and ◦J,j(ıJ,I) = (ıJ,I ×
j
ıJ,I)◦J∪I,j for all

j /∈ I.

The elements of C∅, {CI} for I ⊂ [n] non empty and C[n] are respectively called objects,
faces and n-cubes. The first subscript of the maps is generally omitted, so ◦J,i would just
be written ◦i, sJ,I would be written sI etc...

1.2. Lemma. The interchange laws impose ıiıj = ıjıi, and therefore we can coherently
define ıJ∪I := ıIıJ . Also for i 6= j, ıisj = sjıi.

Proof. Using the fact that ıi is an identity for ◦i we find that:((
(ıiıj)×

i
(ıjıi)

)
×
j

(
(ıjıi)×

i
(ıiıj)

))
(◦i ×

j
◦i)◦j =

(
(ıiıj)×

j
(ıiıj)

)
◦j

= ıiıj

Yet using the interchange law and the fact that ıj is an identity for ◦j we find that:((
(ıiıj)×

i
(ıjıi)

)
×
j

(
(ıjıi)×

i
(ıiıj)

))
(◦i ×

j
◦i)◦j =((

(ıiıj)×
j

(ıjıi)
)
×
i

(
(ıjıi)×

j
(ıiıj)

))
(◦j ×

i
◦j)◦i =

(
(ıjıi)×

i
(ıjıi)

)
◦i

= ıjıi

which shows that they are indeed equal. As for the second statement, we can use the
uniqueness property of identities of associative binary operations. And for the last claim,
since the source and composition maps intertwine, the jth source of the ith identity behaves
like an ith identity, uniqueness therefore shows that it is one.

There exists a much more concise statement of these axioms that shrinks the whole
definition to “An n-tuple category is an internal category in the category of (n− 1)-tuple
categories”, cf [9]. To limit the amount of prerequisites, we preferred the direct approach.
It should be noted also that for small integers, the denomination takes slightly different
but obvious forms. For example a 2-tuple category is usually referred to as a double
category, a 3-tuple category as a triple category etc...
Visually we can represent the elements of a n-tuple category as n-cubes with ”oriented
faces”. The source and target maps encode their faces, which themselves form i-tuple
categories. For example a general element of a double category is a square:
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where arrows of the first type have been represented as plain, arrows of the second type
in dashes and the objects have been represented by dots. From here on, dots will rep-
resent possibly distinct objects in the n-tuple category of choice. Note that there is
no defined composition between arrows of different types, so there is generally no sense
in talking of a square being commutative. Note as well that there can be many squares
with the same boundary.
Graphically, two squares are composable in a given direction if they can be pasted next
to each other in that direction. We will take the convention to draw identities arrows
as segments, regardless of their type. Identity squares therefore look like:

The first two are identities on arrows, given respectively by ı1 and ı2, whereas the third
is an identity on objects, given by ı12. The interchange law ensures that any assortment
of the sort:

yields the same square regardless of the order in which it is composed. It is a good exercise
to prove that ı1ı2 = ı2ı1 pictorially, using the interchange law. It is a good idea as well
to read R.Paré and R.Dawson’s article [14] on composability of plane diagrams in double
categories.
General elements of a triple category are cubes that compose by pasting in one of the
three directions. The generalization to higher dimension is straightforward, though rep-
resentation on paper becomes challenging. While dealing with n-cubes, two notions are
worth defining to make proofs more comprehensible. They are fairly transparent.
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1.3. Definition. Let X be an n-cube in a certain n-category. Then s[n](X) is called the
source of X and t[n](X) its sink.

The source is the only object in the cube that arrows only depart from and the sink
is the only object that arrows only point towards.
The available notions of higher morphisms of n-tuple categories are many and we will not
in this paper define all the higher menagerie. We will though define the corresponding
notion of a functor.

1.4. Definition. Let C and C′ be n-tuple categories. An n-tuple functor F : C → C′

is a collection {FI : CI → C′I} of maps of sets such that:

(FI ×
i
FI)◦′i = ◦iFI

FIs
′
i = siFI\{i}

FIt
′
i = tiFI\{i}

FIı
′
i = ıiFI∪{i}

These compose associatively and have units, forming all together a category.

2. Vacant n-tuple groupoids

2.1. Definition. An n-tuple groupoid is an n-tuple category whose n-cubes have in-
verses in every direction.

The case n = 1, groupoids, should be familiar to the reader but we want to recall a
few definitions that will be used throughout the paper.

2.2. Definition. A groupoid (1-tuple) is connected if every homset is nonempty, to-
tally disconnected if homsets between different objects are empty and discrete if all
morphisms are identities.

In other words, in an n-tuple groupoid, for every a ∈ CI and i ∈ I there exists b ∈ CI
such that:

a ◦i b = ıi(si(a)) b ◦i a = ıi(ti(a))

It is a standard result that for an associative composition dual sided inverses are unique.
These will be denoted as follows: suppose that X is an n-cube, then its inverse with
respect to ◦i will be denoted X−i. For the rest of the section, we will generically call τ
the n-tuple groupoid of study, instead of C and therefore τI will replace CI .

Let’s describe some basic properties of inverses.
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2.3. Lemma. For i 6= j ∈ [n] the source, target and identity maps commute with inverses,
i.e.

sj(X
−i) = (sj(X))−i

tj(X
−i) = (tj(X))−i

ıj(X
−i) = (ıj(X))−i

Proof. The proof for the source maps follows by uniqueness from

sj(X) ◦i sj(X−i) = sj(X ◦i X−i) = sj(ıi(si(X))) = ıi(sj(si(X)))

= ıi(si(sj(X)))

sj(X
−i) ◦i sj(X) = sj(X

−i ◦i X) = sj(ıi(ti(X))) = ıi(sj(ti(X)))

= ıi(ti(sj(X)))

The same proof works equally for target maps and identity maps.

2.4. Lemma. Let X ∈ τ be an n-cube, then (X−i)−j = (X−j)−i.

Proof. The proof follows from the previous lemma and the interchange law. Consider(
X ◦j X−j

)
◦i
(
X−i ◦j (X−j)−i

)
=
(
X ◦i X−i

)
◦j
(
X−j ◦i (X−j)−i

)
ıj(sj(X)) ◦i

(
X−i ◦j (X−j)−i

)
= ıi(si(X)) ◦j ıi(si(X−j))
= ıi(si(X) ◦j si(X−j))
= ıi(si(X ◦j X−j))
= ı{ij}(s{ij}(X))

and left compose by
(
ıj(sj(X))

)−i◦i to get:(
X−i ◦j (X−j)−i

)
= ıj(sj(X

−i))

It shows that (X−j)−i is the right jth inverse of X−i. The same argument shows that it
is a left inverse also, which proves by uniqueness the lemma.

We can then define the unique inverse X−I of X in the combined directions i, j, k... ∈ I.

