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ON THE INFINITY CATEGORY OF HOMOTOPY LEIBNIZ
ALGEBRAS

DAVID KHUDAVERDYAN, NORBERT PONCIN, JIAN QIU

Abstract. We discuss various concepts of ∞-homotopies, as well as the relations
between them (focussing on the Leibniz type). In particular ∞-n-homotopies appear
as the n-simplices of the nerve of a complete Lie ∞-algebra. In the nilpotent case, this
nerve is known to be a Kan complex [Get09]. We argue that there is a quasi-category
of ∞-algebras and show that for truncated ∞-algebras, i.e. categorified algebras, this
∞-categorical structure projects to a strict 2-categorical one. The paper contains a
shortcut to (∞, 1)-categories, as well as a review of Getzler’s proof of the Kan property.
We make the latter concrete by applying it to the 2-term∞-algebra case, thus recovering
the concept of homotopy of [BC04], as well as the corresponding composition rule [SS07].
We also answer a question of [Sho08] about composition of∞-homotopies of∞-algebras.

1. Introduction

1.1. General background. Homotopy, sh, or infinity algebras [Sta63] are homotopy
invariant extensions of differential graded algebras. They are of importance, e.g. in BRST

of closed string field theory, in Deformation Quantization of Poisson manifolds ... An-
other technique to increase the flexibility of algebraic structures is categorification [CF94],
[Cra95] – a sharpened viewpoint that leads to astonishing results in TFT, bosonic string
theory ... Both methods, homotopification and categorificiation are tightly related: the
2-categories of 2-term Lie (resp., Leibniz) homotopy algebras and of Lie (resp., Leibniz)
2-algebras turned out to be equivalent [BC04], [SL10] (for a comparison of 3-term Lie
infinity algebras and Lie 3-algebras, as well as for the categorical definition of the latter,
see [KMP11]). However, homotopies of∞-morphisms and their compositions are far from
being fully understood. In [BC04], ∞-homotopies are obtained from categorical homo-
topies, which are God-given. In [SS07], (higher) ∞-homotopies are (higher) derivation
homotopies, a variant of infinitesimal concordances, which seems to be the wrong concept
[DP12]. In [Sho08], the author states that∞-homotopies of sh Lie algebra morphisms can
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be composed, but no proof is given and the result is actually not true in whole generality.
The objective of this work is to clarify the concept of (higher) ∞-homotopies, as well as
the problem of their compositions.

1.2. Structure and main results. In Section 2, we provide explicit formulae for ho-
motopy Leibniz algebras and their morphisms. Indeed, although a category of homotopy
algebras is simplest described as a category of quasi-free DG coalgebras, its original nature
is its manifestation in terms of brackets and component maps.

We report, in Section 3, on the notions of homotopy that are relevant for our purposes:
concordances, i.e. homotopies for morphisms between quasi-free DG (co)algebras, gauge
and Quillen homotopies for Maurer-Cartan (MC for short) elements of pronilpotent Lie
infinity algebras, and ∞-homotopies, i.e. gauge or Quillen homotopies for ∞-morphisms
viewed as MC elements of a complete convolution Lie infinity algebra.

Section 4 starts with the observation that vertical composition of ∞-homotopies of
DG algebras is well-defined. However, this composition is not associative and cannot
be extended to the ∞-algebra case – which suggests that ∞-algebras actually form an
∞-category. To allow independent reading of the present paper, we provide a short
introduction to∞-categories, see Subsection 4.2. In Subsection 4.14.1, the concept of∞-
n-homotopy is made precise and the class of∞-algebras is viewed as an∞-category. Since
we apply the proof of the Kan property of the nerve of a nilpotent Lie infinity algebra to
the 2-term Leibniz infinity case, a good understanding of this proof is indispensable: we
detail the latter in Subsection 4.16.1.

To be complete, we give an explicit description of the category of 2-term homo-
topy Leibniz algebras at the beginning of Section 5. We show that composition of ∞-
homotopies in the nerve-∞-groupoid, which is defined and associative only up to higher
∞-homotopy, projects to a well-defined and associative vertical composition in the 2-term
case – thus obtaining the Leibniz counterpart of the strict 2-category of 2-term Lie infinity
algebras [BC04], see Subsection 5.5, Theorem 5.7 and Theorem 5.9.

Eventually, we provide, in Section 6, the definitions of the strict 2-category of Leibniz
2-algebras, which is 2-equivalent to the preceding 2-category.

An ∞-category structure on the class of ∞-algebras over a quadratic Koszul operad
is being investigated independently of [Get09] in a separate paper.

2. Category of homotopy Leibniz algebras

Let P be a quadratic Koszul operad. A P∞-structure on a graded vector space V over
a field K of characteristic zero is essentially a sequence `n of n-ary brackets on V that
satisfy a sequence Rn of defining relations, n ∈ {1, 2, . . .}. Surprisingly, these structures
are 1:1 [GK94] with codifferentials

D ∈ CoDer1(F gr,c
P ¡ (s−1V )) (|`n| = 2−n) or D ∈ CoDer−1(F gr,c

P ¡ (sV )) (|`n| = n−2) ,
(1)
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or, also, (if V is finite-dimensional) 1:1 with differentials

d ∈ Der1(F gr
P ! (sV

∗)) (|`n| = 2−n) or d ∈ Der−1(F gr
P ! (s

−1V ∗)) (|`n| = n− 2) . (2)

Here Der1(F gr
P ! (sV

∗)) (resp., CoDer1(F gr,c
P ¡ (s−1V ))), for instance, denotes the space of

endomorphisms of the free graded algebra over the Koszul dual operad P ! of P on the
suspended linear dual sV ∗ of V , which have degree 1 (with respect to the grading of
the free algebra that is induced by the grading of V ) and are derivations for each binary
operation in P ! (resp., the space of endomorphisms of the free graded coalgebra over
the Koszul dual cooperad P ¡ on the desuspended space s−1V that are coderivations) (by
differential and codifferential we mean of course a derivation or coderivation that squares
to 0).

Although the original nature of homotopified or oidified algebraic objects is their
manifestation in terms of brackets [BP12], the preceding coalgebraic and algebraic settings
are the most convenient contexts to think about such higher structures.

2.1. Zinbiel (co)algebras. Since we take an interest mainly in the case where P is
the operad Lei (resp., the operad Lie) of Leibniz (resp., Lie) algebras, the Koszul dual P !

to consider is the operad Zin (resp., Com) of Zinbiel (resp., commutative) algebras. We
now recall the relevant definitions and results.

2.2. Definition. A graded Zinbiel algebra (GZA) (resp., graded Zinbiel coalgebra (GZC))
is a Z-graded vector space V endowed with a multiplication, i.e. a degree 0 linear map
m : V ⊗ V → V (resp., a comultiplication, i.e. a degree 0 linear map ∆ : V → V ⊗ V )
that satisfies the relation

m(id⊗m) = m(m⊗id)+m(m⊗id)(τ⊗id) (resp. (id⊗∆)∆ = (∆⊗id)∆+(τ⊗id)(∆⊗id)∆),
(3)

where τ : V ⊗ V 3 u⊗ v 7→ (−1)|u||v|v ⊗ u ∈ V ⊗ V .

When evaluated on homogeneous vectors u, v, w ∈ V , the Zinbiel relation for the
multiplication m(u, v) =: u · v reads,

u · (v · w) = (u · v) · w + (−1)|u||v|(v · u) · w .

2.3. Example. The multiplication · on the reduced tensor module T (V ) := ⊕n≥1V
⊗n

over a Z-graded vector space V , defined, for homogeneous vi ∈ V , by

(v1...vp) · (vp+1...vp+q) =
∑

σ∈Sh(p,q−1)

(σ−1 ⊗ id)(v1...vp+q) =

=
∑

σ∈Sh(p,q−1)

ε(σ−1)vσ−1(1)vσ−1(2)...vσ−1(p+q−1)vp+q ,
(4)

endows T (V ) with a GZA structure. In the above equation we wrote tensor products of
vectors by simple juxtaposition, and Sh(p, q− 1) is the set of (p, q− 1)-shuffles and finally
ε(σ−1) is the Koszul sign,
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Similarly, the comultiplication ∆ on T (V ), defined, for homogeneous vi ∈ V , by

∆(v1...vp) =

p−1∑
k=1

∑
σ∈Sh(k,p−k−1)

ε(σ)
(
vσ(1)...vσ(k)

)⊗(
vσ(k+1)...vσ(p−k−1)vp

)
, (5)

is a GZC structure on T (V ).

As for the GZA multiplication on T (V ), we have in particular

v1 · v2 = v1v2 ; (v1v2) · v3 = v1v2v3 ;

v1 · (v2v3) = v1v2v3 + (−1)|v1||v2|v2v1v3; (((v1 · v2) · v3)...) · vk = v1v2...vk .

2.4. Proposition. The GZA (T (V ), ·) (resp., the GZC (T (V ),∆)) defined in Exam-
ple 2.3 is the free GZA (resp., free GZC) over V . We will denote it by Zin(V ) (resp.,
Zin c(V )).

2.5. Definition. A differential graded Zinbiel algebra (DGZA) (resp., a differential
graded Zinbiel coalgebra) (DGZC) is a GZA (V,m) (resp., GZC (V,∆)) together with
a degree −1 derivation d (resp., coderivation D) that squares to 0. More precisely, d
(resp., D) is a degree −1 linear map d : V → V (resp., D : V → V ), such that

dm = m (d⊗ id + id⊗d) (resp., ∆D = (D ⊗ id + id⊗D) ∆)

and d2 = 0 (resp., D2 = 0).

Since the GZA Zin(V ) (resp., GZC Zinc(V )) is free, any degree 1 linear map d : V →
Zin(V ) (resp., D : Zinc(V )→ V ) uniquely extends to a derivation d : Zin(V )→ Zin(V )

(resp., coderivation D : Zinc(V )→ Zinc(V )).

2.6. Definition. A quasi-free DGZA (resp., a quasi-free DGZC) over V is a DGZA

(resp., DGZC) of the type (Zin(V ), d) (resp., (Zin c(V ), D) ).

2.7. Homotopy Leibniz algebras. We recall the definition of homological homotopy
Leibniz algebras.

2.8. Definition. A (homological) homotopy Leibniz algebra is a graded vector space V
together with a sequence of linear maps li : V ⊗i → V of degree i− 2, i ≥ 1, such that for
any n ≥ 1, the following higher Jacobi identity holds:∑

i+j=n+1

∑
j6k6n

∑
σ∈Sh(k−j,j−1)

(−1)(n−k+1)(j−1) (−1)j(vσ(1)+...+vσ(k−j)) ε(σ) sign(σ)

li(vσ(1), ..., vσ(k−j), lj(vσ(k−j+1), ..., vσ(k−1), vk), vk+1, ..., vn) = 0 ,

(6)

where signσ is the signature of σ and where we denoted the degree of the homogeneous
vi ∈ V by vi instead of |vi|.
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2.9. Theorem. There is a 1:1 correspondence between homotopy Leibniz algebras, in the
sense of Definition 2.8, over a graded vector space V and quasi-free DGZC-s (Zin c(sV ), D)
(resp., in the case of a finite-dimensional graded vector space V , quasi-free DGZA-s
(Zin(s−1V ∗), d)).

In the abovementioned 1:1 correspondence between homotopy algebras over a quadratic
Koszul operad P and quasi-free DGP ¡C (resp., quasi-free DGP !A) (self-explaining nota-
tion), a P∞-algebra structure on a graded vector space V is viewed as a representation on
V of the DG operad P∞ – which is defined as the cobar construction ΩP ¡ of the Koszul
dual cooperad P ¡. Theorem 2.9 makes this correspondence concrete in the case P = Lei;
a proof can be found in [AP10].

