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SOME STABILITY PROPERTIES OF EPIMORPHISM CLASSES

DALI ZANGURASHVILI

Abstract. It is proved that in any pointed category with pullbacks, coequalizers
and regular epi-mono factorizations, the class of regular epimorphisms is stable under
pullback along the so-called balanced effective descent morphisms. Here “balanced”
can be omitted if the category is additive. A balanced effective descent morphism is
defined as an effective descent morphism p : E → B such that any subobject of E is a
pullback of some morphism along p. It is shown that, in any category with pullbacks
and coequalizers, the class of effective descent morphisms is stable under pushout if and
only if any regular epimorphism is an effective descent morphism. Moreover, it is shown
that the class of descent morphisms is stable under pushout if and only if the class of
regular epimorphisms is stable under pullback.

1. Introduction

Throughout the paper the ground category is assumed to have pullbacks and coequalizers.
The main issue considered in this paper consists in finding a possibly large class of

morphisms along which the pullback preserves regular epimorphisms. If the category is
regular, then obviously all morphisms are of this kind. We focus our consideration on the
condition

(*) the class of regular epimorphisms is stable under pullback along effective descent
morphisms,

which appeared in the joint paper [15] of the early 1990’s by Sobral and Tholen in con-
nection with the problem whether the class of effective descent morphisms is closed under
composition (not known yet to be the fact at that time). Namely, they showed that un-
der condition (*), the closedness of this class under composition is a quick consequence
of the sufficient condition for the composition of monadic functors to be monadic given
by Pfender in [11]. Later, in [12] Sobral, Tholen and Reiterman showed that condition
(*) holds not always (namely, it fails for the category of topological spaces). However, in
the same paper they proved the invariance theorem for descent data, which implies that
the class of effective descent morphisms is always closed under composition, regardless
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whether (*) is satisfied. Thereafter the question when condition (*) is valid was not in-
vestigated, to the best of our knowledge. We study this issue in this paper and, moreover,
answer the question by what kind of effective descent morphisms we must replace all ef-
fective descent morphisms in condition (*) so that the resulting condition be valid under
some natural restrictions on the category.

We show that if a category has regular epi-mono factorizations and is pointed (and
hence have kernels), then

(**) the class of regular epimorphisms is stable under pullback along balanced effective
descent morphisms.

A balanced morphism is defined here as a morphism p : E → B such that, for any
subobject γ : C � E of E that contains the kernel of p, there exists a morphism ξ :
E ×B C → C such that the composition γξ is equal to the first projection π1 in the
pullback

E ×B C
π2 //

π1

��

C

γ

��
E

p
��

E
p // B

If p is an effective descent morphism, then the latter condition is equivalent to the following
one: any subobject C � E of E that contains the kernel of p is the pullback of some
morphism along p. The prototype of a balanced morphism is a homomorphism of groups
— if a subgroup contains the kernel of p, then it either contains a coset wholly or does
not intersect it, and therefore the subgroup is the inverse image of some subgroup of B.
As different from the category of groups, only very few effective descent morphisms are
balanced in the category of pointed sets.

Further, it is proved that all morphisms are balanced in any additive category. This
implies that condition (*) is always satisfied in such a category if it has regular epi-mono
factorizations.

We derive the above result on the validity of condition (**) from a more general state-
ment given in this paper, which provides yet another stability property for the class E
in any factorization system (E,M) with M ⊂ Mono. Namely, it asserts that the class
E is stable under pullback along M-balanced M-reflecting effective descent morphisms.
An M-balanced morphism is defined similarly to a balanced morphism (replacing “sub-
object” by “M-subobject” in the definition), while an M-reflecting morphism is defined
as a morphism such that the pullback along it reflects M-morphisms. For instance, any
normal epimorphism is NormMono-balanced. Moreover, every effective descent mor-
phism is Mono-reflecting; here NormMono (resp. Mono) denotes the class of all normal
monomorphisms (resp. all monomorphisms). Applying these facts and the above general
result to the factorization system (Epi,NormMono) in the relevant situations, we obtain
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the sufficient conditions for the class of epimorphisms to be stable under pullback along
normal effective descent morphisms.