2.5. Definition. Arrangements of n-cubes combinatorially equivalent to the one given
by excluding the subspaces xi = 1

2
for all i ∈ [n] from [0, 1]n ⊂ Rn are called barycentric

subdivisions of the n-cube. Arrangements combinatorially equivalent to one found by
excluding the subspaces xi = 1/3 and xi = 2/3 for all i ∈ [n] are called divisions in
thirds.

With this definition in mind we can see the interchange law as ensuring that barycentric
subdivisions have a uniquely defined composition.
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2.6. Definition. In a barycentric subdivision of the n-cube, the partition of a sub n-
cube is an ordered pair (A,B) of complementary subsets of [n] such that i ∈ A if and only
if the ith source of the sub n-cube is part of the barycentric division of the ith source of
the original n-cube. The depth of a sub n-cube is the cardinality of B.

By definition, the ith target of a sub n-cube with partition (A,B) is internal to the
subdivision if and only if i ∈ A. Moreover, the sub n-cube containing to the source and
the one containing to the sink has depth 0 and n respectively. Here are for example the
sub 3-cubes of depth 1:

source

sink

2.7. Lemma. A sub n-cube of depth i has a common boundary (n − 1)-cube with i sub
n-cubes of depth (i-1) and with (n− i) sub n-cubes of depth (i+ 1).

Proof. Consider a sub n-cube Q with partition (AQ, BQ). Then ti(Q) is internal to
the decomposition if and only if i ∈ AQ. Similarly, for another sub n-cube Q’, si(Q

′) is
internal to the subdivision if and only if i ∈ BQ. Then defining R := AQ ∩ BQ′ we can
conclude that sR(Q′) = tR(Q) and that for R ⊂ S ⊂ [n], sS(Q′) 6= tS(Q). Therefore a sub
n-cube Q of depth i − 1 shares a boundary (n − 1)-cube with Q′ of depth i if and only
if |AQ ∩ BQ′| = 1, or equivalently BQ ⊂ BQ′ . Since |BQ′ | = |BQ|+ 1 = i there are i such
n-cubes Q for a given Q′.

Every sub n-cube has n (n− 1)-faces internal to the subdivision out of 2n such faces.

2.8. Lemma. The intersection of a sub n-cube of depth i and the sub n-cube of depth 0
is an (n− i)-cube. Its intersection with the sub n-cube of depth n is an i-cube. Together,
these two intersections contain edges of all n types.

Proof. The sub n-cube α of depth 0 satisfies Aα = [n], so from the previous proof we can
conclude that Q∩α = sBQ

and has codimension |BQ| = i. Similarly if Ω is the sub n-cube
of depth n, BΩ = [n], so the intersection Q ∩ Ω = tAQ

and has dimension |AQ| = n − i
and since AQ ∩BQ = ∅, the last claim is true.
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These little lemmas are helping us understand and formalize the adjacencies of sub-
cubes inside a barycentric subdivision and will be helpful formulating some fairly intuitive
proofs later on. Another very intuitive lemma that will be very helpful is the following:

2.9. Theorem. Let b(X) be a barycentric subdivision with one indeterminate sub n-cube
X, then b(X) = Y has a unique solution in τ .

Proof. Thanks to the existence of inverses, we may assume w.l.o.g. that b(X) has its
indeterminate sub-cube X in depth 0. Define b0 := X and bi := {cubes in b(X) whose
ith source is the ith target of a cube in bi−1}. Then define bi as the composition of the
elements of bi in b(X). We then have

b(X) = (· · · ((X ◦1 b1) ◦2 b2) · · · ) ◦n bn

so that if b(X) = Y we can easily solve for X:

X = (· · · ((Y ◦n b
−n
n ) ◦n−1 b

−(n−1)

n−1 ) · · · ) ◦1 b
−1

1

which finishes the proof.

Let X be an n-cube of τ and consider a barycentric subdivision where X has depth
n. Place identities in all other positions of strictly positive depth. Then an n-cube u that
can be placed with depth 0 must satisfy :

ti(u) = ı̂i(s[n](X))

i.e have all targets be identities on the source of X. We will now see what such n-cubes
may tell us.

2.10. Definition. Let τ be an n-tuple groupoid and define

τy : = {n-cubes whose recursive targets are identities}
= {X ∈ τ |ti(X) = ı̂i(t[n](X))}

For u ∈ τy and X ∈ τ such that t[n](u) = s[n](X) define the transmutation of X by u,
denoted u · X, to be the n-cube accepting a barycentric subdivision with u of depth 0, X
of depth n and all others identities.

For example, in dimension 3 an element of τy looks like the above picture, where arrows
without heads and non colored squares are identities. From it can be clearly deduced that
the faces of an element of the core groupoid of a triple groupoid are themselves in the
core groupoids of the boundary double groupoids. This is actually true for any n.
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2.11. Lemma. Let u ∈ τy, then si(u) ∈ (τî)y

Proof. All there is to prove is that for j 6= i ∈ [n], tj(si(u)) = ı̂iĵ(t[n](u)). But tj(si(u)) =
si(tj(u)) = si(ıĵ(t[n](u))) = ı̂iĵ(t[n](u)) as claimed.

2.12. Lemma. Let u, v ∈ τy, then u · v ∈ τy. Moreover (τy, ·, ı) is a groupoid.

Proof. Let the sources and targets of arrows in said groupoid be the sources and sinks of
the n-cubes of τy. First note that ti(u ·X) = ti(X), so that v ∈ τy implies u · v ∈ τy. This
defines a composition on τy. The associativity of this composition is a direct consequence
of the interchange law and the uniqueness of identities. Indeed, for u, v, w,∈ τy, (u · v) ·w
and u · (v · w) are given by two different order of composition of the same division in
thirds with u,v and w in this order on the diagonal and the rest filled by identities. But
as the interchange laws ensures that any order of composition of a division in thirds yield
the same result, associativity is proved. It is straightforward to see that the identities are
given by identity n-cubes on objects. What remains to be proven is that inverses exist
and uniqueness will follow.
To do so, first consider the equation X ·u = idt(u) in τy and remark that, as all n-cubes of
non zero depth in X · u are uniquely determined by u, it can be re-framed as an equation
of the form b(X) = Y in τ , as in Theorem 2.9. The theorem then proves the existence of
left inverses in τy. This trick does not work for right inverses though as u ·X has all but
one sub-cube depending on the indeterminate X. So a little more work is needed. We
will give a proof by induction.
Note that in dimension one τy = τ , so the lemma is true. Now for any other dimension if
a right inverse u−1 of u exists in τy, then si(u

−1) = si(u
−1) ∈ (τî)y. That shows that the

sub-cubes appearing in a solution of u ·X = ids(u) are fixed by the boundaries of u and
exist provided the lemma is true for dimensions smaller than n. We can then rewrite the
equation as b(X) = Y in τ and use Theorem 2.9 to finish the proof.