2.10. Homotopy Leibniz morphisms.

2.11. Definition. A morphism between homotopy Leibniz algebras (V, li) and (W,mi)
is a sequence of linear maps ϕi : V ⊗i → W of degree i − 1, i ≥ 1, which satisfy, for any
n ≥ 1, the condition

n∑
i=1

∑
k1+...+ki=n

∑
σ∈Sh(k1,...,ki)

(−1)

i−1∑
r=1

(i−r)kr+ i(i−1)
2

(−1)

i∑
r=2

(kr−1)(vσ(1)+...+vσ(k1+...+kr−1)
)
ε(σ) sign(σ)

mi

(
ϕk1(vσ(1), ..., vσ(k1)), ϕk2(vσ(k1+1), ..., vσ(k1+k2)), ..., ϕki(vσ(k1+...+ki−1+1), ..., vσ(k1+...+ki))

)
= ∑

i+j=n+1

∑
j6k6n

∑
σ∈Sh(k−j,j−1)

(−1)k+(n−k+1)j (−1)j(vσ(1)+...+vσ(k−j)) ε(σ) sign(σ)

ϕi(vσ(1), ..., vσ(k−j), lj(vσ(k−j+1), ..., vσ(k−1), vk), vk+1, ..., vn) ,
(7)

where Sh(k1, . . . , ki) denotes the set of shuffles σ ∈ Sh(k1, . . . , ki), such that σ(k1) <
σ(k1 + k2) < . . . < σ(k1 + k2 + . . .+ ki).

2.12. Theorem. There is a 1:1 correspondence between homotopy Leibniz algebra mor-
phisms from (V, li) to (W,mi) and DGC morphisms Zin c(sV )→ Zin c(sW ) (resp., in the
finite-dimensional case, DGA morphisms Zin(s−1W ∗) → Zin(s−1V ∗)), where the quasi-
free DGZC-s (resp., the quasi-free DGZA-s) are endowed with the codifferentials (resp.,
differentials) that encode the structure maps li and mi.

In literature, infinity morphisms of P∞-algebras are usually defined as morphisms of
quasi-free DGP ¡C-s. However, no explicit formulae seem to exist for the Leibniz case. A
proof of Theorem 2.12 can be found in the first author’s thesis [Khu13]. Let us also stress
that the concept of infinity morphism of P∞-algebras does not coincide with the notion
of morphism of algebras over the operad P∞.

2.13. Composition of homotopy Leibniz morphisms. Composition of infinity mor-
phisms between P∞-algebras corresponds to composition of the corresponding morphisms
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between quasi-free DGP ¡C-s: the categories P∞-Alg and qfDGP ¡CoAlg (self-explaining
notation) are isomorphic. Explicit formulae can easily be computed.

3. Leibniz infinity homotopies

3.1. Concordances and their compositions. Let us first look for a proper concept
of homotopy in the category qfDGP ¡CoAlg, or, dually, in qfDGP !Alg.

3.1.1. Definition and characterization. The following concept of homotopy – re-
ferred to as concordance – first appeared in an unpublished work by Stasheff and Sch-
lessinger, which was based on ideas of Bousfield and Gugenheim. It can also be found
in [SSS07], for homotopy algebras over the operad Lie (algebraic version), as well as in
[DP12], for homotopy algebras over an arbitrary operad P (coalgebraic version).

It is well-known that a C∞-homotopy η : I×X → Y , I = [0, 1], connecting two smooth
maps p, q between two smooth manifolds X, Y , induces a cochain homotopy between the
pullbacks p∗, q∗. Indeed, in the algebraic category,

η∗ : Ω(Y )→ Ω(I)⊗ Ω(X) ,

and η∗(ω), ω ∈ Ω(Y ), reads

η∗(ω)(t) = ϕ(ω)(t) + dt ρ(ω)(t) . (8)

It is easily checked (see below for a similar computation) that, since η∗ is a cochain map,
we have

dtϕ = dXρ(t) + ρ(t)dY ,

where dX , dY are the de Rham differentials. When integrating over I, we thus obtain

q∗ − p∗ = dXh+ hdY ,

where h = ∫
I
ρ(t)dt has degree +1 (recall that we use the homological grading).

Before developing a similar approach to homotopies between morphisms of quasi-free
DGZA-s, let us recall that tensoring an ‘algebra’ (resp., ‘coalgebra’) with a DGCA (resp.,
DGCC) does not change the considered type of algebra (resp., coalgebra); let us also
introduce the ‘evaluation’ maps

εi1 : Ω(I) = C∞(I)⊕ dtC∞(I) 3 f(t) + dt g(t) 7→ f(i) ∈ K, i ∈ {0, 1} .

In the following – in contrast with our above notation – we omit stars. More-
over – although the ‘algebraic’ counterpart of a homotopy Leibniz algebra over V is
(Zin(s−1V ∗), dV ) – we consider Zinbiel algebras of the type (Zin(V ), dV ).
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3.2. Definition. If p, q : Zin(W ) → Zin(V ) are two DGA morphisms, a homotopy or
concordance η : p ⇒ q from p to q is a DGA morphism η : Zin(W ) → Ω(I) ⊗ Zin(V ),
such that

ε0
1η = p and ε1

1η = q .

The following proposition is basic.

3.3. Proposition. Concordances

η : Zin(W )→ Ω(I)⊗ Zin(V )

between DGA morphisms p, q can be identified with 1-parameter families

ϕ : I → HomDGA(Zin(W ), Zin(V ))

and
ρ : I → ϕDer(Zin(W ), Zin(V ))

of (degree 0) DGA morphisms and of degree 1 ϕ-Leibniz morphisms, respectively, such
that

dtϕ = [d, ρ(t)] (9)

and ϕ(0) = p, ϕ(1) = q. The RHS of the differential equation (9) is defined by

[d, ρ(t)] := dV ρ(t) + ρ(t)dW ,

where dV , dW are the differentials of the quasi-free DGZA-s Zin(V ), Zin(W ).

The notion of ϕ-derivation or ϕ-Leibniz morphism appeared for instance in [BKS04]:
for w,w′ ∈ Zin(W ), w homogeneous,

ρ(w · w′) = ρ(w) · ϕ(w′) + (−1)wϕ(w) · ρ(w′) ,

where we omitted the dependence of ρ on t.

Proof. As already mentioned in Equation (8), η(w), w ∈ Zin(W ), reads

η(w)(t) = ϕ(w)(t) + dt ρ(w)(t) ,

where ϕ(t) : Zin(W ) → Zin(V ) and ρ(t) : Zin(W ) → Zin(V ) have degrees 0 and 1,
respectively (the grading of Zin(V ) is induced by that of V and the grading of Ω(I) is the
homological one). Let us now translate the remaining properties of η into properties of ϕ
and ρ. We denote by dI = dt dt the de Rham differential of I. Since η is a chain map,

dt dtϕ+ dV ϕ− dt dV ρ = (dI ⊗ id + id⊗dV )η = ηdW = ϕdW + dt ρdW ,

so that
dV ϕ = ϕdW and dtϕ = dV ρ+ ρdW = [d, ρ] .
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As η is also an algebra morphism, we have, for w,w′ ∈ Zin(W ),

ϕ(w · w′) + dt ρ(w · w′) = (ϕ(w) + dt ρ(w)) · (ϕ(w′) + dt ρ(w′))

= ϕ(w) · ϕ(w′) + (−1)wdt (ϕ(w) · ρ(w′)) + dt (ρ(w) · ϕ(w′)) ,

and ϕ (resp., ρ) is a family of DGA morphisms (resp., of degree 1 ϕ-Leibniz maps) from
Zin(W ) to Zin(V ). Eventually,

p = ε0
1η = ϕ(0) and q = ε1

1η = ϕ(1) .

3.3.1. Horizontal and vertical compositions. In literature, the ‘categories’ of ho-
motopy Leibniz (resp., Lie) algebras over V (finite-dimensional) and of quasi-free DGZA-s
(resp., quasi-free DGCA-s) over s−1V ∗ are (implicitly or explicitly) considered equivalent.
This conjecture is so far corroborated by the results of this paper. Hence, let us briefly
report on compositions of concordances.

Let η : p⇒ q and η′ : p′ ⇒ q′,

η

��

η′

��

(Zin(W ), dW )

p

%%

q

99
(Zin(V ), dV )

q′

99

p′

%%
(Zin(U), dU) ,

(10)

be concordances between DGA morphisms. Their horizontal composite η′ ◦0 η : p′ ◦ p ⇒
q′ ◦ q,

η′◦0η

��

(Zin(W ), dW )

p′◦p

&&

q′◦q

88
(Zin(U), dU) ,

is defined by

(η′ ◦0 η)(t) = (ϕ′(t) ◦ ϕ(t)) + dt (ϕ′(t) ◦ ρ(t) + ρ′(t) ◦ ϕ(t)) , (11)

with self-explaining notation. It is easily checked that the first term of the RHS and
the coefficient of dt in the second term have the properties needed to make η′ ◦0 η a
concordance between p′ ◦ p and q′ ◦ q.

As for the vertical composite η′ ◦1 η : p⇒ r of concordances η : p⇒ q and η′ : q ⇒ r,
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η

��(Zin(W ), dW )

p

��
q //

r

AA

η′

��

(Zin(V ), dV ) ,

note that the composability condition ϕ(1) = q = t(η) = s(η′) = q = ϕ′(0), where s, t
denote the source and target maps, does not encode any information about ρ(1), ρ′(0).
Hence, the usual ‘half-time’ composition cannot be applied.

3.4. Remark. The preceding observation is actually the shadow of the fact that the
‘category’ of homotopy Leibniz algebras is not a 2-category (in which compositions of
2-morphisms are well-defined and associative), but an infinity category (in which compo-
sition is usually defined and associative only up to higher homotopy).

3.5. Infinity homotopies. Some authors addressed directly or indirectly the concept of
homotopy of Lie infinity algebras (L∞-algebras). As mentioned above, in the (equivalent)
‘category’ of quasi-free DGCA-s, the classical picture of homotopy leads to concordances.
In the ‘category’ of L∞-algebras itself, morphisms can be viewed as Maurer-Cartan (MC)
elements of a specific L∞-algebra [Dol07],[Sho08], which yields the notion of ‘gauge homo-
topy’ between L∞-morphisms. Additional notions of homotopy between MC elements do
exist: Quillen and cylinder homotopies. On the other hand, Markl [Mar02] uses colored
operads to construct homotopies for ∞-morphisms in a systematic way. The concepts of
concordance, operadic homotopy, as well as Quillen, gauge, and cylinder homotopies are
studied in detail in [DP12], for homotopy algebras over any Koszul operad, and they are
shown to be equivalent, essentially due to homotopy transfer.

In this subsection, we focus on the homotopy Leibniz case and provide a brief account
on the relationship between concordances, gauge homotopies, and Quillen homotopies (in
the next section, we explain why the latter concept is the bridge to Getzler’s [Get09]
(and Henriques’ [Hen08]) work, as well as to the infinity category structure on the set of
homotopy Leibniz algebras).

Let us stress that all series in this section converge under some local finiteness or
nilpotency conditions (for instance pronilpotency or completeness).

3.5.1. Gauge homotopic Maurer-Cartan elements. Lie infinity algebras over g
are in bijective correspondence with quasi-free DGCC-s (Comc(sg), D), see Equation (1).
Depending on the definition of the i-ary brackets `i, i ≥ 1, from the corestrictions Di :
(sg)�i → sg, where � denotes the graded symmetric tensor product, one obtains various
sign conventions in the defining relations of a Lie infinity algebra. By setting `i := Di

(resp. `i := (−1)i(i−1)/2s−1Di s
i), we get we a Voronov L∞-antialgebra [Vor05] (resp. a

Getzler L∞-algebra [Get09]). Our convention is however that of Lada-Stasheff [LS93],
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namely we set `i := s−1Di s
i. The set of graded antisymmetric multilinear maps `i :

g×i → g of degree i− 2 satisfy the conditions∑
i+j=r+1

∑
σ∈Sh(i,j−1)

(−1)i(j−1)ε(σ) sign(σ)`j(`i(vσ1 , . . . , vσi), vσi+1
, . . . , vσr) = 0 , (12)

for all homogeneous vk ∈ g and all r ≥ 1.