One more issue considered in the paper is whether the class of effective descent mor-
phisms and the class of descent morphisms are stable under pushout. Some other stability
properties of these classes are well-known: they are stable under pullback [14], [15], have
the right cancellation property [12], and, as has already been mentioned here, are closed
under composition [12]. We show that the class of effective descent morphisms is stable
under pushout if and only if every regular epimorphism is an effective descent morphism.
Moreover, the class of descent morphisms is stable under pushout if and only if the cate-
gory is regular. Under the above-mentioned requirements on a category to have pullbacks
and coequalizers, we call a category regular if the class of regular epimorphisms is stable
under pullback.

2. Preliminaries

We begin with the needed definitions (see, for example, the paper [8] by Janelidze and
Tholen). Throughout the paper C denotes, unless specified otherwise, an arbitrary cat-
egory with pullbacks and coequalizers. Moreover, M denotes a morphism class which is
closed under composition with isomorphisms and stable under pullback.

Let p : E → B be a morphism in C , and let DesM(p) be the category ofM-descent data
with respect to p [8]. Recall that such data is defined as a triple (C, γ, ξ) with C ∈ Ob C ,
where γ and ξ are morphisms C → E and E ×B C → C, respectively, such that γ ∈M,
and the following equalities are valid (see the diagrams (2.4) and (2.5) below):

γξ = π1, (2.1)

ξ(γ, 1C) = 1C , (2.2)

ξ(1E ×B π2) = ξ(1E ×B ξ), (2.3)

C
1C

++
(γ,1C)$$

γ

��

E ×B C
ξ //

π1

��

C

γ

��
E

p
��

E
p // B

(2.4)
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E ×B (E ×B C)
1E×Bπ2

((1E×Bξ ((

//

��

E ×B C
π2

��
ξ

��
E ×B C

π2 //
ξ

//

π1

��

C

γ

��
E

p
��

E
p // B

(2.5)

A morphism (C, γ, ξ)→ (C ′, γ′, ξ′) in DesM(p) is defined as a C -morphism h : C → C ′

such that γ′h = γ and ξ′(1E ×B h) = hξ.
We have the comparison functor

Φp :M/B → DesM(p),

where M/B is the full subcategory of the slice-category C/B with objects being mor-
phisms from M. The functor Φp sends f : D → B to the descent data

(E ×B D, π′1, 1E ×B π′2),

where π′1 and π′2 are the pullbacks of f and p, resp. along each other.
p is called anM-descent (resp. effectiveM-descent) morphism if Φp is full and faithful

(resp. the equivalence of categories). If M is the class of all morphisms, then we omit the
prefix M.

If M is closed under composition with p from the left ( e ∈M ⇒ pe ∈M), then the
change-of-base functor

p∗ :M/B →M/E (2.6)

(pulling back along the morphism p) has the left adjoint (composing with p on the left).
It is proved in [8] that then the Eilenberg-Moore category of the monad induced by the
adjunction

p! a p∗ (2.7)

is equivalent to the category DesM(p). This implies that then p is anM-descent (resp. an
effective M-descent) morphism if and only if the change-of-base functor p∗ is premonadic
(resp. monadic).