2.13. Definition. The groupoid τy is called the core groupoid of τ .

Let u ∈ τy, then the assignment u → u· defines an action of groupoids on τ[n], the
set of n-cubes of τ . The next lemma shows that it is transitive on n-cubes with common
targets.

2.14. Lemma. Let X, Y ∈ τ such that ti(X) = ti(Y ) ∀i ∈ [n], then there exists a unique
element uXY ∈ τy such that

X = uXY · Y

Proof. We prove this as we did in 2.12. Indeed, the solution of X = b(u), where the
elements of the b(u) are Y in depth n and identities on all other n-cubes of non zero
depth, exists and is unique by Theorem 2.9.
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2.15. Definition. Let τ• be the sub groupoid of τy composed of n-cubes whose boundaries
are all identities. It is called the core bundle of τ .

2.16. Corollary. Let X, Y ∈ τ such that ti(X) = ti(Y )∀i ∈ [n], then

si(X) = si(Y )∀i ∈ [n] ⇐⇒ uXY ∈ τ•

Proof. Let i ∈ [n], then si(X) = si(uXY · Y ) = si(uXY ) · si(Y ), so that si(uXY ) =
si(X) · si(Y )−1 = si(X) · si(X)−1 = ids(u), which proves the statement.

2.17. Lemma. The core bundle is an abelian group bundle over τ0, the objects of τ .

Proof. This is a generalized Eckmann-Hilton argument. N -cubes whose boundaries are
identities ”slide” along each other. First note that for u, v ∈ τ•:

u · v = u ◦i v ∀i ∈ [n]

To see this, pick i ∈ [n], u, v ∈ τ• and consider all sub n-cubes of the barycentric sub-
division defining u · v whose ith source contributes to the ith source of u · v. By defini-
tion all of them, except u, are identities on different faces of v, which are identities on
s[n](v) = t[n](u). Their composition is therefore u. The other sub n-cubes are those who
contribute to the ith target of u · v. Once again they are all, except for v, identities. Their
composition therefore yields v, which shows that u · v = u ◦i v.
Now pick two directions i, j and apply the following two dimensional argument in the
plane ij :

= =

= =

A B

A

B

1

1

A

B

1

1

A

B

B A

It shows that u · v = u ◦i v = v ◦i u = v · u, and finishes the proof. Note that this proof is
absolutely standard but we thought that it was worth repeating.

2.18. Definition. A n-tuple groupoid is slim if its core bundle is trivial.

2.19. Corollary. A n-tuple groupoid is slim iff there is at most one n-cube per boundary
condition.

2.20. Definition. A n-tuple groupoid is exclusive if τy = τ•.

So in an exclusive n-tuple groupoid, an n-cube belongs to the core groupoid if and
only if all its faces are identities.
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2.21. Corollary. A n-tuple groupoid is exclusive if and only if, for X, Y ∈ τ , the
following is true:

∀i ∈ [n] either si(X) = si(Y ) or ti(X) = ti(Y )

⇐⇒ si(X) = si(Y ) and ti(X) = ti(Y ) ∀i ∈ [n]

Proof. Assume that τ is exclusive and the existence of two n-cubes that share either a
source or a target in every direction. Define

I := {i ∈ [n]|ti(X) 6= ti(Y )}

Then si(X) = si(Y )∀i ∈ I. But in this case tj(X
−I) = tj(Y

−I)∀j ∈ [n]. From 2.12 there
exists u ∈ τy such that X−I = u·Y −I , which implies under the exclusivity assumption that
si(X

−I) = si(u) · si(Y −I) = si(Y
−I). Therefore si(X) = (si(X

−I))−I = (si(Y
−I))−I =

si(Y ).
Now assuming the second statement of the proposition, elements of the core groupoid
always share all targets with an identity on their sink. All their boundaries are then
forced to be identities as well, i.e. it is in the core bundle, showing that τ is exclusive.

We can summarize the previous result by saying that in an exclusive n-tuple groupoid,
the boundary of its n-cubes are determined by one of their (n − 1)-boundaries of each
type.

2.22. Lemma. Let τ be a n-tuple groupoid. If all boundary i-tuple groupoids are slim for
i > 1 and all boundary double groupoids are exclusive then τ is exclusive.
Moreover in this case the following is true :

t̂i(X) = t̂i(Y ) ∀i ∈ [n] ⇐⇒ X = u · Y for u ∈ τ•

Proof. Suppose that τij is exclusive for all i, j ∈ [n], then for u ∈ τy:

t̂i(u) = ıi(s[n](u))∀i ∈ [n]

⇒ sj t̂iĵ(u) = ıi(s[n](u))∀i 6= j ∈ [n]

⇒ sjk t̂iĵk̂(u) = ıi(s[n](u))∀i 6= j 6= k ∈ [n]

· · ·
⇒ sî(u) = ıi(s[n](u))∀i ∈ [n]

Which shows that all arrows of u are identities. Now since the boundary double groupoids
of τ are slim, all boundary 2-cubes of u are identities. Since all boundary triple groupoids
of τ are slim, all boundary 3-cubes of X are identities. Repeat the argument to dimension
n-1 to prove that τ and all its boundary i-tuple groupoids are exclusive
Let X, Y ∈ τ be such that t̂i(X) = t̂i(Y )∀i ∈ [n], then a recursive argument on exclusivity
shows that ti(X) = ti(Y )∀i ∈ [n]. Hence by 2.14 X = u·Y for u ∈ τy, which by exclusivity
reduces to τ•.
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This result shows that for a slim n-tuple groupoid satisfying the conditions of the
above lemma following map is injective:

Σ : τ[n] →
n∏
i=1

τi

Σ(X) = (t1̂(X), · · · , tn̂(X))

2.23. Definition. An n-tuple groupoid τ is maximal if the above defined map Σ is
surjective. It is maximally exclusive if

• it is maximal

• all boundary double groupoids are exclusive

• all boundary i-tuple groupoids are slim for i > 1

It is vacant if it is slim and maximally exclusive.

We can then conclude, by Lemma 2.22, that a vacant n-tuple groupoid is one such that
Σ is an isomorphism. In other words, for a vacant n-tuple groupoid all the information
contained in an n-cube is reduced to all boundary arrows targeted at its sink. Moreover
its existence for any such set of arrows is guaranteed.

2.24. Lemma. Let τ be maximal, then so is τI for all I ⊂ [n]. Accordingly, if τ is
maximally exclusive, then τI is vacant for all I ⊂ [n] s.t. |I| > 1.