As the MC equation of a Lie infinity algebra (g, `i) must correspond to the MC equation
given by the Di, it depends on the definition of the operations `i. For a Lada-Stasheff
L∞-algebra, we obtain that the set MC(g) of MC elements of g is the set of solutions
α ∈ g−1 of the MC equation

∞∑
i=1

1

i!
(−1)i(i−1)/2`i(α, . . . , α) = 0 . (13)

Hence, we now consider the second MC equation (13). Further, for any α ∈ g−1, the
twisted brackets

`αi (v1, . . . , vi) =
∞∑
k=0

1

k!
`k+i(α

⊗k, v1, . . . , vi) ,

v1, . . . , vi ∈ g, are a sequence of graded antisymmetric multilinear maps of degree i− 2.
It is well-known that the `αi endow g with a new Lie infinity structure, if α ∈ MC(g).
Finally, any vector r ∈ g0 gives rise to a vector field

Vr : g−1 3 α 7→ Vr(α) := −`α1 (r) = −
∞∑
k=0

1

k!
`k+1(α⊗k, r) =

∞∑
k=1

(−1)k

(k − 1)!
`k(r, α

⊗(k−1)) ∈ g−1 .

(14)
This field restricts to a vector field of the set MC(g) of Maurer-Cartan elements of g
[DP12]. It follows that the integral curves

dtα = Vr(α(t)) , (15)

starting from points in MC(g), are located inside MC(g). Hence, the

3.6. Definition. ([Dol07], [Sho08]) Two MC elements α, β ∈ MC(g) of a Lie infinity
algebra g are gauge homotopic if there exists r ∈ g0 and an integral curve α(t) of Vr, such
that α(0) = α and α(1) = β.

This gauge action is used to define the deformation functor Def : L∞ → Set from
the category of Lie infinity algebras to the category of sets. Moreover, it will provide a
concept of homotopy between homotopy Leibniz morphisms.

Let us first observe that Equation (15) is a 1-variable ordinary differential equation
(ODE) and can be solved via an iteration procedure. The integral curve with initial point
α ∈ MC(g) is computed in [Get09]. When using our sign convention in the defining
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relations of a Lie infinity algebra, we get an ODE that contains different signs and the
solution of the corresponding Cauchy problem reads

α(t) =
∞∑
k=0

tk

k!
ekα(r) , (16)

where the ekα(r) admit a nice combinatorial description in terms of rooted trees. Moreover,
they can be obtained inductively: ei+1

α (r) =
∞∑
n=0

1

n!
(−1)

n(n+1)
2

∑
k1+...+kn=i

i!

k1!...kn!
`n+1(ek1α (r), ..., eknα (r), r) ,

e0
α(r) = α .

(17)

It follows that α, β ∈ MC(g) are gauge homotopic if

β − α =
∞∑
k=1

1

k!
ekα(r) , (18)

for some r ∈ g0.

3.6.1. Simplicial de Rham algebra. We first fix the notation.

Let ∆ be the simplicial category with objects the nonempty finite ordinals [n] =
{0, . . . , n}, n ≥ 0, and morphisms the order-respecting functions f : [m] → [n]. Denote
by δin : [n − 1] � [n] the injection that omits the image i and by σin : [n + 1] � [n] the
surjection that assigns the same image to i and i+ 1, i ∈ {0, . . . , n}.

A simplicial object in a category C is a functor X ∈ [∆op, C ] . It is completely de-
termined by the simplicial data (Xn, d

n
i , s

n
i ), n ≥ 0, i ∈ {0, . . . , n}, where Xn = X[n]

(n-simplices), d ni = X(δin) (face maps), and s ni = X(σin) (degeneracy maps). We denote
by SC the functor category [∆op, C] of simplicial objects in C.

The simplicial category is embedded in its Yoneda dual category:

h∗ : ∆ 3 [n] 7→ Hom∆(−, [n]) ∈ [∆op, Set] = SSet .

We refer to the functor of points of [n], i.e. to the simplicial set ∆[n] := Hom∆(−, [n]),
as the standard simplicial n-simplex. Moreover, the Yoneda lemma states that

Hom∆([n], [m]) ' Hom(Hom∆(−, [n]),Hom∆(−, [m])) = Hom(∆[n],∆[m]) .

This bijection sends f : [n]→ [m] to ϕ defined by ϕ[k](•) = f ◦ • and ϕ to ϕ[n](id[n]). In
the following we identify [n] (resp., f) with ∆[n] (resp., ϕ).

The set Sn of n-simplices of a simplicial set S is obviously given by

Sn ' Hom(Hom∆(−, [n]), S) = Hom(∆[n], S).
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Let us also recall the adjunction

| − | : SSet� Top : Sing

given by the ‘geometric realization functor’ | − | and the ‘singular complex functor’ Sing.
To define | − |, we first define the realization |∆[n]| of the standard simplicial n-simplex
to be the standard topological n-simplex

∆n = {(x0, . . . , xn) ∈ Rn+1 : xi ≥ 0,
∑
i

xi = 1} .

We can view | − | as a functor | − | ∈ [∆, Top] . Indeed, if f : [n] → [m] is an order-
respecting map, we can define a continuous map |f | : ∆n → ∆m by

|f |[x0, . . . , xn] = [y0, . . . , ym] ,

where yi =
∑

j∈f−1{i} xj.

Let ∧?K(x0, . . . , xn, dx0, . . . , dxn) be the free graded commutative algebra generated
over K by the degree 0 (resp., degree 1) generators xi (resp., dxi). If we divide out the
relations

∑
i xi = 1 and

∑
i dxi = 0 and set d(xi) = dxi and d(dxi) = 0, we obtain a

quotient DGCA

Ω?
n = ∧?K(x0, . . . , xn, dx0, . . . , dxn)/(

∑
i xi − 1,

∑
i dxi)

that can be identified, for K = R, with the algebra of polynomial differential forms
Ω?(∆n) of the standard topological n-simplex ∆n. When defining Ω? : ∆op → DGCA by
Ω?[n] := Ω?

n and, for f : [n]→ [m], by Ω?(f) := |f |∗ : Ω?
m → Ω?

n (use the standard pullback
formula for differential forms given by yi =

∑
j∈f−1{i} xj), we obtain a simplicial differential

graded commutative algebra Ω? ∈ SDGCA. Hence, the face maps d ni : Ω?
n → Ω?

n−1 are the
pullbacks by the |δin| : ∆n−1 → ∆n, and similarly for the degeneracy maps. In particular,
d2

0 = |δ0
2|∗ : Ω?

2 → Ω?
1 is induced by y0 = 0, y1 = x0, y2 = x1. Lastly, for 0 ≤ i ≤ n, let the

vertex ei of ∆n be defined by the point xi = 1, and let the evaluation map εin : Ω?
n → K

at ei be the restriction (y0, . . . , yn) = ei).

3.6.2. Quillen homotopic Maurer-Cartan elements. We already mentioned that,
if (g, `i) is an L∞-algebra and (A, ·, d) a DGCA, their tensor product g⊗A has a canonical
L∞-structure ¯̀

i. It is given by

¯̀
1(v ⊗ a) = (`1 ⊗ id + id⊗d)(v ⊗ a) = `1(v)⊗ a+ (−1)vv ⊗ d(a)

and, for i ≥ 2, by

¯̀
i(v1 ⊗ a1, . . . , vi ⊗ ai) = ±`i(v1, . . . , vi)⊗ (a1 · . . . · ai) ,

where ± is the Koszul sign generated by the commutation of the variables.

The following concept originates in Rational Homotopy Theory.
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3.7. Definition. Two MC elements α, β ∈ MC(g) of a Lie infinity algebra g are Quillen
homotopic if there exists a MC element γ̄ ∈ MC(ḡ1) of the Lie infinity algebra ḡ1 := g⊗Ω?

1,
such that ε0

1γ̄ = α and ε1
1γ̄ = β (where the εi1 are the natural extensions of the evaluation

maps).

From now on, we accept, in the definition of gauge equivalent MC elements, vector
fields Vr(t) induced by time-dependent r = r(t) ∈ g0. The next result is proved in [Man99]
for DGLA-s and essentially proved in [Dol07] for Lie infinity algebras. However, the
statement of [Dol07] is actually slightly weaker. A full proof can be found in [DP12]; a
sketchy proof will be given below.

3.8. Proposition. Two MC elements of a Lie infinity algebra are Quillen homotopic if
and only if they are gauge homotopic.

3.8.1. Infinity morphisms as Maurer-Cartan elements and infinity homo-
topies. The possibility to view morphisms in HomDGP ¡C(C,F gr,c

P ¡ (sW )) as MC elements
is known from the theory of the bar and cobar constructions of algebras over an operad.
In [DP12], the authors showed that the fact that infinity morphisms between P∞-algebras
V and W , i.e. morphisms in

HomDGP ¡C(F gr,c
P ¡ (sV ),F gr,c

P ¡ (sW )) ,

are 1:1 with Maurer-Cartan elements of an L∞-structure on

HomK(F gr,c
P ¡ (sV ),W ) ,

is actually a consequence of a more general result based on the encoding of two P∞-
algebras and an infinity morphism between them in a DG colored free operad. In the case
P = Lie, one recovers the fact [Sho08] that

HomDGCC(C,Comc(sW )) ' MC(HomK(C,W )) , (19)

where C is any locally conilpotent DGCC, where W is an L∞-algebra, and where the RHS

is the set of MC elements of some convolution L∞-structure on HomK(C,W ).

In the sequel we detail the case P = Lei. Indeed, when interpreting infinity morphisms
of homotopy Leibniz algebras as MC elements of a Lie infinity algebra, the equivalent no-
tions of gauge and Quillen homotopies provide a concept of homotopy between homotopy
Leibniz morphisms.

3.9. Proposition. Let (V, `i) and (W,mi) be two homotopy Leibniz algebras and let
(Zinc(sV ), D) be the quasi-free DGZC that corresponds to (V, `i). The graded vector space

L(V,W ) := HomK(Zinc(sV ),W )

carries a convolution Lie infinity structure given by

L1f = m1 ◦ f + (−1)ff ◦D (20)
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and, as for Lp(f1, ..., fp), p ≥ 2, by

Zinc(sV ) ∆p−1
// (Zinc(sV ))⊗p

∑
σ∈S(p)

ε(σ) sign(σ) fσ(1)⊗...⊗fσ(p)
//W⊗p mp //W , (21)

where f, f1, . . . , fp ∈ L(V,W ), ∆p−1 = (∆⊗ id⊗(p−2))...(∆⊗ id)∆ , where S(p) denotes the
symmetric group on p symbols, and where the central arrow is the graded antisymmetriza-
tion operator.

Proof. See [Laa02] or [DP12]. A direct verification is possible as well.

3.10. Proposition. Let (V, `i) and (W,mi) be two homotopy Leibniz algebras. There
exists a 1:1 correspondence between the set of infinity morphisms from (V, `i) to (W,mi)
and the set of MC elements of the convolution Lie infinity algebra structure Li on L(V,W )
defined in Proposition 3.9.

Observe that the considered MC series converges pointwise. Indeed, the evaluation
of Lp(f1, ..., fp) on a tensor in Zinc(sV ) vanishes for p �, in view of the local conilpo-
tency of Zinc(sV ). Moreover, convolution L∞-algebras are complete, so that their MC

equation converges in the topology induced by the filtration (a descending filtration
F iL of the space L of an L∞-algebra (L,Lk) is compatible with the L∞-structure Lk,
if Lk(F i1L, . . . , F ikL) ⊂ F i1+...+ikL, and it is complete, if, in addition, the ‘universal’
map L → lim←−L/F

iL from L to the (projective) limit of the inverse system L/F iL is an
isomorphism).