2.1. Theorem. [7], [8] Let M be closed under composition with a morphism p from the
left. p is an M-descent morphism if and only if it is an M-universal regular epimor-
phism, i.e., a morphism such that any of its pullbacks along any M-morphism is a regular
epimorphism.
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A special case of interest is the one, where there exists a morphism class E, such
that the pair (E,M) is a factorization system in the usual sense of Freyd and Kelly
[5]. Recall that this means that both classes E and M are closed under composition with
isomorphisms, every morphism admits an (E,M)-factorization (i.e., there exist morphisms
e ∈ E and m ∈M with f = me), and any e ∈ E is orthogonal to any m ∈M (i.e., for any
commutative square βe = mα there exists a unique morphism δ with α = δe and β = mδ).
Recall also the well-known stability properties of the classes E and M in a factorization
system (E,M): both are closed under composition, the class E (resp. M) is stable under
pushout (resp. pullback), and is right cancellable (ee′, e′ ∈ E⇒ e ∈ E), while the classM
is left cancellable. Moreover, it is well known that the class E (resp. M) coincides with the
class M↑ (resp. E↓ ) of morphisms orthogonal (resp. co-orthogonal) to all M-morphisms
(resp. E-morphisms). This in particular implies that if M ⊂ Mono, then all regular
epimorphisms are contained in E. Moreover, the condition M ⊂ Mono is equivalent to
the strong version of the right cancellation property for the class E (eα ∈ E ⇒ e ∈ E)
[1].

Let us recall some facts from [8]. Let (E,M) be a factorization system. Then the
change-of-base functor (2.6) has a left adjoint. It sends a morphism f to theM-morphism
in the (E,M)-factorization of the composition pf . However, in general, the category
DesM(p) is not equivalent to the Eilenberg-Moore category of the monad induced by the
corresponding adjunction. But if E is stable under pullback, then this is the case. One
has the following

2.2. Proposition. [8] Let (E,M) be a factorization system with M ⊂Mono. Then the
following conditions are equivalent:

(i) p∗ is premonadic;

(ii) p∗ is monadic;

(iii) p is an M-universal E-morphism.

Proposition 2.2 implies

2.3. Theorem. [8] Let (E,M) be a factorization system with M ⊂ Mono, and let E be
stable under pullback. Then every M-descent morphism is effective, and the class of such
morphisms coincides with E.

3. Balanced morphisms

Let M ⊂Mono.

3.1. Lemma. Let p : E → B be any morphism, and γ : C � E be an M-morphism. The
conditions (i)-(iii) below are equivalent and implied by the condition (iv):

(i) there exist a morphism ξ such that (C, γ, ξ) is M-descent data with respect to p;
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(ii) there exist a morphism ξ such that γξ = π1;

(iii) the morphism γ ×B 1C is an isomorphism;

C ×B C
γ×B1C//

π′1

��

E ×B C
π2 //

π1

��

C

γ

��
E

p
��

C
γ // E

p // B

(iv) there exist morphisms δ ∈M and p′ such that the square

C
p′ //

γ
��

A

δ
��

E
p // B

is a pullback.

If p is an effective M-descent morphism, then the conditions (i)-(iv) are equivalent.
If (E = M↑,M) is a factorization system, E is stable under pullback, and p is any

morphism from E, then the conditions (i)-(iv) are also equivalent to the condition

(v) the square

C
e //

γ
��

A

m
��

E
p // B

is a pullback, where me is the (E,M)-factorization of the composition pγ.

If C is a pointed category (and hence have kernels), then any of the conditions (i)-(iv)
implies

(vi) there exists a morphism κ : Ker p → C with γκ = i, where i is the embedding
Ker p→ E.

Proof. The equivalence (i) ⇔ (ii) and the implication (i) ⇒ (iv) (when p is an effective
descent morphism) are obvious.

(ii) ⇒ (iii): One can verify that the morphism (ξ, π2) is the inverse for γ ×B 1C .
(iii) ⇒ (ii): The morphism π′1(γ ×B 1C)−1 is obviously the sought-morphism.
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(iv) ⇒ (ii): We can take the canonical morphism ξ in the diagram

E ×B C π2
//

ξ
zz

π1

��

C

γ

��p′��
C //

γ

$$

A
δ

��

E

p
��

E
p // B

(ii) ⇒ (vi): The morphism κ = ξ(i, 0) is obviously the sought-morphism (see the
diagram below)

Ker p
0

++
(i,0)
%%

i

��

E ×B C
ξ //

π1

��

C

γ

��
E

p
��

E
p // B

The equivalence (i) ⇔ (v) immediately follows from Theorem 2.3.