Proof. Suppose that τ is maximal, then since for all X ∈ τ and all i ∈ I, ti(ıÎ(tI(X))) =
ti(X), the following map is surjective as well:

Σ|I := ıÎ Σ π : τI →
∏
i∈I

τi

where π is the projection onto the indices corresponding to I, proving the first part of the
lemma.
Remark that we may now state that the three properties defining a maximally exclusive
n-tuple groupoid are stable upon restriction to boundaries. So by proving the stability
of maximality we actually proved stability of maximal exclusivity. Moreover, slimness of
boundary i-tuple groupoids being part of the definition, we may conclude that the second
statement of the lemma is also true.

Now we want to look at a feature that is very specific to vacant n-tuple groupoids.

2.25. Lemma. Let τ be a vacant n-tuple groupoid, X, Y ∈ τ , then there exist a unique
n-cube X · Y in τ that has a barycentric subdivision with X of depth 0 and Y of depth 1.
Moreover (τ, ·) is a groupoid.
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Proof. According to Lemma 2.7, all sub-cubes of depth different from 0 or n have an
internal edge of each kind shared with either X or Y. For example, in the case n = 3, a
3-cube of depth 1 shares internal edges of two kind with the depth 0 3-cube and of the
third kind with the depth n 3-cube, as in the picture :

Since the n-tuple groupoid is vacant, these sub-cubes have a unique filler which proves
that the composition is well defined. Its associativity is guaranteed by uniqueness of fillers
and the interchange laws. Identities are identity n-cubes on source or sink.
Now to show that inverses exist, consider an n-cube X and place it in position 0. As
depth 1 sub cubes’ intersections with X are (n−1)-cubes, they only need one arrow in the
direction not contained in the shared boundary to be determined. But for X to have an
inverse, the n-cube Q of depth 1 whose yet undetermined arrows are in the ith direction
needs to satisfy sî(Q) = sî(X)−1. That determines uniquely all depth 1 sub n-cubes.
From Lemma 2.7 depth i cubes share at least two boundary (n − 1)-cubes with depth
(i − 1) sub n-cubes, for i > 1. This fact determines inductively all sub-cubes of depth
greater than 1. Their composition is a n-cube with a boundary arrow of each type being
an identity and is therefore ı[n](s[n](X)), showing that X has a right inverse.
But since (Y ·X)−[n] = X−[n] ·Y −[n], a right inverse to X−[n] is a left inverse to X, proving
that X is invertible.

2.26. Theorem. Let τ be vacant, X ∈ τ and fi = t1···(i−1)s(i+1)···n(X). Then

X = ı1̂(f1) · ı2̂(f2) · · · ın̂(fn)

To prove this lemma, we need to see that there were many other acceptable definitions
of maximality but that they mostly give the same notion of maximally exclusive n-tuple
groupoids.
The idea behind maximality is that it should represent a positive answer to the question:
given a certain set of boundary arrows in an abstract n-cube that contains exactly one
arrow in each direction, can one find an actual n-cube with these boundary constrains?
The constrain is given by a graph Γ containing n arrows and an isomorphism between
these and the set [n] of numbers from 1 to n. Not all graphs are admissible though as
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they need to be embeddable in the 1-skeleton of the n-cube. For example, in dimension
2 a non connected graph is not admissible, although it is admissible in dimension 3, as
shows the following picture:

We will now show that the following two graphs Γ1 and Γ2 give the same notion of maximal
exclusivity.

It will become clear that this should be true for any connected graph but we will not
prove it as it is not entirely relevant to our goal. Remark that Γ2 is the path we first used
for maximality. Remark as well that for n=2, there is, up to symmetries only one path
and therefore only one notion of maximality.

2.27. Lemma. Let τ be an n-tuple groupoid such that τij is exclusive for all i 6= j ∈ [n].
Then τ is Γ1-maximal if and only if it is Γ2-maximal.

Proof. Each graph gives us a map γi : τ[n] →
∏n

j=1 τj picking the boundary arrows of
n-cube that are in Γi. Remark that γ2 is just our previously defined Σ. Therefore

γ2 = ∆n(t1̂ × · · · × tn̂)

where ∆n is the diagonal map τ[n] →
∏n

j=1 τ[n]. Defining

cî := t1···(i−1)s(i+1)···n

we can rewrite γ1 as

γ1 = ∆n(c1̂ × · · · × cn̂)

Now we need to show that γ1 is surjective if and only if γ2 is. Remark that the boundary
double groupoids of τ being exclusive means that for each pair i 6= j ∈ [n] there exists an
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isomorphism Φi,j : τi t×t τj → τi t×s τj such that the following diagram commutes :

τij

∆zz ∆ $$
τij × τij

tj×ti
��

τij × τij
sj×ti

��
τi t×t τj Φi,j

// τi t×s τj

In other words, it is showing that in dimension two γ1 = γ2Φ1,2. We can now use this to
generalize to any dimensions.
Considering the fact that

γ2 = ∆(n−1)

(
t1̂ × · · · × t ˆ(n−2) × t1···(t−2)

)(
id× · · · × id×

(
∆(tn × t(n−1))

))
we can see that

γ2(id× · · · × Φn,(n−1)) = ∆n(t1̂ × · · · × t ˆ(n−2) × c ˆ(n−1) × tn̂)

= ∆n(t1̂ × · · · × t ˆ(n−2) × c ˆ(n−1) × cn̂)

The right hand side corresponds to the graph obtained from Γ2 where the arrow in the
(n− 1)th direction was sled back along the arrow in the nth direction. We may keep using
the same trick to slide the arrow in the (n − 2)th direction back along the previously
mentioned ones. It will be done by using Φn,(n−2) followed by Φ(n−1),(n−2). At that point
we will have showed that there exists a map φ such that

γ2φ = ∆n(t1̂ × · · · × t ˆ(n−3) × c ˆ(n−2) × c ˆ(n−1) × cn̂)

Repeating this argument shows that there exists an isomorphism Φ made out of Φi,j’s
such that γ2 = γ1Φ. We can therefore conclude that γ1 is surjective if and only if γ2 is,
proving the lemma.

We are now ready to prove theorem 2.26.