Note also that Proposition 3.10 is a specialization, in the case P = Lei, of the above-
mentioned 1:1 correspondence between infinity morphisms of P∞-algebras and MC el-
ements of a convolution L∞-algebra. To increase the readability of this text, we give
nevertheless a sketchy proof.

Proof. An MC element is an α ∈ HomK(Zinc(sV ),W ) of degree −1 that satisfies the
MC equation. Hence, sα : Zinc(sV ) → sW has degree 0 and, since Zinc(sW ) is free as
GZC, sα coextends uniquely to ŝα ∈ HomGZC(Zinc(sV ),Zinc(sW )). The fact that α is a
solution of the MC equation exactly means that ŝα is a DGZC-morphism, i.e. an infinity
morphism between the homotopy Leibniz algebras V and W . Indeed, when using e.g.
the relations `i = s−1Di s

i and mi = s−1Di s
i, and the corresponding version of the MC

equation, we get

∞∑
p=1

1
p!

(−1)
p(p−1)

2 Lp(α, ..., α) = 0⇔
∞∑
p=1

(−1)
p(p−1)

2 mp(α⊗ ...⊗ α)∆p−1 + (−1)ααD = 0⇔
∞∑
p=1

(−1)
p(p−1)

2 s−1Dp s
p(α⊗ ...⊗ α)∆p−1 + (−1)ααD = 0⇔

∞∑
p=1

s−1Dp(sα⊗ ...⊗ sα)∆p−1 − s−1sαD = 0⇔

D(̂sα) = (̂sα)D .
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Hence, the

3.11. Definition. Two infinity morphisms f, g between homotopy Leibniz algebras (V, `i),
(W,mi) are infinity homotopic, if the corresponding MC elements α = α(f) and β = β(g)
of the convolution Lie infinity structure Li on L = L(V,W ) are Quillen (or gauge) ho-
motopic. In other words, f and g are infinity homotopic, if there exists γ̄ ∈ MC1(L̄),
i.e. an MC element γ̄ of the Lie infinity structure L̄i on L̄ = L⊗ Ω?

1 – obtained from the
convolution structure Li on L = HomK(Zinc(sV ),W ) via extension of scalars –, such that
ε0

1γ̄ = α and ε1
1γ̄ = β.

3.11.1. Comparison of concordances and infinity homotopies. Since according
to the prevalent philosophy, the ‘categories’ qfDGP ¡CoAlg and P∞-Alg are ‘equivalent’,
appropriate concepts of homotopy in both categories should be in 1:1 correspondence.
It can be shown [DP12] that, for any type of algebras, the concepts of concordance and
Quillen homotopy are equivalent (at least if one defines concordances in an appropriate
way); and as Quillen homotopies are already known to be equivalent to gauge homotopies,
the desired result follows in full generality. We provide now a sketchy explanation of both
relationships, defining concordances dually and assuming for simplicity that K = R.

Remember first that we defined concordances, in conformity with the classical picture,
in a contravariant way: two infinity morphisms f, g : V → W between homotopy Leibniz
algebras, i.e. two DGA morphisms f ∗, g∗ : Zin(s−1W ∗) → Zin(s−1V ∗), are concordant if
there is a morphism

η ∈ HomDGA(Zin(s−1W ∗),Zin(s−1V ∗)⊗ Ω?
1) ,

whose values at 0 and 1 are equal to f ∗ and g∗, respectively. Although we will use this
definition in the sequel, we temporarily prefer a dual, covariant definition, which has the
advantage that the spaces V,W need not be finite-dimensional.

The problem that the linear dual of the infinite-dimensional DGCA Ω?
1 is not a coal-

gebra, has already been addressed in [BM12]. The authors consider a coalgebra Λ, which
essentially is the dual (Ω?

1)∨, except that one needs to fix some completeness issues. We
omit the technical details, since this section is purely expository. A concordance can then
be defined as a map

η ∈ HomDGC(Zinc(sV )⊗ Λ,Zinc(sW ))

(with the appropriate boundary values). It is easily seen that any Quillen homotopy, i.e.
any element in MC(L ⊗ Ω?

1), gives rise to a concordance. Indeed, set V := sV and note
that

L⊗Ω?
1 = HomK(Zinc(V),W )⊗Ω?

1 = HomK

(⊕
i≥1

V⊗i,W

)
⊗Ω?

1 =

(∏
i≥1

HomK(V⊗i,W )

)
⊗Ω?

1

−→
∏
i≥1

(
HomK(V⊗i,W )⊗ Ω?

1

)
−→

∏
i≥1

HomK(V⊗i ⊗ Λ,W ) = HomK(Zinc(V)⊗ Λ,W ) .
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Note that the second arrow is not justified without addressing certain finiteness issues,
but we again suppress the details and merely give an idea.

The relationship between Quillen and gauge homotopy is (at least on the chosen level
of rigor) much clearer. Indeed, an element γ̄ ∈ MC1(L̄) = MC(L⊗Ω?

1) can be decomposed
as

γ̄ = γ(t)⊗ 1 + r(t)⊗ dt,

where t ∈ [0, 1] is the coordinate of ∆1. When unraveling the MC equation of the L̄i
according to the powers of dt, one gets∑∞

p=1
1
p!
Lp(γ(t), ..., γ(t)) = 0 ,

dγ
dt

= −
∑∞

p=0
1
p!
Lp+1(γ(t), ..., γ(t), r(t)) .

(22)

A direct computation allows to see that the latter ODE, see Definition 3.6 of gauge
homotopies and Equations (15) and (14), is dual (up to dimensional issues) to the ODE

(9), see Proposition 3.3 that characterizes concordances.

4. Infinity category of homotopy Leibniz algebras

We already observed that vertical composition of concordances is not well-defined and
that homotopy Leibniz algebras should form an infinity category. It is instructive to first
briefly look at infinity homotopies between infinity morphisms of DG algebras.

4.1. DG case. Remember that infinity homotopies can be viewed as integral curves of
specific vector fields Vr of the MC set (with obvious endpoints). In the DG case, we have,
for any r ∈ L0,

Vr : L−1 3 α 7→ Vr(α) = −L1(r)− L2(α, r) ∈ L−1 .

In view of the Campbell-Baker-Hausdorff formula,

exp(tVr) ◦ exp(tVs) = exp(tVr + tVs + 1/2 t2[Vr, Vs] + ...) .

The point is that
V : L0 → Vect(L−1)

is a Lie algebra morphism – also after restriction to the MC set; we will not detail this
nonobvious fact. It follows that

exp(tVr) ◦ exp(tVs) = exp(tVr+s+1/2 t[r,s]+...) .

If we accept, as mentioned previously, time-dependent r-s, the problem of the vertical
composition of homotopies is solved in the DG situation considered: the integral curve of
the composed homotopy of two homotopies exp(tVs) (resp., exp(tVr)) between morphisms
f, g (resp., g, h) is given by
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c(t) = (exp(tVr) ◦ exp(tVs))(f) = exp(tVr+s+1/2 t[r,s]+...)(f) .

Note that this vertical composition is not associative. Moreover, the preceding ap-
proach does not go through in the homotopy situation (note e.g. that in this case L0 is no
longer a Lie algebra). This again points to the possibility that homotopy algebras form
infinity categories.

4.2. Shortcut to infinity categories. This subsection is a short digression that
should allow us to grasp the spirit of infinity categories. For additional information, we
refer the reader to [Gro10], [Fin11], and [Nog12].

Strict n-categories or strict ω-categories (in the sense of strict infinity categories) are
well understood. Roughly, they are made up by 0-morphisms (objects), 1-morphisms
(morphisms between objects), 2-morphisms (homotopies between morphisms)..., up to
n-morphisms, except in the ω-case, where this upper bound does not exist. All these
morphisms can be composed in various ways, the compositions being associative, ad-
mitting identities, etc. However, in most occurrences of higher categories these defining
relations do not hold strictly. A number of concepts of weak infinity category, e.g. infin-
ity categories in which the structural relations hold up to coherent higher homotopy, are
developed in literature. Moreover, an (∞, r)-category is roughly an ‘infinity category’,
with the additional requirement that all j-morphisms, j > r, be invertible. Hence, an
(∞, 0)-category is an infinity category in which all j-morphisms, j ≥ 1, are invertible, i.e.
an (∞, 0)-category is an ‘infinity groupoid’. In this subsection, we define ∞-groupoids
and (∞, 1)-categories, which we will simply call ∞-categories. It is clear that these defi-
nitions should be chosen in a way that ∞-groupoids and ordinary categories are specific
∞-categories.

4.2.1. Kan complexes, quasi-categories, nerves of groupoids and of cate-
gories. Let us recall that the nerve functor N : Cat → SSet, provides a fully faithful
embedding of the category Cat of all (small) categories into SSet and remembers not only
the objects and morphisms, but also the compositions. It associates to any C ∈ Cat the
simplicial set

(NC)n = {C0 → C1 → . . .→ Cn} ,

where the sequence in the RHS is a sequence of composable C-morphisms between objects
Ci ∈ C; the face (resp., the degeneracy) maps are the compositions and insertions of
identities. Let us also recall that the r-horn Λr[n], 0 ≤ r ≤ n, of ∆[n] is ‘the part of
the boundary of ∆[n] that is obtained by suppressing the interior of the (n − 1)-face
opposite to r’. More precisely, the r-horn Λr[n] is the simplicial set, whose nondegenerate
k-simplices are the injective order-respecting maps [k]→ [n], except the identity and the
map δr : [n− 1]� [n] whose image does not contain r.

We now detail four different situations based on the properties ‘Any (inner) horn
admits a (unique) filler’.
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4.3. Definition. A simplicial set S ∈ SSet is fibrant and called a Kan complex, if the
map S → ?, where ? denotes the terminal object, is a Kan fibration, i.e. has the right
lifting property with respect to all canonical inclusions Λr[n] ⊂ ∆[n], 0 ≤ r ≤ n, n > 0. In
other words, S is a Kan complex, if any horn Λr[n]→ S can be extended to an n-simplex
∆[n]→ S, i.e. if any horn in S admits a filler.

The following result is well-known and explains that a simplicial set is a nerve under
a quite similar extension condition.

4.4. Proposition. A simplicial set S is the nerve S ' NC of some category C, if and
only if any inner horn Λr[n]→ S, 0 < r < n, has a unique filler ∆[n]→ S.

Indeed, it is quite obvious that for S = NC ∈ SSet, an inner horn Λ1[2] → NC, i.e.
two C-morphisms f : C0 → C1 and g : C1 → C2, has a unique filler ∆[2]→ NC, given by
the edge h = g ◦ f : C0 → C2 and the ‘homotopy’ id : h⇒ g ◦ f (1).

As for Kan complexes S ∈ SSet, the filler property for an outer horn Λ0[2] → S
(resp., Λ2[2] → S) implies for instance that a horn f : s0 → s1, id : s0 → s2 = s0 (resp.,
id : s′0 → s′2 = s′0, g : s′1 → s′2) has a filler, so that any map has a ‘left (resp., right)

inverse’ (2).

It is clear that simplicial sets S0, S1, S2, . . . are candidates for ∞-categories. In view
of the last remark (2), Kan complexes model ∞-groupoids. Hence, fillers for outer horns
should be omitted in the definition of ∞-categories. On the other hand, ∞-categories do
contain homotopies η : h⇒ g ◦f , so that, due to (1), uniqueness of fillers is to be omitted
as well. Hence, the

4.5. Definition. A simplicial set S ∈ SSet is an ∞-category if and only if any inner
horn Λr[n]→ S, 0 < r < n, admits a filler ∆[n]→ S.

We now also understand the

4.6. Proposition. A simplicial set S is the nerve S ' NG of some groupoid G, if and
only if any horn Λr[n]→ S, 0 ≤ r ≤ n, n > 0, has a unique filler ∆[n]→ S.

It is clear from the above definitions that (nerves of) categories and ∞-groupoids
(Kan complexes) are ∞-categories. Note further that what we just defined is a model for
∞-categories called quasi-categories or weak Kan complexes.