In the remainder of this section and Sections 4,5 we impose on C the additional
requirement to be a pointed category.

If, for any γ ∈ M, the condition (vi) is equivalent to (i)-(iii), then p is called M-
balanced. If p is Mono-balanced, we say that it is balanced.

3.2. Example. Let M contain isomorphisms and all morphisms with the zero domain.
Let p : E → B be a morphism such that, for anyM-subobject C of E that contains Ker p,
C coincides with either Ker p or E. Then it is obvious that p is M-balanced.

3.3. Example. Any morphism in a semi-abelian variety is balanced. Recall that a variety
of universal algebras is called semi-abelian if it contains a unique constant 0, and there
exist an n-ary term θ and binary terms α1, α2, ..., αn−1 such that the identities

θ(α1(a, c), α2(a, c), ..., αn−1(a, c), c) = a, (3.1)

αi(a, a) = 0, (3.2)

for any i, are satisfied [2]. Assume that C contains Ker p, and that (a, c) ∈ E ×B C for
some a ∈ E and c ∈ C. Then, p(a) = p(c), and from (3.2) we obtain that p(αi(a, c)) =
αi(p(a), p(c)) = 0. Hence αi(a, c) ∈ C for any i. The identity (3.1) implies that a ∈ C.
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3.4. Example. Let (E,M) be a factorization system. Any M-universal split monomor-
phism is M-balanced. Indeed, let n be such a monomorphism, let γ ∈M, and let me be
the (E,M)-factorization of nγ. Consider the canonical morphism h in the commutative
diagram

C

γ

��

h
��

e

''
P

m′

��

n′ // A

m
��

E
n // B

where the inner square is a pullback. Since n′ is a split monomorphism, h ∈ E, as follows
from Proposition 14.9 of [1]. But h ∈M. Hence h is an isomorphism. Therefore the outer
quadrangle is a pullback.

3.5. Example. Every normal epimorphism is NormMono-balanced. To prove this fact,
consider a normal monomorphism γ : C → E. Let γκ = i for some morphism κ : Ker p→
C, and let π : E → Coker γ be the cokernel of γ. Obviously, πi = 0, and since p is normal,
we have a morphism α : B → Coker γ with αp = π.

E ×B C
π2 //

π1

��

C

γ

��
C

γ

%%

E

p

��
Ker p

κ

OO

i // E
p //

π

&&

B

α

��
Coker γ

This implies that ππ1 = αpγπ2 = πγπ2 = 0. Since γ is a normal monomorphism, it is
the kernel of π. Therefore we have ξ : E ×B C → C such that γξ = π1. Hence p is
NormMono-balanced.

Note that the converse statement is not valid, as follows from Example 3.3.

4. Factorization systems and certain effective descent morphisms

We say that a morphism p is M-reflecting if for any pullback

E ′
p′ //

g′

��

B′

g

��
E

p // B

(4.1)

with g′ ∈M, we have g ∈M.
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4.1. Example. Any effective descent morphism p is Mono-reflecting. This follows from
the fact that, for such p, the change-of-base functor p∗ preserves pullbacks and reflects
isomorphisms. Hence p∗ reflects monomorphisms.

4.2. Example. Let C be an ideal-determined category in the sense of Janelidze, Marki,
Tholen, and Ursini [6]. Recall that this means that C is pointed finitely complete and
finitely cocomplete and the following conditions are satisfied:

(A) C is a regular category, where all regular epimorphisms are normal;

(B) for any commutative diagram (4.1) with normal epimorphisms p and p′, and mono-
morphisms g and g′, if g′ is normal, then g is also normal.

Any semi-abelian category in the sense of [2] is ideal-determined [6].
Since the class of effective descent morphisms is stable under pullback, the conditions

(A) and (B) obviously imply that one:

(C) for any commutative diagram (4.1) with an effective descent morphism p and a
normal monomorphism g′, the morphism g is also a normal monomorphism.

Therefore any effective descent morphism (and also any descent morphism) is
NormMono-reflecting in any ideal-determined category.