Proof. Let X, Y ∈ τ such that X = ıi(si(X)) and s[n](Y ) = t[n](X). Let u be the
sub n-cube of X · Y whose partition is (i, [n] \ i). By definition u is of depth (n − 1)
in the barycentric subdivision defining X · Y and si(X · Y ) = si(X) · si(u). Now since
X = ıi(si(X)), t̂i(X) = ıi(s[n](X)) = sî(u). But as τ is vacant, u = ıi(si(u)) = ıi(ti(u)) =
ıi(si(Y )). That shows that, for α ∈ τî and Y ∈ τ

si(ıi(α) · Y ) = α · si(Y )

Similarly one can show that

ti(Y · ıi(α)) = ti(Y ) · α
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From which we can conclude that :

cî(ı1̂(f1) · ı2̂(f2) · · · ın̂(fn)) = t1···(i−1)s(i+1)···(n−1)sn(ı1̂(f1) · ı2̂(f2) · · · ın̂(fn))

= t1···(i−1)s(i+1)···(n−1)(ı1̂n̂(f1) · sn(ı2̂(f2) · · · ın̂(fn)))

= · · ·
= t1···(i−1)s(i+1)···(n−1)(ı1̂n̂(f1) · ı2̂n̂(f2) · · · sn(ın̂(fn)))

= t1···(i−1)s(i+1)···(n−1)(ı1̂n̂(f1) · ı2̂n̂(f2) · · · ı ˆ(n−1)n̂(fn−1))

= · · ·
= t1···(i−1)(ı2···i(f1) · ı13···i(f2) · · · ı1···(i−1)(fi))

= t2···(i−1)t1(ı2···i(f1) · ı13···i(f2) · · · ı1···(i−1)(fi))

= t2···(i−1)

(
t1(ı2···i(f1) · ı13···i(f2) · · · ) · ı2···(i−1)(fi)

)
= · · ·
= t2···(i−1)(ı3···i(f2) · ı24···i(f3) · ı2···(i−1)(fi)

)
= t3···(i−1)t2(ı3···i(f2) · ı24···i(f3) · ı2···(i−1)(fi)

)
= · · ·
= ti−1(ıi−1(fi))

= fi

Therefore X and ı1̂(f1) · ı2̂(f2) · · · ın̂(fn) have the same value along Γ1, which by the
previous lemma means that they have the same value along Γ2 as well and therefore are
equal.

What this theorem says is that as a groupoid, (G, ·) admits a factorization into n
factors. We will describe the connection in further detail in the next section.

2.28. Lemma. Let X, Y ∈ τk̂, then ık(X) · ık(Y ) = ık(X · Y )

Proof. According to lemma 2.8, every sub-cube in the barycentric subdivision ık(X) ·
ık(Y ) shares an edge in direction k with either ık(X) or ık(Y ), and hence by vacancy is
of the form ık(). This shows that so is ık(X) · ık(Y ). Now its kth source has X in depth 0
and Y in depth (n− 1), which shows that it is indeed X · Y , proving the lemma.

2.29. Corollary. Let f ∈ τi and g ∈ τj for i < j ∈ [n] and ıj(f) · ıi(g) ∈ τij be defined
as above in τij. Then there exists a unique f ′ ∈ τi and g′ ∈ τj such that

ı̂i(f) · ıĵ(g) = ı̂iĵ
(
ıj(f) · ıi(g)

)
= ıĵ(g

′) · ı̂i(f
′)

Proof. The fact that ı̂i(f)·ıĵ(g) = ı̂iĵ
(
ıj(f)·ıi(g)

)
and that ıĵ(g

′)· ı̂i(f ′) = ı̂iĵ
(
ıi(g

′)·ıj(f ′)
)

follows from the above lemma. Now define

f ′ := tj
(
ıj(f) · ıi(g)

)
g′ = si

(
ıj(f) · ıi(g)

)
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and note that for X ∈ τij:

X =
(
ıj(sj(X)) ◦i ıij(sjti(X))

)
◦j
(
X ◦i ıi(ti(X))

)
= ıj(sj(X)) · ıi(ti(X))

X =
(
ıi(si(X)) ◦i X

)
◦j
(
ıij(sitj(X)) ◦ ıj(tj(X))

)
= ıi(si(X)) · ıj(tj(X))

which proves the corollary.

Let nGpd be the category of n-tuple groupoids and n-tuple functors and let nSub
be the category defined by :

• Objects are (n+ 1)-tuples (G,H1, H2, · · · , Hn) where G is a groupoid, {Hi}i∈[n] are
subgroupoids of G each containing all objects of G.1

• Arrows are functors f : G→ G′ such that f(Hi) ⊂ H ′i ∀i ∈ [n]

In this section, we define the “commutative cubes” functor

Γ : nSub→ nGpd

and find a subcategory of nGpd where it admits a left adjoint. We will then determine
how to make this adjunction into an equivalence.
The “commutative cubes” functor takes a (n+ 1)-tuple (G,H1, H2, · · · , Hn) and sends it
to the n-tuple groupoid Γ(G,H1, H2, · · · , Hn) defined by the criteria:

• Objects of Γ(G,H1, H2, · · · , Hn) are objects of G.

• Γ(G,H1, H2, · · · , Hn)i = Hi.

• Γ(G,H1, H2, · · · , Hn)I is slim for any I ⊆ [n] with more than one element.

• n-cubes are commutative cubes, to be defined below.

Let K be the set of all possible cubes that would comply with the first three condi-
tions. Each path of length n from the source object to the sink object of an n-cube
gives a sequence of composable arrows in G, with each arrow in a different subgroupoid.
Each path then defines a map of sets K → G by composing the corresponding se-
quences. The n-cubes of K that have a constant value under all paths are the cubes
of Γ(G,H1, H2, · · · , Hn).

2.30. Lemma. Γ(G,H1, H2, · · · , Hn) is a slim n-tuple groupoid.

Proof. As pasting commutative diagrams along common boundaries produces other com-
mutative diagrams, all in an associative way, the compositions along faces are well defined.
The rest of the proof is of no technical interest and very straightforward. Also, it is clear
from the definition that the n-tuple groupoid defined is slim.

1Any subgroupoid can be turned into one of this type by taking its union with the discrete groupoid
on the objects of G.
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Thus we showed that the map Γ is well defined on objects. For it to be a functor,
we need to define it on arrows as well, so supposing that F : (G,H1, H2, · · · , Hn) →
(G′, H ′1, H

′
2, · · · , H ′n) is a subgroupoid preserving functor, we can define Γ(F ) as the n-

tuple functor from Γ(G,H1, H2, · · · , Hn) to Γ(G′, H ′1, H
′
2, · · · , H ′n) such that Γ(F )i = F |Hi

.
Since objects in the image of Γ are slim, the functor is uniquely defined by this criteria.
The image of this functor is by definition in the category of slim n-tuple groupoids and
in this category lie all the vacant n-tuple groupoids. But by Lemma 2.25 and Theorem
2.26, out of a vacant n-tuple groupoid one can canonically define a groupoid and n sub-
groupoids that satisfy the criteria for nSub. This defines a functor

Λ : nVacant→ nSub

by Λ(τ) = ((τ, ·), τ1, τ2, · · · , τn), where we identified τi and ı̂i(τi). The definition of the
functor on morphisms is clear, (Λ(F ))(X) := F (X). If we can establish the preimage of
nVacant under Γ, we may find an adjunction between Γ and ∆. Slimness being included
in the definition of Γ, remains exclusivity and maximality to be characterized w.r.t. Γ.
Out of the two, exclusivity is the easiest criteria to track.

2.31. Lemma. Let I ⊆ [n] have at least two elements, then Γ(G,H1, · · · , Hn)I is exclusive
if and only if ∩

i∈I
Hi is discrete.