4.6.1. Link with the intuitive picture of an infinity category. In the follow-
ing, we explain that the preceding model of an ∞-category actually corresponds to the
intuitive picture of an (∞, 1)-category, i.e. that in an ∞-category all types of morphisms
do exist, that all j-morphisms, j > 1, are invertible, and that composition of morphisms
is defined and is associative only up to homotopy. This will be illustrated by showing that
any ∞-category has a homotopy category, which is an ordinary category.

We denote simplicial sets by S, S ′, . . ., categories by C, D, . . . , and ∞-categories by
S, S′, . . .
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Let S be an ∞-category. Its 0-morphisms are the elements of S0 and its 1-morphisms
are the elements of S1. The source and target maps σ, τ are defined, for any 1-morphism
f ∈ S1, by σf = d1f ∈ S0, τf = d0f ∈ S0, and the identity map is defined, for any
0-morphism s ∈ S0, by ids = s0s ∈ S1, with self-explaining notation. In the following, we
denote a 1-morphism f with source s and target s′ by f : s→ s′. In view of the simplicial
relations, we have σ ids = d1s0s = s and τ ids = d0s0s = s, so that ids : s→ s.

Consider now two morphisms f : s → s′ and g : s′ → s′′. They define an inner horn
Λ1[2]→ S, which, as S is an ∞-category, admits a filler φ : ∆[2]→ S, or φ ∈ S2. The face
d1φ ∈ S1 is of course a candidate for the composite g ◦ f.

4.7. Remark. Since the face h := d1φ of any filler φ is a (candidate for the) composite
g ◦ f , composites of morphisms are in ∞-categories not uniquely defined. We will show
that they are determined only up to ‘homotopy’.

4.8. Definition. Let S be an ∞-category and let f, g : s → s′ be two morphisms. A
2-morphism or homotopy φ : f ⇒ g between f and g is an element φ ∈ S2 such that
d0φ = g, d1φ = f, d2φ = ids.

Indeed, if there exists such a 2-simplex φ, there are two candidates for the composite
g ◦ ids, namely f and, of course, g. If we wish now that all the candidates be homotopic,
the existence of φ must entail that f and g are homotopic – which is the case in view of
Definition 4.8. If f is homotopic to g, we write f ' g.

4.9. Proposition. The homotopy relation ' is an equivalence in S1.

Proof. Let f : s → s′ be a morphism and consider idf := s0f ∈ S2. It follows from
the simplicial relations that d0 idf = f, d1 idf = f, d2 idf = s0s = ids, so that idf is a
homotopy between f and f . To prove that ' is symmetric, let f, g : s → s′ and assume
that φ is a homotopy from f to g. We then have an inner horn ψ : Λ2[3] → S such that
d0ψ = φ, d1ψ = idg, and d3ψ = id ids =: id2

s. The face d2Ψ of a filler Ψ : ∆[3] → S is a
homotopy from g to f . Transitivity can be obtained similarly.

4.10. Definition. The homotopy category Ho(S) of an ∞-category S is the (ordinary)
category with objects the objects s ∈ S0, with morphisms the homotopy classes [f ] of
morphisms f ∈ S1, with composition [g] ◦ [f ] = [g ◦ f ], where g ◦ f is any candidate for
the composite in S, and with identities Ids = [ids].

To check that this definition makes sense, we must in particular show that all com-
posites g ◦ f are homotopic, see Remark 4.7. Let thus φ1, φ2 ∈ S2 be two 2-simplices such
that (d0φ1, d1φ1, d2φ1) = (g, h1, f) and (d0φ2, d1φ2, d2φ2) = (g, h2, f), so that h1 and h2

are two candidates. Consider now for instance the inner horn ψ : Λ2[3] → S given by
ψ = (φ1, φ2, •, idf ). The face d2Ψ of a filler Ψ : ∆[3] → S is then a homotopy from h2 to
h1. To prove that the composition of morphisms in Ho(S) is associative, one shows that
candidates for h ◦ (g ◦ f) and for (h ◦ g) ◦ f are homotopic (we will prove neither this fact,
nor the additional requirements for Ho(S) to be a category).
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4.11. Remark. It follows that in an ∞-category composition of morphisms is defined
and associative only up to homotopy.

We now comment on higher morphisms in ∞-categories, on their composites, as well
as on invertibility of j-morphisms, j > 1.

4.12. Definition. Let φ1 : f ⇒ g and φ2 : f ⇒ g be 2-morphisms between morphisms
f, g : s → s′. A 3-morphism Φ : φ1 V φ2 is an element Φ ∈ S3 such that d0Φ = idg,
d1Φ = φ2, d2Φ = φ1, and d3Φ = id2

s.

Roughly, a 3-morphism is a 3-simplex with faces given by sources and targets, as well
as by identities. Higher morphisms are defined similarly [Gro10].

Concerning the composition and invertibility, let us come back to transitivity of the
homotopy relation. There we are given 2-morphisms φ1 : f ⇒ g and φ2 : g ⇒ h, and
must consider the inner horn ψ = (φ2, •, φ1, id

2
s). The face d1Ψ of a filler Ψ is a homotopy

between f and h and is a candidate for the composite φ2 ◦ φ1 of the 2-morphisms φ1, φ2.
If we now look again at the proof of symmetry of the homotopy relation and denote the
homotopy from g to f by ψ′, we see that ψ◦ψ′ ' idg. We obtain similarly that ψ′◦ψ ' idf ,
so that 2-morphisms are ‘invertible’.

4.13. Remark. Eventually, all the requirements of the intuitive picture of an∞-category
are encoded in the existence of fillers of inner horns.

4.14. Infinity groupoid of infinity morphisms between homotopy Leibniz
algebras.

4.14.1. Quasi-category of homotopy Leibniz algebras. Let Ω?
• be the SDGCA

introduced in Subsection 3.6.1. The ‘Yoneda embedding’ of Ω?
• viewed as object of SSet

and DGCA, respectively, gives rise to an adjunction that is well-known in Rational Homo-
topy Theory:

Ω? : SSet� DGCAop : Spec• .

The functor Ω? = HomSSet(−,Ω?
•) =: SSet(−,Ω?

•) associates to any S• ∈ SSet its Sullivan
DGCA Ω?(S•) of piecewise polynomial differential forms, whereas the functor Spec• =
HomDGCA(−,Ω?

•) assigns to any A ∈ DGCA its simplicial spectrum Spec•(A).

Remember now that an ∞-homotopy between ∞-morphisms between two homotopy
Leibniz algebras V,W , is an element in MC1(L̄) = MC(L⊗ Ω?

1), where L = L(V,W ).

The latter set is well-known from integration of L∞-algebras. Indeed, when looking
for an integrating topological space or simplicial set of a positively graded L∞-algebra
L of finite type (degree-wise of finite dimension), it is natural to consider the simplicial
spectrum of the corresponding quasi-free DGCA Com(s−1L∗). The dual of Equation (19)
yields

Spec•(Com(s−1L∗)) = HomDGCA(Com(s−1L∗),Ω?
•) ' MC(L⊗ Ω?

•) .
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The integrating simplicial set of a nilpotent L∞-algebra L is actually homotopy equivalent
to MC•(L̄) := MC(L⊗Ω?

•) [Get09]. It is clear that the structure maps of MC•(L̄) ⊂ L⊗Ω?
•

are d̃ni = id⊗dni and s̃ni = id⊗sni , where dni and sni were described in Subsection 3.6.1.

Higher homotopies (n-homotopies) are usually defined along the same lines as standard
homotopies (1-homotopies), i.e., e.g., as arrows depending on parameters in I×n (or ∆n)
instead of I (or ∆1) [Lei03]. Hence,

4.15. Definition. ∞-n-homotopies (∞-(n + 1)-morphisms) between given homotopy
Leibniz algebras V,W are Maurer-Cartan elements in MCn(L̄) = MC(L ⊗ Ω?

n), where
L = L(V,W ) and n ≥ 0.

Indeed, ∞-1-morphisms are just elements of MC(L), i.e. standard ∞-morphisms
between V and W .

Note that if S is an ∞-category, the set of n-morphisms, with varying n ≥ 1, between
two fixed objects s, s′ ∈ S0 can be shown to be a Kan complex [Gro10]. The simplicial
set MC•(L̄), whose (n − 1)-simplices are the ∞-n-morphisms between the considered
homotopy Leibniz algebras V,W , n ≥ 1, is known to be a Kan complex ((∞, 0)-category)
as well [Get09].

4.16. Remark. We interpret this result by saying that homotopy Leibniz algebras and
their infinity higher morphisms form an ∞-category ((∞, 1)-category). Further, as men-
tioned above and detailed below, composition of homotopies is encrypted in the Kan prop-
erty.

Note that MC•(L̄) actually corresponds to the ‘décalage’, the ‘down-shifting’, of the
simplicial set S.

Let us also emphasize that Getzler’s results are valid only for nilpotent L∞-algebras,
hence in principle not for L, which is only complete. Recall that an L∞-algebra is pronilpo-
tent, if it is complete with respect to its lower central series, i.e. the intersection of all
its compatible filtrations; and it is nilpotent, if its lower central series eventually vanishes.
However for our concern, namely the explanation of homotopies and their compositions in
the 2-term homotopy Leibniz algebra case, this difficulty is nonexistent. Indeed by inter-
preting the involved series as formal ones, they become finite simply for degree reasons,
and we recover the results on homotopies and their compositions conjectured in [BC04].
A more rigorous approach to these issues is being examined in a separate paper: it is
rather technical and requires applying Henriques’ method or working over an arbitrary
local Artinian algebra.

4.16.1. Kan property. Considering our next purposes, we now review the proof of the
Kan property of MC•(L̄) [Get09]. Since we adopt different sign conventions, certain signs
will differ from those of [Get09].

Let us first recall that the lower central filtration of (L,Li) is given by F 1L = L and

F iL =
∑

i1+···+ik=i

Lk(F i1L, · · · , F ikL), i > 1 .
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In particular, F 2L = L2(L,L), F 3L = L2(L,L2(L,L)) + L3(L,L, L), ..., so that F kL
is spanned by all the nested brackets containing k elements of L. Due to nilpotency,
F iL = {0}, for i�.

To simplify notation, let δ be the differential L1 of L, let d be the de Rham differential
Ω?
n = Ω?(∆n) of degree −1, and let δ̄ + d̄ be the differential L̄1 = δ ⊗ id + id⊗d of

L⊗ Ω?(∆n). Set now, for any n ≥ 0 and any 0 ≤ i ≤ n,

mcn(L̄) := {(δ̄ + d̄)β : β ∈ (L⊗ Ω?(∆n))0}

and
mcin(L̄) := {(δ̄ + d̄)β : β ∈ (L⊗ Ω?(∆n))0, ε̄inβ = 0} ,

where ε̄in := id⊗εin is the canonical extension of the evaluation map εin : Ω?(∆n) → K,
see 3.6.1.

4.17. Remark. In the following, we use the extension symbol ‘bar’ only when needed for
clarity.

• There exist fundamental bijections

Bi
n : MCn(L̄)

∼−→ MC(L)×mcin(L̄) ⊂ MC(L)×mcn(L̄) . (23)

The proof uses the operators

hin : Ω?(∆n)→ Ω?+1(∆n)

defined as follows. Let ~t = [t0, . . . , tn] be the coordinates of ∆n (with
∑

i ti = 1) and
consider the maps φin : I ×∆n 3 (u,~t) 7→ u~t + (1 − u)~ei ∈ ∆n. They allow to pull back
a polynomial differential form on ∆n to a polynomial differential form on I × ∆n. The
operators hin are now given by

hinω =

∫
I

(φin)∗ω .