The next lemma is obvious.

4.3. Lemma. AnyM-reflecting effective descent morphism is an effectiveM-descent mor-
phism.

We arrive at

4.4. Proposition. Let (E,M) be a factorization system on C with M ⊂ Mono. Then
the class E is stable under pullback along M-balanced M-reflecting effective descent mor-
phisms. If M = Mono, then “M-reflecting” can be omitted.

Proof. Let me′ be the (E,M)-factorization of the pullback r of an E-morphism e along
anM-balancedM-reflecting effective descent morphism p. Since pi = 0 = e0, there exists
a morphism δ such that i = rδ = m(e′δ). Lemma 4.3 implies that p is an M-balanced
effective M-descent morphism. From Lemma 3.1 it follows that there exists a morphism
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n ∈M such that its pullback along p is m.

Ker p

δ
��

i

((
E ′

r //

e′

##

p′

��

E

p

��

C

m

>>

p′′

��
C ′

n

  
B′ e // B

Obviously p′ is a regular epimorphism, and hence lies in E. But np′′e′ = ep′, and therefore
n also lies in E. This implies that n is an isomorphism. Then m is an isomorphism as
well, and hence r ∈ E.

Proposition 4.4 and Example 4.1 immediately imply

4.5. Theorem. Let every morphism of a pointed category C with pullbacks and coequal-
izers have a regular epi-mono factorization. Then the class of regular epimorphisms is
stable under pullback along balanced effective descent morphisms.

4.6. Remark. In general, the class of regular epimorphisms is not stable under pullback
along effective descent morphisms, even if there are regular epi-mono factorizations in a
given category, as is pointed out by Reiterman, Sobral and Tholen in [12]. The counterex-
ample constructed in that paper deals with the category of topological spaces. It implies
that “balanced” can not be omitted in Theorem 4.5. Indeed, consider the category Top∗
of pointed topological spaces, and the forgetful functor F : Top∗ → Top. It obviously
reflects isomorphisms, and, moreover, preserves and reflects both pullbacks and coequal-
izers. According to a result of the paper [10] by Mesablishvili, F reflects effective descent
morphisms. Moreover, it reflects regular epimorphisms too. This easily implies that reg-
ular epimorphisms are not stable under pullback along effective descent morphisms in the
category Top∗ either.

From Theorem 4.5, Example 3.5, and the fact that a category C has coequalizers, we
obtain

4.7. Corollary. Under the conditions of Theorem 4.5, let any monomorphism be nor-
mal, and any effective descent morphism be a normal epimorphism in C . Then the class
of regular epimorphisms is stable under pullback along effective descent morphisms. More-
over, if p is an effective descent morphism, then the change-of-base functor p∗ preserves
regular epimorphisms.

Proposition 4.4 and Example 3.5 imply



SOME STABILITY PROPERTIES OF EPIMORPHISM CLASSES 11

4.8. Corollary. Let C satisfy the condition (C), and let the pair (Epi,NormMono)
be a factorization system on C . Then the class of epimorphisms is stable under pullback
along normal effective descent morphisms.

4.9. Corollary. Let C be an ideal-determined category, and let (Epi,NormMono) be a
factorization system on C . Then the class of epimorphisms is stable under pullback along
effective descent morphisms. If, in addition, C is Barr exact (a semi-abelian variety, for
instance), then “effective descent morphisms” can be replaced by “normal epimorphisms”.

5. The case of an additive category

Below we will deal with several pullbacks/products simultaneously. For simplicity, let
us agree to use one and the same notation π1, π2,..., πn for projections in all pull-
backs/products.