Proof. Remark that Γ(G,H1, · · · , Hn)I ' Γ(G,Hi1 , · · · , Hi|I|) where I = {i1, · · · , i|I|}
and that the only non identity arrows contained in an element X of its core groupoid are
of the form sî(X). Therefore:

X ∈
(
Γ(G,H1, · · · , Hn)I

)
y⇒ sî(X) = sĵ(X)∀i, j ∈ I

⇒ sî(X) ∈ ∩|I|j=1Hij ∀i ∈ I

Assuming that the above mentioned intersection is discrete, we can conclude that sî(X) =
ıi(s[n](X))∀i ∈ I, i.e. that the given boundary |I|-tuple groupoid is exclusive.
Now assume that there exists one arrow f in the above intersection that is not an identity.
Then there exists X ∈

(
Γ(G,H1, · · · , Hn)I

)
y such that sî(X) = f ∀i ∈ I. The fact that

X is not in its core bundle finishes the proof of the statement.

As for maximality, we can start by this simple statement:

2.32. Lemma. If Γ(G,H1, · · · , Hn) is Γ2-maximal then HiHj = HjHi ∀i, j ∈ [n].
Γ(G,H1, H2) is maximal if and only if H1H2 = H2H1.

Proof. The existence of identities show that if τ is Γ2-maximal, so is τI , for all I ⊂ [n].
But if τij is Γ2 maximal, we can use the existence of inverses to show HiHj ⊂ HjHi and
HjHi ⊂ HiHj, and hence HiHj = HjHi. Now suppose that H1H2 = H2H1, then for a
coloring (h1, h2) of the Γ1 path we can find (h′2, h

′
1) in H2×

1
H1 giving the same element of

G under composition. This proves the existence of a commutative square and therefore
of Γ1-maximality, or in this case maximality in general.



322 DANY MAJARD

It would be desirable to get a simple criteria for maximality. However, the difficulty to
find such criteria makes such a quest out of the scope of this article. Luckily, the problem
simplifies tremendously for maximal exclusivity. The case n = 2 suggests the following
definition:

2.33. Definition. Let G be a groupoid and H1, H2 be subgroupoids such that

H1H2 = H2H1

H1 ∩H2 is discrete.

Then the subgroupoids are said to be coupled.

2.34. Corollary. Let (G,H1, H2) ∈ 2Sub. Then H1 and H2 are coupled if and only if
Γ(G,H1, H2) is vacant.

It would be convenient if pairwise coupling was the criteria for vacancy. The reality
is a little more complex, but pairwise coupling provides some sort of “braiding” that will
prove itself crucial.

2.35. Lemma. Let H1 and H2 be coupled and µ be the groupoid composition. Then there
exists an isomorphism Φ12 : H1 ×

1
H2 → H2 ×

1
H1 in Set such that µ = Φ12µ

Proof. The proof follows the same pattern as that of Lemma 2.27.

The fact that HiHj = HjHi means that HiHj is a subgroupoid of G. For the graphi-
cally minded, we may represent µ : Hi ×

1
Hj → HiHj by : When Hi ∩Hi is discrete, this

map is invertible:
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and the “braiding” Φij is given by:

2.36. Definition. Let G be a groupoid and {Hi}[n] a set of pairwise coupled subgroupoids.
This set is said to be optimally coupled if, for any i 6= j 6= k ∈ [n] the following is true:

(Φij × idHk
)(idHj

× Φik)(Φjk × idHi
) = (idHi

× Φjk)(Φik × idHj
)(idHk

× Φij)

One can readily recognize the Yang-Baxter equation, and hence understand our use
of the word “braiding”. Graphically, it is the usual braiding condition :

which can be drawn using multiplication branchings as well. We encourage the reader to
play with these diagrams. We are now ready to formulate the theorem.

2.37. Theorem. Let (G,H1, · · · , Hn) ∈ nSub, then the subgroupoids are optimally cou-
pled if and only if Γ(G,H1, · · · , Hn) is vacant.

Proof. Let us start with ⇒, i.e. with a optimally coupled set of subgoupoids. The fact
that the subgoupoids are pairwise coupled shows that all boundary double groupoids of
Γ(G,H1, · · · , Hn) are exclusive. Moreover by definition it is slim and all its boundary i-
tuple groupoids are slim for i > 1. The only criteria left to check is therefore maximality.
Suppose that you color the Γ1 path, the one corresponding to the usual ordering of
[n], with elements of the appropriate subgroupoids. For any other path, or equivalently
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ordering of [n], there exists a sequence of transposition taking one ordering to the other.
Geometrically, each transposition moves the path along a 2-dimensional face of the n-
cube. To this sequence corresponds, through the “braiding” isomorphisms, a coloring of
the chosen path by elements of the corresponding subgroups that yield the same morphism
under composition in G as Γ1.
We can use this trick to color every paths but for it to correspond to an actual cube,
we need to show that the coloring was independent of the sequence of path chosen. This
corresponds to requiring that the isomorphism corresponding to two different sequences of
transpositions, or tangles, are equal. It is a well known result that this coherence condition
is satisfied as long as the Yang-Baxter equation is satisfied. Therefore by definition, there
exists a unique cube in Γ(G,H1, · · · , Hn) for any coloring of the Γ1 path, which proves
vacancy.
Now we can show⇐. Assume that Γ(G,H1, · · · , Hn) is vacant. Then so are its boundary
i-tuple groupoids. For i = 2, Lemma 2.34 tells us that the subgroupoids are pairwise
coupled. As for i = 3, there exists a sequence of paths source-sink differing by only two
edges at every step that goes around the 3-cube and comes back to the initial path. the
corresponding isomorphism is then forced to be an identity, which is equivalent to the
Yang-Baxter condition.

Now that we characterized the preimage of nVacant under Γ, we need to find the
image of Λ. It is already known that in the case n = 2 the equivalence of categories is
between vacant double groupoids and factorizations of a groupoid by two subgroupoids
[3]. Let’s show light on the relationship between optimal coupling and factorizations.

2.38. Definition. Let G be a groupoid and (H1, · · · , Hn) an ordered n-tuple of sub-
groupoids. The n-tuple is a factorization of G provided that every arrow g ∈ G can be
uniquely written as:

g = h1h2 · · ·hn

for hi ∈ Hi.

We can see factorization as the requirement that the composition µ : H1×
1
· · ·×

1
Hn → G

in Set is iso. We will use this criteria in the following proofs.

2.39. Lemma. Let (H1, · · · , Hn) be a factorization of G and (Hi, Hj) be coupled for all
i 6= j ∈ [n]. Then the subgroupoids are optimally coupled and for any σ ∈ Sn, the set
(Hσ(1), · · · , Hσ(n)) is a factorization.