They satisfy the relations

{d, hin} = idn−εin, {hin, hjn} = 0, εinh
i
n = 0 , (24)

where {−,−} is the graded commutator (remember that εin vanishes in nonzero homolog-
ical degree). The first relation is a higher dimensional analogue of

{d,
∫ t

0

}ω = {d,
∫ t

0

}(f(u)+g(u)du) = d

∫ t

0

g(u)du+

∫ t

0

duf du = g(t)dt+f(t)−f(0) = ω−ε01ω ,

where ω ∈ Ω?(I).
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The natural extensions of d, hin, and εin to L⊗Ω?(∆n) satisfy the same relations, and
since we obviously have δhin = −hinδ, the first relation holds in the extended setting also
for d replaced by δ + d.

Define now Bi
n by

Bi
n : MCn(L̄) 3 α 7→ Bi

nα := (εinα, (δ + d)hinα) ∈ MC(L)×mcin(L̄) . (25)

Observe that α ∈ (L ⊗ Ω?(∆n))−1 reads α =
∑n

k=0 α
k, αk ∈ Lk−1 ⊗ Ωk(∆n), so that

εinα = εinα
0 ∈ L−1. Moreover, it follows from the definition of the extended L∞-maps L̄i

that ∑
i≥1

1

i!
Li(εinα, . . . , εinα) = εin

∑
i≥1

1

i!
L̄i(α, . . . , α) = 0 . (26)

In view of the last equation (24), the second component of Bi
nα is clearly an element of

mcin(L̄).

The construction of the inverse map is based upon a method similar to the iterative
approximation procedure that allows us to prove the fundamental theorem of ODE-s.
More precisely, consider the Cauchy problem y ′(t) = F (t, y(t)), y(0) = Y , i.e. the integral
equation

y(s) = Y +

∫ s

0

F (t, y(t))dt .

Choose now the ‘Ansatz’ y0(s) = Y and define inductively

yk(s) = Y +

∫ s

0

F (t, yk−1(t))dt ,

k ≥ 1. It is well-known that the yk converge to a function y, which is the unique solution
and depends continuously on the initial value Y .

Note now that, if we are given µ ∈ MC(L) and ν = (δ + d)β ∈ mcin(L̄), a solution
α ∈ MCn(L̄) – i.e. an element α ∈ (L⊗ Ω?(∆n))−1 that satisfies

(δ + d)α +
∑
i≥2

1

i!
(−1)i(i−1)/2L̄i(α, . . . , α) =: (δ + d)α + R̄(α) = 0 –

such that εinα = µ and (δ + d)hinα = ν, also satisfies the integral equation

α = idn α = {δ + d, hin}α + εinα = µ+ ν + hin(δ + d)α = µ+ ν − hinR̄(α) . (27)

We thus choose the ‘Ansatz’ α0 = µ+ ν and set αk = α0 − hinR̄(αk−1), k ≥ 1. In view of
nilpotency, this iteration stabilizes, i.e. αk−1 = αk = . . . =: α, for k �, or

α = α0 − hinR̄(α) . (28)
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The limit α is actually a solution in MCn(L̄). Indeed recall first that, just like the standard
curvature, the generalized curvature

F̄(α) = (δ + d)α + R̄(α) = (δ + d)α +
∑
i≥2

1

i!
(−1)i(i−1)/2L̄i(α, . . . , α) ,

whose zeros are the MC elements, satisfies the Bianchi identity

(δ + d)F̄(α) +
∑
k≥1

1

k!
(−1)k(k+1)/2L̄k+1(α, . . . , α, F̄(α)) = 0 . (29)

It follows from (28) and (24) that

F̄(α) = (δ + d)(α0 − hinR̄(α)) + R̄(α) = (δ + d)µ+ hin(δ + d)R̄(α) + εinR̄(α) .

From Equation (26) we know that εinR̄(α) = R(εinα) = R(µ), with self-explaining nota-
tion. As for εinα = µ, note that εinµ = µ and that

εinν = εin(δ + d)β = εin(δ + d)
n∑
k=0

βk, βk ∈ Lk ⊗ Ω−k(∆n)

so that
εinν = εinδβ

0 = δεinβ
0 = δεinβ = 0 .

Hence,
F̄(α) = (δ + d)µ+ hin(δ + d)(F̄(α)− (δ + d)α) +R(µ)

= F(µ) + hin(δ + d)F̄(α) = −hin
∑
k≥1

1

k!
(−1)k(k+1)/2L̄k+1(α, . . . , α, F̄(α)) ,

in view of (29). Therefore, F̄(α) ∈ F iL̄, for arbitrarily large i, and thus α ∈ MCn(L̄).
This completes the construction of maps

Bin : MC(L)×mcin(L̄)→ MCn(L̄) . (30)

We already observed that εinBin(µ, ν) = εinα = µ. In fact, Bi
nBin = id, so that Bi

n is
surjective. Indeed, Equations (28) and (24) imply that

(δ + d)hinα = −hin(δ + d)α0 + α0 − εinα0 = −hinδµ+ ν = ν .

As for injectivity, if Bi
nα = Bi

nα
′ =: (µ, ν), then both α and α′ satisfy Equation (27). It

is now quite easily seen that nilpotency entails that α = α′.

• The bijections
Bi
n : MCn(L̄)→ MC(L)×mcin(L̄)
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allow proving the Kan property for MC•(L̄). The extension of a horn in SSet(Λi[n],MC•(L̄))
is sketched in the following diagram:

SSet(Λi[n],MC•(L̄)) //

��

MCn(L̄)

SSet(Λi[n],MC(L)×mc•(L̄)) //MC(L)×mcin(L̄)

OO
(31)

First of all the right arrow is nothing but Bin.

? As for the left arrow, imagine, for simplicity, that i = 1 and n = 2, and let

α ∈ SSet(Λ1[2],MC•(L̄)) .

The restrictions α|01 and α|12 to the 1-faces 01, 12 (compositions of the natural injections
with α) are elements in MC1(L̄), so that the map B1

1 sends α|01 to (µ, ν) in MC(L) ×
mc1(L̄) (and similarly B0

1(α|12) = (µ′, ν ′) ∈ MC(L)×mc1(L̄)). Of course, µ = ε1
1(α|01) =

ε0
1(α|12) = µ′. Since ν = (δ + d)β and β(1) = ε1

1β = 0, we find ν(1) = ε1
1ν = 0 (and

similarly ν ′ = (δ + d)β′ and β′(1) = ν ′(1) = 0). Thus,

(µ; ν, ν ′) ∈ SSet(Λ1[2],MC(L)×mc•(L̄)) ,

which explains the left arrow.

? For the bottom arrow, let again i = 1, n = 2. Since µ is constant, it can be
extended to the whole simplex. To extend (ν, ν ′), it actually suffices to extend (β, β′).
Indeed, restriction obviously commutes with δ. As for commutation with d, remember
that Ω? : ∆op → DGCA and that the DGCA-map d2

2 = Ω?(δ2
2) sets the component t2 to

0. Hence, d2
2 coincides with restriction to 01 and commutes with d. Let now β̄ be an

extension of (β, β′). Since

(dβ̄)|01 = d2
2dβ̄ = dd2

2β̄ = dβ

and similarly (dβ̄)|12 = dβ′.

It now remains to explain that an extension β̄ does always exist. Consider the slightly
more general extension problem of three polynomial differential forms β0, β1, and β2

defined on the 1-faces 12, 02, and 01 of the 2-simplex ∆2, respectively (it is assumed
that they coincide at the vertices). Let π2 : ∆2 → 01 be the projection defined, for any
~t = [t0, t1, t2], as the intersection of the line u~t + (1− u)~e2 with 01. This projection is of
course ill-defined at ~t = ~e2. In coordinates, we get

π2 : [t0, t1, t2] 7→ [t0/(1− t2), t1/(1− t2)] .

It follows that the pullback π∗2β2 is a rational differential form with denominator (1−t2)N ,
for some integer N. Hence,

γ2 := (1− t2)Nπ∗2β2
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is a polynomial differential form on ∆2 that coincides with β2 on 01. It now suffices to
solve the same extension problem as before, but for the forms β0 − γ2|12, β1 − γ2|02, and
0. When iterating the procedure – due to Renshaw [Sul77] –, the problem reduces to the
extension of 0, 0, 0 (since the pullback preserves 0). This completes the description of the
bottom arrow, as well as the proof of the Kan property of MC•(L̄).

5. 2-Category of 2-term homotopy Leibniz algebras

Categorification replaces sets (resp., maps, equations) by categories (resp., functors, nat-
ural isomorphisms). In particular, rather than considering two maps as equal, one details
a way of identifying them. Categorification is thus a sharpened viewpoint that turned out
to provide deeper insight. This motivates the interest in e.g. categorified algebras (and
in truncated homotopy algebras – see below).

Categorified Lie algebras were introduced under the name of Lie 2-algebras in [BC04]
and further studied in [Roy07], [SL10], and [KMP11]. The main result of [BC04] states
that Lie 2-algebras and 2-term Lie infinity algebras form equivalent 2-categories. However,
infinity homotopies of 2-term Lie infinity algebras (resp., compositions of such
homotopies) are not explained, but appear as some God-given natural transformations
read through this equivalence (resp., compositions are addressed only in [SS07] and
performed in the algebraic or coalgebraic settings).

This circumstance is not satisfactory, and the attempt to improve our under-
standing of infinity homotopies and their compositions is one of the main
concerns of the present paper. Indeed, in [KMP11] (resp., [BP12]), the authors show
that the equivalence between n-term Lie infinity algebras and Lie n-algebras is, for
n > 2, not as straightforward as expected – which is essentially due to the largely ig-
nored fact that the category Vect n-Cat of linear n-categories is symmetric monoidal,
but that the corresponding map � : L× L′ → L� L′ is not an n-functor (resp., that the
understanding of a concept in the algebraic framework is far from implying its com-
prehension in the infinity context – a reality that is corroborated e.g. by the comparison
of concordances and infinity homotopies).

In this section, we obtain explicit formulae for infinity homotopies and their
compositions, applying the Kan property of MC•(L̄) to the 2-term case, thus staying
inside the infinity setting.

5.1. Category of 2-term homotopy Leibniz algebras. For the sake of complete-
ness, we first describe 2-term homotopy Leibniz algebras and their morphisms. Propo-
sitions 5.2 and 5.3 are specializations to the 2-term case of Definitions 2.8 and 2.11; see
also [SL10]. The informed reader may skip the present subsection.

5.2. Proposition. A 2-term homotopy Leibniz algebra is a graded vector space V =
V0 ⊕ V1 concentrated in degrees 0 and 1, together with a linear, a bilinear, and a trilinear
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map l1, l2, and l3 on V , of degree |l1| = −1, |l2| = 0, and |l3| = 1, which satisfy, for any
w, x, y, z ∈ V0 and h, k ∈ V1,

(a) l1l2(x, h) = l2(x, l1h) ,
l1l2(h, x) = l2(l1h, x) ,

(b) l2(l1h, k) = l2(h, l1k) ,

(c) l1l3(x, y, z) = l2(x, l2(y, z))− l2(y, l2(x, z))− l2(l2(x, y), z) ,

(d) l3(x, y, l1h) = l2(x, l2(y, h))− l2(y, l2(x, h))− l2(l2(x, y), h) ,
l3(x, l1h, y) = l2(x, l2(h, y))− l2(h, l2(x, y))− l2(l2(x, h), y) ,
l3(l1h, x, y) = l2(h, l2(x, y))− l2(x, l2(h, y))− l2(l2(h, x), y) ,

(e) l2(l3(w, x, y), z)+l2(w, l3(x, y, z))−l2(x, l3(w, y, z))+l2(y, l3(w, x, z))−l3(l2(w, x), y, z)
+l3(w, l2(x, y), z)−l3(x, l2(w, y), z)−l3(w, x, l2(y, z))+l3(w, y, l2(x, z))−l3(x, y, l2(w, z))
= 0 .