Let M ⊂ Mono, and let p : E → B be a morphism in a pointed category C . Let
there exist a natural number n such that, for any M-subobject (C, γ) of E and any i
(1 ≤ i ≤ n− 1), there are morphisms θγ : C × C × ...× C → C and α(i,γ) : C × C → C,
for which the following conditions are satisfied:

(i) the morphism θγ(α(1,γ), α(2,γ), ..., α(n−1,γ), π2) : C × C → C coincides with the first
projection π1;

(ii) the squares

C × C × ...× C γ×γ×...×γ //

θγ
��

E × E × ...× E
θ1E
��

C
γ // E

and

C × C γ×γ //

α(i,γ)

��

E × E
α(i,1E)

��
C

γ // E

are commutative for all i;

(iii) the morphism p(α(i,1E))(π1, π2) : E×B E → B coincides with the zero morphism for
all i.

Observe that the condition (iii) is satisfied if there are morphisms α(1,B), α(2,B), ...,
α(n−1,B) : B × B → B such that p preserves all αi, and, moreover, α(i,B)(1B, 1B) = 0 for
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any i. This follows from the commutativity of the following diagram

E ×B E //

(π1,π2)
��

B

(1B ,1B)
��

E × E p×p //

α(i,1E)

��

B ×B
α(i,B)

��
E

p // B

5.1. Lemma. The morphism p is M-balanced.

Proof. Let γ : C � E lie in M. Assume that there exists κ : Ker p → C with κγ = i.
Consider the diagram

E ×B C

(κh1,κh2,...,κhn−1,1C)

��

1E×Bγ //

hi

��

E ×B E // E × E

(α(1,1E),α(2,1E),...,α(n−1,1E),π2)

��
C ×B C ×B ...×B C // C × C × ...× C

θγ

��

γ×γ×...×γ // E × E × ...× E

θ1E

��
C

γ // E

p

��
Ker p

κ

OO

i

66

B

where hi is the canonical morphism induced by the one α(i,1E)(π1, π2)(1E ×B γ) for any
i. It is easy to verify that the upper rectangle is commutative. This, together with the
conditions (i) and (ii), implies that for the morphism

ξ = θγ(π1, π2, ..., πn)(κh1, κh2, ..., κhn−1, 1C)

we have

γξ = γθγ(π1, π2, ..., πn)(κh1, κh2, ..., κhn−1, 1C)

= θ1E(γ × γ × ...× γ)(π1, π2, ..., πn)(κh1, κh2, ..., κhn−1, 1C)

= θ1E(α(1,1E), α(2,1E), ..., α(n−1,1E), π2)(π1, π2)(1E, γ) = π1.
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Let C be an additive category. Then, as is well-known, any object C of C can be
equipped with the structure of an internal abelian group (the codiagonal ∇C : C

∐
C ≈

C × C −→ C gives the sought-for internal binary operation +C on C). At that, any
morphism becomes a homomorphism of such groups. Hence, for n = 2, θγ = +C , α(1,γ) =
−C , the conditions (i)-(iii) are satisfied. Therefore, from Lemma 5.1 we obtain

5.2. Lemma. Any morphism is balanced in an additive category.

5.3. Remark. The conditions (i)-(iii) are, in fact, satisfied if the objects E, B and
all subobjects of E are equipped with the structure of an internal V -algebra (for the
relevant definitions we refer the reader to [4]), while the morphism p and the corresponding
embeddings are homomorphisms with respect to these structures, for any finitely complete
category C and any semi-abelian variety V of universal algebras. However, apart from
the case considered above, no other facts are known, as far as we know, concerning a
possibility of introducing such structures on any object of C .

From Theorem 4.5 and Lemma 5.2 we obtain

5.4. Theorem. The class of regular epimorphisms is stable under pullback along effective
descent morphisms in any additive category with regular epi-mono factorizations.

5.5. Remark. The question naturally arises whether there exists a non-regular additive
category with regular epi-mono factorizations. According to the paper [13] by Rump, the
answer to this question is positive.

6. Are (effective) descent morphisms stable under pushout?

From the trivial fact that any regular epimorphism is the coequalizer of its kernel pair,
we immediately obtain

6.1. Lemma. Every regular epimorphism is a pushout of a split epimorphism along a split
epimorphism.

Let EffDes (Des resp.) denote the class of effective descent morphisms (descent mor-
phisms resp.).