Proof. Let’s start by seeing that, following Lemma 2.35 and thanks to associativity of
composition, two coupled subgroups Hi and Hi+1 give an isomorphism id× · · · ×Φi,i+1×
· · · × id:

H1 ×
1
· · · ×

1
Hi ×

1
Hi+1 ×

1
· · · ×

1
Hn → H1 ×

1
· · · ×

1
Hi+1 ×

1
Hi ×

1
· · · ×

1
Hn
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such that µ = (id × · · · × Φi,i+1 × · · · × id)µ. But since the composition on the left side
is an isomorphism, so is the composition on the right side. We have therefore shown that
(H1, · · · , Hi+1, Hi, · · · , Hn) is a factorization of G.
Since Sn is generated by the transpositions, we have proved the second statement of
the lemma. But since all of the orderings of the subgroupoids are factorizations, the
two isomorphisms present in the Yang-Baxter equation have to be equal, by uniqueness,
proving the optimal coupling.

The above proof has a very nice graphic counterpart. We will leave to the reader the
pleasure of discovering it.

2.40. Corollary. Let τ be a vacant n-tuple groupoid, then Λ(τ) is an optimally coupled
factorization.

Proof. This follows from Theorem 2.26 and Corollary 2.29

We therefore know that pairwise coupled factorizations give vacant n-tuple groupoids
under Γ, since they are optimally coupled but we wish to provide an example showing that
optimal coupling doesn’t always come from a factorization. Consider a situation where
(H1, H2, H3) are optimally coupled but H1H2 ∩ H3 is not discrete. Then composition is
not an isomorphism and the triple does not form a factorization of the groupoid G. Yet
they provide a vacant triple groupoid.

We may now show that if we restrict ourselves to optimally coupled sets of sub-
groupoids, the pair (Λ,Γ) is an adjunction and that this adjunction is an equivalence
once restricted to optimally coupled factorizations.

2.41. Definition. Let nCpl be the full subcategory of nSub whose objects are n-tuples
(G,H1, H2, · · · , Hn) such that {Hi}[n] is optimally coupled, and nCplFct the full subcat-
egory of nCpl whose objects are factorizations of G.

2.42. Theorem. Γ : nCpl → nVacant has Λ for left adjoint. Moreover (Λ,Γ|nCplFct)
is an equivalence of categories.

Proof. Let (G,H1, · · · , Hn) ∈ nCpl and τ ∈ nVacant. Then from Lemma 2.26, which
states that {τi}[n] provides a factorization of (τ, ·), we can build an isomorphism

nCpl
(
Λ(τ), (G,H1, · · · , H2)

)
'

{(f1, · · · , fn)|fi : τi → Hi and fi = fj on objects}

moreover τ has at most one n-cube per acceptable 1-boundary, so an n-tuple functor is
fixed by its values on arrows, i.e.

nVacant
(
τ, Γ(G,H1, · · · , Hn)

)
'

{(f1, · · · , fn)|fi : τi → Hi and fi = fj on objects}
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proving the adjunction.
Now if (G,H1, H2, · · · , Hn) ∈ nCplFct, every arrow of G can be written uniquely as a
composition of arrows of {Hi}, hence :

nCplFct
(
(G,H1, · · · , H2), Λ(τ)

)
'

{(f1, · · · , fn)|fi : Hi → τi and fi = fj on objects}

and since Γ(G,H1, · · · , Hn) is vacant, we have an isomorphism:

nVacant
(
Γ(G,H1, · · · , Hn), τ

)
'

{(f1, · · · , fn)|fi : Hi → τi and fi = fj on objects}

which proves the equivalence of categories between nCplFct and nVacant.

This theorem allows us to see some decompositions of groups as higher dimensional
groups, where dimension is taken in a very categorical sense.

3. Maximally exclusive n-tuple groupoids

In this section we will expand our results to those n-tuple groupoids that would be vacant,
would they be slim. We have to add a few technicalities to get an adjunction again.

3.1. Definition. Let (τ1̂, · · · , τn̂) be the boundary (n − 1)-tuple groupoids of some n-
tuple groupoid τ . Then the coarse n-tuple groupoid 2(τ1̂, · · · , τn̂) is the slim n-tuple
groupoid such that 2(τ1, · · · , τn)i = τi and an n-cube exists iff its boundary is admissible.
The frame �τ of τ is then the image of the functor :

Π : τ → 2(τ1̂, · · · , τî, · · · , τn̂)

such that Πsi = siΠ and Πti = tiΠ for all i ∈ [n].

In this light, a maximally exclusive n-tuple groupoid is one whose frame is vacant.
Instrumental to our defining a diagonal composition for n-cubes was the uniqueness pro-
vided by vacancy to determine fillers for sub cubes of intermediary depth in the barycentric
subdivision . But in the present case this uniqueness is no longer available, though the
boundaries of such cubes are fixed. We therefore need to make a consistent choice of fillers
to define a diagonal groupoid out of a maximally exclusive n-tuple groupoid.
Let ! : �τ → τ be a section of Π as n-tuple graphs and X, Y ∈ τ , then one can use
the section to fill the barycentric subdivision of the n-cube with X of depth 0 and Y of
depth n. Denote the composite of the subdivision by X ·! Y , and the graph defined by
(τ[n], s[n], t[n]) with the above product by (τ, ·!).

3.2. Lemma. Let τ be an n-tuple groupoid. Then if the section ! : �τ → τ is an n-tuple
functor, then (τ, ·!) is a groupoid.
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Proof. Let X, Y, Z ∈ τ such that t[n](X) = s[n](Y ) and t[n](Y ) = s[n](Z). Then (X ·!Y )·!Z
and X ·! (Y ·! Z) are both equal to the cube obtained by composing the subdivision in
thirds of the n-cube where X, Y, Z are placed on the diagonal source-sink and all other
sub n-cubes are filled with elements given by the section. Since the frame is vacant, such
a filling exists and since the interchange laws hold, the composition is associative. The
identities of the groupoid are given by the identity n-cubes on objects and inverses are
given by the following argument:
Let X be placed in position of depth 0. From a Lemma 2.12, there exists a filling of the
barycentric subdivision with section n-cubes such that all boundaries of the composition
are identities on s[n](X). In other words, ∃Y ∈ �τ such that X·!!(Y ) = uX ∈ τ•. Then:

X·!!(Y ) · (uX)−i = uX ·! (uX)−i

= uX ◦i (uX)−i

= ı[n](s[n](X))

Which shows that X has a right inverse. The same procedure shows that it has a left
inverse and therefore that (τ, ·!) is a groupoid.

As promised in the introduction, we can extend Theorem 2.42 to further decomposi-
tions of groupoids. Let nSemiCpl be the category defined by :

• Objects are (n + 2)-tuples (G,A,H1, H2, · · · , Hn) where (G,H1, · · · , Hn) ∈ nCpl,
A ∈ G is an abelian group bundle on the objects of G such that ha(h)−1 ∈ A for all
h ∈ Hi and all i ∈ [n].