5.3. Proposition. An infinity morphism between 2-term homotopy Leibniz algebras
(V, l1, l2, l3) and (W,m1,m2,m3) is made up by a linear and a bilinear map f1, f2 from V
to W , of degree |f1| = 0, |f2| = 1, which satisfy, for any x, y, z ∈ V0 and h ∈ V1,

(a) m1f1h = f1l1h ,

(b) m2(f1x, f1y) +m1f2(x, y) = f1l2(x, y) ,

(c) m2(f1x, f1h) = f1l2(x, h)− f2(x, l1h) ,
m2(f1h, f1x) = f1l2(h, x)− f2(l1h, x) ,

(d) m3(f1x, f1y, f1z)−m2(f2(x, y), f1z) +m2(f1x, f2(y, z))−m2(f1y, f2(x, z)) =
f1l3(x, y, z) + f2(l2(x, y), z)− f2(x, l2(y, z)) + f2(y, l2(x, z)) .

5.4. Corollary. The category 2Lei∞ of 2-term homotopy Leibniz algebras and infinity
morphisms is a full subcategory of the category Lei∞-Alg of homotopy Leibniz algebras
and infinity morphisms.

5.5. From the Kan property to 2-term infinity homotopies and their com-
positions.

5.6. Definition. A 2-term infinity homotopy between infinity morphisms f = (f1, f2)
and g = (g1, g2), which act themselves between 2-term homotopy Leibniz algebras (V, l1, l2, l3)
and (W,m1,m2,m3), is a linear map θ1 from V to W , of degree |θ1| = 1, which satisfies,
for any x, y ∈ V0 and h ∈ V1,

(a) g1x− f1x = m1θ1x ,

(b) g1h− f1h = θ1l1h ,
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(c) g2(x, y)− f2(x, y) = θ1l2(x, y)−m2(f1x, θ1y)−m2(θ1x, g1y) .

The characterizing relations (a) - (c) of infinity Leibniz homotopies are the correct
counterpart of the defining relations of infinity Lie homotopies [BC04]. However, rather
than choosing the preceding relations as a mere definition, we deduce them here from the
Kan property of MC•(L̄). More precisely,

5.7. Theorem. There exist surjective maps S i
1 , i ∈ {0, 1}, from the class I of ∞-

homotopies for 2-term homotopy Leibniz algebras to the class T of 2-term ∞-homotopies
for 2-term homotopy Leibniz algebras.

5.8. Remark. The maps S i
1 preserve the source and the target, i.e. they are surjections

from the class I(f, g) of ∞-homotopies from f to g, to the class T (f, g) of 2-term ∞-
homotopies from f to g. In the sequel, we refer to a preimage by Si1 of an element θ1 ∈ T
as a lift of θ1 by Si1 .

Proof. Henceforth, we use again the homological version of infinity algebras (k-ary
bracket of degree k − 2), as well as the Lada-Stasheff sign convention for the higher
Jacobi conditions and the MC equation.

Due to the choice of the homological variant of homotopy algebras, δ = L1 has degree
−1. For consistency, differential forms are then viewed as negatively graded; hence,
d : Ω−k(∆n) → Ω−k−1(∆n), k ∈ {0, . . . , n}, and L̄1 = δ ⊗ id + id⊗ d has degree −1 as
well. Similarly, the degree of the operator hin is now |hin| = 1. It is moreover easily checked
that L cannot contain multilinear maps of nonnegative degree, i.e. that L = ⊕k≥0L−k. It
follows that an element ᾱ ∈ (L⊗ Ω?(∆n))−k, k ≥ 0, reads

ᾱ =
∑

α−k ⊗ ω0 +
∑

α−k+1 ⊗ ω−1 + . . . ,

where the RHS is a finite sum. For instance, if n = 2, an element ᾱ of degree −1 can be
decomposed as

ᾱ = α(s, t)⊗ 1 + β(s, t)⊗ ds+ β′(s, t)⊗ dt ,
where (s, t) are coordinates of ∆2 and where α(s, t) ∈ L−1[s, t] and β(s, t), β′(s, t) ∈ L0[s, t]
are polynomial functions in s, t with coefficients in L−1 and L0, respectively.

In the sequel, we evaluate the L∞-structure maps L̄i of L⊗Ω?(∆n) mainly on elements
of degree −1 and 0, hence we compute the structure maps Li of L = HomK(Zinc(sV ),W )
on elements α and β of degree −1 and 0, respectively. Let

α =
∑
p≥1

αp ∈ L , |α| = −1 ,

β =
∑
p≥1

βp ∈ L , |β| = 0 ,

where αp, βp : (sV )⊗p → W . The point is that the concentration of V,W in degrees
0, 1 entails that almost all components αp, βp vanish and that all series converge (which
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explains why the formal application of Getzler’s method to the present situation leads to
the correct counterpart of the findings of [BC04]). Indeed, the only nonzero components
of α, β are

α1 : sV0 → W0, sV1 → W1 ,

α2 : (sV0)⊗2 → W1 ,

β1 : sV0 → W1 . (32)

Similarly, the nonzero components of the nonzero evaluations of the maps Li on α-s and
β-s are

L1(α) : sV1 → W0 , (sV0)⊗2 → W0 , sV0 ⊗ sV1 → W1 , (sV0)⊗3 → W1 ,

L1(β) : sV0 → W0 , sV1 → W1 , (sV0)⊗2 → W1 ,

L2(α1, α2) : (sV0)⊗2 → W0 , sV0 ⊗ sV1 → W1 , (sV0)⊗3 → W1 ,

L2(α, β) : (sV0)⊗2 → W1 ,

L3(α1, α2, α3) : (sV0)⊗3 → W1 , (33)

see Proposition 3.9.

We are now ready to make more concrete the iterative construction of Bin(µ, ν) ∈
MCn(L̄) from µ ∈ MC(L) and ν = (δ + d)β, β ∈ (L ⊗ Ω?(∆n))0, εinβ = 0 (the explicit

forms of Bin(µ, ν) for n = 1 and n = 2 will be the main ingredients of the proofs of
Theorems 5.7 and 5.9).

• Let α ∈ I(f, g), i.e. let

α ∈ MC1(L̄)
∼−→ (µ, (δ + d)β) ∈ MC(L)×mc0

1(L̄) ,

such that ε0
1α = f and ε1

1α = g. To construct

α = B0
1B

0
1α = B0

1(ε0
1α, (δ + d)h0

1α) =: B0
1(f, (δ + d)β) =: B0

1(µ, ν) ,

we start from

α0 = µ+ (δ + d)β .

The iteration unfolds as

αk = α0 −
∞∑
j=2

1

j!
h0

1(−1)j(j−1)/2L̄j(αk−1, · · · , αk−1) , k ≥ 1 .

Explicitly,

α1 = µ+ (δ + d)β +
1

2
h0

1L̄2(α0, α0) +
1

3!
h0

1L̄3(α0, α0, α0)

= µ+ (δ + d)β + h0
1L̄2(µ+ δβ, dβ) +

1

2
h0

1L̄3(µ+ δβ, µ+ δβ, dβ)

= µ+ (δ + d)β + h0
1L̄2(µ+ δβ, dβ) .
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Observe that µ+ δβ ∈ L−1[t] and dβ ∈ L0[t]⊗ dt, that differential forms are concentrated
in degrees 0 and −1, that h0

1 annihilates 0-forms, and that the term in L̄3 contains a
factor of the type L3(α1, α2, β) (notation of (33)), whose components vanish – see above.
Analogously,

α2 = µ+ (δ + d)β + h0
1L̄2(µ+ δβ + h0

1L̄2(µ+ δβ, dβ), dβ)

+
1

2
h0

1L̄3(µ+ δβ + h0
1L̄2(µ+ δβ, dβ), µ+ δβ + h0

1L̄2(µ+ δβ, dβ), dβ)

= µ+ (δ + d)β + h0
1L̄2(µ+ δβ, dβ) .

Indeed, the term h0
1L̄2(h0

1L̄2(µ+δβ, dβ), dβ) contains a factor of the type L2(L2(α, β1), β2)
(notation of (33)), and the only nonvanishing component of this factor, as well as of its
first internal map L2(α, β1), is the component (sV0)⊗2 → W1 – which entails, in view of
Proposition 3.9, that the term in consideration vanishes. Hence, the iteration stabilizes
already at its second stage and

α = B0
1(µ, ν) = µ+ (δ + d)β + h0

1L̄2(µ+ δβ, dβ) ∈ MC1(L̄) . (34)

Note first that the integral h0
1 can be evaluated since L̄2(µ+δβ, dβ) is a total derivative.

Indeed, when setting β = β0⊗P (sum understood), β0 ∈ L0 and P ∈ Ω0(∆1), we see that

L̄2(µ, dβ) = L2(µ, β0)⊗ dP = −dL̄2(µ, β) .

As for the term L̄2(δβ, dβ), we have

0 = (δ + d)L̄2(β, dβ) = L̄2(δβ, dβ) + L̄2(β, δdβ) ,

since L̄1 = δ + d is a graded derivation of L̄2 and as L̄2(β, dβ) = L̄2(dβ, dβ) = 0. It is
now easily checked that

L̄2(δβ, dβ) = −1

2
dL̄2(δβ, β) .

Eventually,

α = µ+ (δ + d)β − h0
1dL̄2(µ, β)− 1

2
h0

1dL̄2(δβ, β)

= µ+ (δ + d)β − L̄2(µ, β)− 1

2
L̄2(δβ, β) .

Indeed, it suffices to observe that, for any `−1 ⊗ P ∈ L−1 ⊗Ω0(∆1) which vanishes under
the action of ε0

1, we have

h0
1d(`−1 ⊗ P ) = −dh0

1(`−1 ⊗ P ) + `−1 ⊗ P − ε0
1(`−1 ⊗ P ) = `−1 ⊗ P .
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We are now able to write the components of g = ε1
1α ∈ L−1 (see (32)) in terms of f = µ

and β:

g1 = ε11(µ+ (δ + d)β − L̄2(µ, β)− 1

2
L̄2(δβ, β))1 = ε11(f + δβ)1 = f 1 + ε11(δβ)1 ,

g2 = ε11(µ+ (δ + d)β − L̄2(µ, β)− 1

2
L̄2(δβ, β))2 = ε11(f + δβ − L̄2(f, β)− 1

2
L̄2(δβ, β))2 ,

g3 = 0 , (35)

where we recall that the first component of a morphism of the type L2(α, β) (see (33))
vanishes.

To obtain a 2-term ∞-homotopy θ1 ∈ T (f, g), it now suffices to further develop the
equations (35).

As
g1 := g1s, f1 := f 1s ∈ Hom0

K(V,W ) ,

we evaluate the first equation on x ∈ V0 and h ∈ V1. Therefore, we compute ε1
1(δβ)1s =

δβ(1)1s on x and h. Since

δβ(1) = L1β(1) = m1β(1) + β(1)DV ,

where DV ∈ CoDer−1(Zinc(sV )), we have DV : sV1 → sV0 , sV0 ⊗ sV0 → sV0 , . . . Hence,

δβ(1)1sx = m1 β(1)s x = m1θ1x , (36)

where we defined the homotopy parameter θ1 by

θ1 := β(1)s = β(1)s− β(0)s . (37)

Similarly,
δβ(1)1sh = β(1)DV sh = β(1)s s−1DV s h = θ1l1h . (38)

The characterizing equations (a) and (b) follow.
Since

g2 := g2s2, f2 := f 2s2 ∈ Hom1
K(V ⊗ V,W ) ,

it suffices to evaluate the second equation on x, y ∈ V0. When computing e.g.

ε1
1L̄2(δβ, β)2s2(x, y)

we get

L2(δβ(1), β(1))(sx, sy) = m2(δβ(1) sx, β(1) sy) +m2(β(1) sx, δβ(1) sy) =

m2(m1θ1x, θ1y) +m2(θ1x,m1θ1y) = 2m2(θ1x,m1θ1y) , (39)

in view of Equation (36) and Relation (b) of Proposition 5.2. Similarly,

ε1
1L̄2(f, β)2s2(x, y) = m2(f1x, θ1y) +m2(θ1x, f1y) . (40)
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Further, one easily finds
ε1

1(δβ)2s2(x, y) = θ1l2(x, y) . (41)

When collecting the results (39), (40), and (41), and taking into account Relation (a), we
finally obtain the characterizing equation (c).