6.2. Theorem. The following conditions are equivalent:

(i) every regular epimorphism is an effective descent morphism;

(ii) the pair of morphism classes (EffDes,Mono) is a factorization system;

(iii) the pair of morphism classes (EffDes, (EffDes)↓) is a factorization system;

(iv) the class of effective descent morphisms is stable under pushout.

Proof. For (i)⇒ (ii) it is sufficient to observe that Theorem 2.1 implies that the category
is regular, and hence it has regular epi-mono factorizations. The implication (iv) ⇒ (i)
follows from Lemma 6.1 and the fact that every split epimorphism is an effective descent
morphism [7], [9]. All other implications are obvious.
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Incidentally, Lemma 6.1 immediately implies

6.3. Proposition. The following conditions are equivalent:

(i) every split epimorphism is an isomorphism;

(ii) every effective descent morphism is an isomorphism;

(iii) every descent morphism is an isomorphism;

(iv) every regular epimorphism is an isomorphism;

(v) every split monomorphism is an isomorphism.

If C has pushouts and equalizers, then these conditions are equivalent also to the
following ones:

(vi) every effective codescent morphism is an isomorphism;

(vii) every codescent morphism is an isomorphism;

(viii) every regular monomorphism is an isomorphism.

6.4. Example. As is known, every morphism in the category of fields is a monomorphism.
From Proposition 6.3 we conclude that there are no non-isomorphic effective codescent
morphisms in any subcategory with pushouts and equalizers of the category of fields.

Similarly, all effective descent morphisms of a ∧-semilattice (considered as a category)
are isomorphisms.

Let us now recall some notions from the paper [3] by Carboni, Janelidze, Kelly, and
Paré. Let (E,M) be a factorization system on C . Let E′ be the class of universal E-
morphisms, i.e., morphisms e from E whose any pullback lies in E. The class E′ is called
the stabilization of E. Let M∗ be the class of morphisms m which lie in M locally, i.e.,
are such that there exist effective descent morphisms along which the pullbacks of m lie
in M. The class M∗ is called the localization of M. If any effective descent morphism is
M-reflecting, then obviously M∗ = M. In particular, from Example 4.1 we obtain that
Mono∗ = Mono.

6.5. Remark. As proved in [3], if C is finitely complete, one has

E
′ ⊂ (M∗)↑. (6.1)

However, it is by no means true that E′ = (M∗)↑, even in the case where ((M∗)↑,M∗) is
a factorization system, as is shown in [3].

6.6. Remark. The equality E′ = E implies the one M∗ = M (while the converse is
obviously not valid). Indeed, since M ⊂M∗, we have (M∗)↑ ⊂ (M)↑ = E. From (6.1) we
obtain (M∗)↑ = E. Hence M∗ ⊂ (M∗)↑↓ = E↓ =M. Thus M∗ =M.
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6.7. Theorem. [3] Let C be finitely complete. The pair (E′,M∗) is a factorization system
if and only if for any morphism f there is an effective descent morphism p such that the
E-morphism in the (E,M)-factorization of the pullback of f along p lies in E′.

Note that if E is the class of regular epimorphisms, then E′ is precisely the class of
descent morphisms. We obtain

6.8. Theorem. The following conditions are equivalent:

(i) C is a regular category;

(ii) the pair (Des,Mono) is a factorization system on C ;

(iii) the pair (Des, (Des)↓) is a factorization system on C ;

(iv) the class of descent morphisms is stable under pushout.

If C is finitely complete, then these conditions are equivalent also to the following
condition:

(v) every morphism has a regular epi-mono factorization, and moreover, for any mor-
phism f there is an effective descent morphism p such that the regular epimorphism
in the regular epi-mono factorization of the pullback of f along p is a descent mor-
phism.

Proof. The implication (iv) ⇒ (i) follows from Lemma 6.1, while the implication (v) ⇒
(iii) follows from Theorem 6.7. All other implications are obvious.
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Richard Blute, Université d’ Ottawa: rblute@uottawa.ca
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