• Arrows are functors f : G→ G′ such that f(Hi) ⊂ H ′i for all i ∈ [n] and f(A) ∈ A′.

Let nSemi be the full subcategory of nSemiCpl where objects (G,A,H1, · · · , Hn) are
factorizations. Let nMaxExcl be the category whose objects are sections of frame maps
of n-tuple groupoids and arrows are section preserving n-tuple functors. Then we can
build a functor

Γ̃ : nSemi→ nMaxExcl

where the n-tuple groupoid of Γ̃(G,A,H1, · · · , Hn) has for n-cubes pairs (X, a) with X ∈
Γ(G,H1, · · · , Hn) and a ∈ A and for compositions:

(X, a) ◦i (Y, b) =
(
X ◦i Y, asî(X)b(sî(X)−1)

)
and has for section ! : Γ(G,H1 · · · , Hn)→ Γ̃(G,A,H1 · · · , Hn) given by !(X) =(
X, ı(s[n](X))

)
. A direct computation shows that these compositions define an n-tuple

groupoid. On arrows of nSemi, Γ̃ is given by:

Γ̃(F )(X, a) =
(
Γ(F )(X), F (a)

)
Once again a direct computation shows that this defines a functor. We are now ready to
state the theorem.
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3.3. Theorem. The functor Γ̃ : nSemiSub → nMaxExcl has a left adjoint Λ̃ defined
by:

Λ̃(τ, !) =
(
(τ, ·!), τ•, τ1, · · · , τn

)
Λ̃(F ) = F

Moreover (Γ̃|nSemi, Λ̃) is an equivalence of categories

Proof. Let τ, ω be maximally exclusive, then :

nMaxExcl(ω, τ) ' {(F0, F1, · · · , Fn)|F0 : ω• → τ• and Fi : ωi → τi}

Moreover for (G,A,H1, · · · , Hn) and (K,B,L1, · · · , Ln) ∈ nSemi, we have:

nSemi
(
(G,H1, · · · , Hn), (K,B,L1, · · · , Ln)

)
'

{(F0, F1, · · · , Fn)|F0 : A→ B and Fi : Hi → Li}

Considering that the image of Λ̃ is by definition in nSemi, it is enough, following the
argument of Theorem 2.42 to prove the two statements.

3.4. Examples. Following the work on Lie double groupoids and algebroids of MacKen-
zie [10], we can define the notions of Lie n-tuple groupoid. Then we may use decomposi-
tions such as the Iwasawa decomposition to present certain Lie groups as n-tuple groups.
In our previous paper we presented the Poincaré group as a maximal exclusive double
group and hinted towards a possible corresponding triple group. We can now state what
needs to be checked to validate this claim.

3.5. Theorem. Every Iwasawa decomposition G = KAN of a semi-simple Lie group
corresponds to a vacant double group with boundary groups K and AN . Moreover there
exists a corresponding vacant triple group with boundary groups K, A and N if and only
if KA = AK and KN = NK .

Proof. An Iwasawa decomposition of a group G is a factorization (G,K,A,N) stemming
from a decomposition of its Lie algebra g as a direct sum k ⊕ a ⊕ n, see [8] for details.
Since a⊕ n is a subalgebra, AN is a subgroup of G. Therefore, according to Lemma 2.39
and Theorem 2.37, the triple (G,K,AN) gives a vacant double group under Γ.
From the direct sum, it is clear that K ∩ A, A ∩N and K ∩N are trivial. According to
lemma 2.39, it suffices for the other two pairs of factors to be coupled to give a vacant
triple group. The only remaining criteria are then the ones listed in the lemma.

Our main interest was in the possible new ways of seeing the Poincaré group and we
had hoped for it to be giving a triple group. Unfortunately it is not the case, or at least
not as originally conceived.
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3.6. Corollary. The Poincaré group has a decomposition of the form :

Poinc ' (KAN) nR4
+

where K, A, and N are an Iwasawa decomposition of SO(3,1) given by:

K := exp

{
0 0 0 0
0 0 a b
0 −a 0 c
0 −b −c 0

 |a, b, c ∈ R

}
' SO(3)

A := exp

{
0 a 0 0
a 0 0 0
0 0 0 0
0 0 0 0

 |a ∈ R

}
' SO(1, 1)

N := exp

{
0 0 a b
0 0 a b
a −a 0 0
b −b 0 0

 |a, b ∈ R

}

The double group Γ̃(Poinc,R4
+, SO(3), AN) is a maximal exclusive double group. How-

ever, Γ̃(Poinc,R4
+, SO(3), SO(1, 1), N) is not maximal.

Proof. The Iwasawa decomposition of the Lorentz group SO(3, 1) is a standard com-
putation, see [7], and the semi-direct product with the translation group is a well known
feature of Euclidian and Minkowskian isometry groups. From Theorems 3.3 and 3.5,
Γ̃(Poinc,R4

+, SO(3), AN) gives a maximal exclusive double group. A quick computation
shows that:

[a, k] =

{
0 0 a b
0 0 0 0
−a 0 0 0
−b 0 0 0

 |a ∈ R

}
⊂ g

does not belong to k ⊕ a. Therefore k ⊕ a is not a Lie subalgebra of g, and KA not a
subgroup of G. From theorem 3.5 we know that there does not exist a corresponding
maximally exclusive triple group.

There exists of course a way to get a vacant triple group out of the Poincaré group. We
may consider the factorization (Poinc,R4

+, SO(3), AN) ∈ 3Sub and note that as R4
+ is

normal in Poinc, so that it is coupled with SO(3) and AN . Since one of these subgroups
is normal, the coupling is optimal (this is very easy to prove) and we can then conclude
that (Poinc,R4

+, SO(3), AN) is in 3CplFct and has an associated vacant triple group.
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Conclusion

We have in these pages completely characterized maximally exclusive n-tuple groupoids,
generalizing the results on vacant double groupoids obtained in the past by various au-
thors. It remains that these cases are some of the most simple cases available. We found
that dropping the exclusivity assumption results in a much more complicated structure.
Even within these simple cases some questions remain unanswered. A complete and pre-
cise definition of core diagram [12] has yet to be given for the cases n > 2 and it seems
that it would be a weaker invariant than in the two dimensional case. The classification
of the classes of double groupoids that have isomorphic core diagrams has not been found
either. More importantly the proper representation theory of these entities has not been
discussed anywhere, to our knowledge. Considering that a group as important as the
Poincaré group is an example of double and triple group, as other Lie groups, it seems
urgent to take a look at these questions. It is our hope that this quick exposition of the
subject matter will encourage further development of higher dimensional group theory
and representation theory, beyond the globular approach discussed in [5, 6].
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Clemens Berger, Université de Nice-Sophia Antipolis: cberger@math.unice.fr
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