• Recall that in the preceding step we started from α ∈ I(f, g), set µ = f ,

β = h0
1α ,

ν = (δ + d)β, defined
θ1 = (β(1)− β(0))s ,

and deduced the characterizing relations g = f+E(f, β(1)s) = f+E(f, θ1) of θ1 ∈ T (f, g)
by computing

α = B0
1(µ, ν) = µ+ (δ + d)β − L̄2(µ, β)− 1

2
L̄2(δβ, β)

at 1. Let us mention that instead of defining the map S0
1 : I 3 α 7→ θ1 ∈ T , we can

consider the similarly defined map S1
1 .

To prove surjectivity of Si1, let θ1 ∈ T (f, g) and set β(i) = 0, i ∈ {0, 1}, and β(1− i) =
(−1)iθ1s

−1. Note that by construction θ1 = (β(1)− β(0))s. Use now Renshaw’s method
[Sul77] to extend β(0) and β(1) to some β ∈ L0 ⊗ Ω0(∆1), set

µ = (1− i)f + ig and ν = (δ + d)β ,

and construct
α = Bi1(µ, ν) ∈ MC1(L̄) . (42)

If i = 0, then

α(0) = ε0
1α = µ = f and α(1) = (B0

1(µ, ν))(1) = f + E(f, θ1) = g ,

in view of the characterizing relations (a)-(c) of θ1. If i = 1, one has also α(1) = g and
α(0) = g + E(g,−θ1) = f , but to obtain the latter result, the characterizing equations
(a)-(c), as well as Equation (b) of Proposition 5.2 are needed. To determine the image of
α ∈ I(f, g) by Si1, one first computes hi1α, which, since hi1 sends 0-forms to 0, is equal to

hi1(δ + d)β = −(δ + d)hi1β + β − εi1β = β ,

then one gets
Si1α = (β(1)− β(0))s = θ1 ,

which completes the proof.
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5.9. Theorem. [Definition] If θ1 : f ⇒ g, τ1 : g ⇒ h are 2-term ∞-homotopies between
infinity morphisms f, g, h : V → W , the vertical composite τ1 ◦1 θ1 is given by τ1 + θ1.

We will actually lift θ1, τ1 ∈ T to α′, α′′ ∈ MC1(L̄) (which involves choices), then
compose these lifts in the infinity groupoid MC•(L̄) (which is not a well-defined operation),
and finally project the result back to T (despite all the intermediate choices, the final result
will turn out to be well-defined).

Proof. Let now n = 2, take µ ∈ MC(L) and ν = (δ + d)β ∈ mc1
2(L̄), then construct

α = B1
2(µ, ν). The computation is similar to that in the 1-dimensional case and gives the

same result:

α = µ+ (δ + d)β − L̄2(µ, β)− 1

2
L̄2(δβ, β) . (43)

To obtain τ1 ◦1 θ1, proceed as in (42) and lift θ1 (resp., τ1) to

α′ := B1
1(g, (δ+d)β′) ∈ I(f, g) ⊂ MC1(L̄) (resp., α′′ := B0

1(g, (δ+d)β′′) ∈ I(g, h) ⊂ MC1(L̄)) ,

where

β′(0) = −θ1s
−1 and β′(1) = 0 (resp., β′′(0) = 0 and β′′(1) = τ1s

−1) .

As mentioned above, we have by construction

θ1 = (β′(1)− β′(0))s (resp., τ1 = (β′′(1)− β′′(0))s) . (44)

If we view α′ (resp., α′′) as defined on the face 01 (resp., 12) of ∆2, the equation
ε1

1α
′ = ε0

1α
′′ = g reads ε1

2α
′ = ε1

2α
′′ = g =: µ. This means that

(α′, α′′) ∈ SSet(Λ1[2],MC•(L̄)) .

We now follow the extension square (31). The left arrow leads to

(µ; (δ + d)β′, (δ + d)β′′) ∈ SSet(Λ1[2],MC(L)×mc•(L̄)) ,

the bottom arrow to
(µ, (δ + d)β) ∈ MC(L)×mc1

2(L̄) ,

where β is any extension of (β′, β′′) to ∆2, and the right arrow provides α ∈ MC2(L̄)
given by Equation (43). From Subsection 4.6.1, we know that all composites of α′, α′′

are∞-2-homotopic and that a possible composite is obtained by restricting α to 02. This
restriction (−)|02 is given by the DGCA-map d2

1. Hence, we get

α|02 = µ+ (δ + d)β|02 + L̄2(µ, β|02) +
1

2
L̄2(δβ|02, β|02) ∈ I(f, h) ⊂ MC1(L̄) .

We now choose the projection S0
1α|02 ∈ T (f, h) of the composite-candidate of the

chosen lifts of θ1, τ1, as composite τ1 ◦1 θ1. Since

h0
1α|02 = −(δ + d)h0

1β|02 + β|02 − β(0) = β|02 − β(0) ,
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we get
S0

1α|02 = (β|02(2)− β(0)− β|02(0) + β(0))s = (β(2)− β(0))s =

(β′′(2)− β′′(1))s+ (β′(1)− β′(0))s = τ1 + θ1 ,

in view of (44). Hence, by definition, the vertical composite of θ1 ∈ T (f, g) and τ1 ∈
T (g, h) is given by

τ1 ◦1 θ1 = τ1 + θ1 ∈ T (f, h) . (45)

5.10. Remark. The composition of elements of I = MC1(L̄) in the infinity groupoid
MC•(L̄), which is defined and associative only up to higher morphisms, projects to a

well-defined and associative vertical composition in T .

Just as for concordances, there is no problem for the horizontal composition of ∞-
homotopies. The horizontal composite of θ1 ∈ T (f, g) and τ1 ∈ T (f ′, g′), where f, g :
V → W and f ′, g′ : W → X act between 2-term homotopy Leibniz algebras, is defined by

τ1 ◦0 θ1 = g′1θ1 + τ1f1 = f ′1θ1 + τ1g1 . (46)

The two definitions coincide, since θ1, τ1 are chain homotopies between the chain maps f, g
and f ′, g′, respectively, see Definition 5.6, Relations (a) and (b). The identity associated
to a 2-term ∞-morphism is just the zero-map. As announced in [BC04] (in the Lie case
and without information about composition), we have the

5.11. Proposition. There is a strict 2-category 2Lei∞-Alg of 2-term homotopy Leibniz
algebras.

6. 2-Category of categorified Leibniz algebras

6.1. Category of Leibniz 2-algebras. Leibniz 2-algebras are categorified Leibniz
structures on a categorified vector space. More precisely,

6.2. Definition. A Leibniz 2-algebra (L, [−,−],J) is a linear category L equipped with

1. a bracket [−,−], i.e. a bilinear functor [−,−] : L× L→ L, and

2. a Jacobiator J, i.e. a trilinear natural transformation

Jx,y,z : [x, [y, z]]→ [[x, y], z] + [y, [x, z]], x, y, z ∈ L0,
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which satisfy, for any w, x, y, z ∈ L0, the Jacobiator identity

[w, [x, [y, z]]]

1

))

[1w,Jx,y,z ]

uu
[w, [[x, y], z]] + [w, [y, [x, z]]]

Jw,[x,y],z+Jw,y,[x,z]

��

[w, [x, [y, z]]]

Jw,x,[y,z]

��
[[w, [x, y]], z] + [[x, y], [w, z]]

+[[w, y], [x, z]] + [y, [w, [x, z]]]

1+[1y ,Jw,x,z ]

��

[[w, x], [y, z]] + [x, [w, [y, z]]]

1+[1x,Jw,y,z ]

��
[[w, [x, y]], z] + [[x, y], [w, z]]

+[[w, y], [x, z]] + [y, [[w, x], z]]

+[y, [x, [w, z]]]

[Jw,x,y ,1z ]

&&

[[w, x], [y, z]] + [x, [[w, y], z]]

+[x, [y, [w, z]]]

J[w,x],y,z+Jx,[w,y],z+Jx,y,[w,z]

yy
[[[w, x], y], z] + [[x, [w, y]], z]

+[[x, y], [w, z]] + [[w, y], [x, z]]

+[y, [[w, x], z]] + [y, [x, [w, z]]]

(47)

The Jacobiator identity is a coherence law that should be thought of as a higher Jacobi
identity for the Jacobiator.

The preceding hierarchy ‘category, functor, natural transformation’ together with the
coherence law is entirely similar to the known hierarchy ‘linear, bilinear, trilinear maps
l1, l2, l3’ with the L∞-conditions (a)-(e). More precisely,

6.3. Proposition. There is a 1-to-1 correspondence between Leibniz 2-algebras and 2-
term homotopy Leibniz algebras.

This proposition was proved in the Lie case in [BC04] and announced for the Leibniz
case in [SL10]. A generalization of the latter correspondence to Lie 3-algebras and 3-term
Lie infinity algebras can be found in [KMP11]. This paper allows one to understand that
the correspondence between higher categorified algebras and truncated infinity algebras
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is subject to cohomological conditions, and to see how the coherence law corresponds to
the last nontrivial L∞-condition.

The definition of Leibniz 2-algebra morphisms is God-given: such a morphism must be
a functor that respects the bracket up to a natural transformation, which in turn respects
the Jacobiator. More precisely,

6.4. Definition. Let (L, [−,−],J) and (L′, [−,−]′,J′) be Leibniz 2-algebras (in the fol-
lowing, we write [−,−],J instead of [−,−]′,J′). A morphism (F,F) of Leibniz 2-algebras
from L to L′ consists of

1. a linear functor F : L→ L′, and

2. a bilinear natural transformation

Fx,y : [Fx, Fy]→ F [x, y], x, y ∈ L0 ,

which make the following diagram commute

[Fx, [Fy, Fz]]

[1x,Fy,z ]

��

JFx,Fy,Fz // [[Fx, Fy], Fz] + [Fy, [Fx, Fz]]

[Fx,y ,1z ]+[1y ,Fx,z ]

��
[Fx, F [y, z]]

Fx,[y,z]

��

[F [x, y], Fz] + [Fy, F [x, z]]

F[x,y],z+Fy,[x,z]

��
F [x, [y, z]]

FJx,y,z // F [[x, y], z] + F [y, [x, z]]

(48)

6.5. Proposition. There is a 1-to-1 correspondence between Leibniz 2-algebra mor-
phisms and 2-term homotopy Leibniz algebra morphisms.

For a proof, see [BC04] and [SL10].

Composition of Leibniz 2-algebra morphisms (F,F) is naturally given by composition
of functors and whiskering of functors and natural transformations.

6.6. Proposition. There is a category Lei2 of Leibniz 2-algebras and morphisms.

6.7. 2-morphisms and their compositions. The definition of a 2-morphism is canon-
ical:
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6.8. Definition. Let (F,F), (G,G) be Leibniz 2-algebra morphisms from L to L′. A
Leibniz 2-algebra 2-morphism θ from F to G is a linear natural transformation θ : F ⇒
G, such that, for any x, y ∈ L0, the following diagram commutes

[Fx, Fy]
Fx,y //

[θx,θy ]

��

F [x, y]

θ[x,y]

��
[Gx,Gy]

Gx,y // G[x, y]

(49)

6.9. Theorem. There is a 1:1 correspondence between Leibniz 2-algebra 2-morphisms
and 2-term Leibniz ∞-homotopies.

Horizontal and vertical compositions of Leibniz 2-algebra 2-morphisms are those of
natural transformations.

6.10. Proposition. There is a strict 2-category Lei2Alg of Leibniz 2-algebras.

6.11. Corollary. The 2-categories 2Lei∞-Alg and Lei2Alg are 2-equivalent.
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Clemens Berger, Université de Nice-Sophia Antipolis: cberger@math.unice.fr
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