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TOWARD CATEGORICAL RISK MEASURE THEORY

TAKANORI ADACHI

Abstract. We introduce a category that represents varying risk as well as ambiguity.
We give a generalized conditional expectation as a presheaf for this category, which not
only works as a traditional conditional expectation given a σ-field but also is compatible
with change of measure. Then, we reformulate dynamic monetary value measures as
a presheaf for the category. We show how some axioms of dynamic monetary value
measures in the classical setting are deduced as theorems in the new formulation, which
is evidence that the axioms are correct. Finally, we point out the possibility of giving
a theoretical criteria with which we can pick up appropriate sets of axioms required for
monetary value measures to be good, using a topology-as-axioms paradigm.

1. Introduction

In everyday activity, financial institutions are trying to manage the risk of their financial
positions so that they do not face an undesirable loss. It is crucially important for them to
utilize adequate methods of quantifying the risk for the management, where risk measure
theory plays a central role.

A financial position is described by the corresponding payoff profile. In the simplest
one-period model, it is represented by a real-valued function on a set of possible scenarios.
The position has a certain current value, and has a random variable instantiating a
possible value we will have eventually at a fixed future time. In this setting, people are
supposed to manage their risk only at the starting (current) time.

A dynamic (multi-period) model is an extension of a single period model, in which
people check the risk of the intermediate (random) values of their positions and manage
them at multiple (or even infinite) points in the time interval between now and a fixed
time horizon. This can be considered as a management along the temporal dimension.

One of the key tools for managing risk is a theory of monetary risk measures. Since
the axiomatization of monetary risk measures was initiated by [Artzner et al., 1999],
many axioms such as law invariance have been presented ([Kusuoka, 2001], [Föllmer and
Schied, 2011]). Especially after introducing dynamic versions of monetary risk measures,
many researchers have been investigating this axiomatic approach intensively [Artzner
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et al., 2007]. Those investigations are valuable in both theoretical and practical senses.
However, it may be expected to have some theoretical criteria for picking appropriate
sets of axioms out of them. Thinking about the recent events such as the CDS (credit
default swap) hedging failure at JP Morgan Chase where it is doubtful that they excelled
at the usage of monetary risk measure, the importance of selecting appropriate axioms of
monetary risk measures becomes even bigger than before.

On the other hand, financial industry had been employing techniques relying on the
assumption that there exists a unique objective probability to compute risk. And then,
they met the Lehman shock. After an excuse saying that it was a 1-in-100-year event,
they realized that their assumption might be incorrect, and started thinking that there
is no unique probability measure but multiple subjective probability measures that vary
along a non-temporal dimension. This new type of uncertainty is called ambiguity.

The risk measure theory we are formulating in this note is a theory of dynamic mon-
etary risk measures with ambiguity. We will give a starting point based on which we can
provide a theoretical criteria for picking appropriate sets of axioms of dynamic monetary
risk measures by reformulating the theory in the language of category theory.

In this note, we will stress three points. First is a categorical method of handling
(dynamic) risk as well as ambiguity, which has a potential to develop several stochas-
tic structures with it. Actually, without category theory, it would be hard to integrate
these two concepts in a natural single framework. A functorial representation of general-
ized conditional expectations is a good example showing that the integration works well.
Second is how we can formulate some concepts of dynamic risk measure theory in the
structure provided in the first point, and show some axioms in the classical risk measure
theory become theorems in our new setting. The result may support the legitimacy of the
axioms in the classical setting. Third is the possibility of providing a criteria useful when
selecting sets of axioms required for monetary value measures in a sheaf-theoretic point
of view.

The remainder of this paper consists of four sections.
In Section 2, we provide an overview of financial risk management for those who are

not familiar with it.
In Section 3, we present a base category with which we handle not just a dynamic

(temporal) structure but also ambiguity (spacial) structure in the sense that it handles
measure change internally. We define a generalized conditional expectation as a con-
travariant functor from the category.

In Section 4, we give a definition of monetary value measures as contravariant functors
from the category defined in Section 3 to the category of sets. Then, we will see the
resulting monetary value measures satisfy a time consistency condition and a dynamic
programming principle that were introduced as axioms in the classical version of dynamic
risk measure theory.

In Section 5, we discuss a possibility of finding an appropriate Grothendieck topol-
ogy for which monetary value measures satisfying given axioms become sheaves. We also
introduce the notion of a complete set of axioms with which we give a method of con-
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structing a monetary value measure satisfying the axiom from any given monetary value
measure.

2. An Overview of Financial Risk Management

What is Risk? We can say that risk is a failure, an unexpected result. Risk is the
probability that a disaster will happen. We take the latter and formalize the definition of
disasters.

We assume two times, 0 (present) and 1 (future). We call a one period model . Let
(Ω,G,P) be a probability space where G is a σ-field over Ω and P is a probability measure
defined on the measurable space (Ω,G). Suppose we have a random variable X over the
probability space, which means that X : Ω // R is a G/B(R)-measurable function. The
random variable X represents an uncertain value at time 1 of some financial value such
as a stock price. A disaster is a situation when X < d for some constant value d ∈ R.

Now in order to manage the risk, we should inject some capital m which, if added to
X and invested into a risk-free asset, keeps the probability of the disaster below a given
confidence level α ∈]0, 1[, say 0.05.

P(X +m < d) ≤ α (1)

Without loss of generality, we can redefine the random variable X by X − d. Then (1)
becomes

P(X +m < 0) ≤ α. (2)

Naturally, we may prepare the minimum amount of money specified by

VaRα(X) := inf{m ∈ R | P(X +m < 0) ≤ α} (3)

for keeping the risk below α. The value (3) is called Value at Risk which is a quite
important means for managing risk in financial industry these days.

For a σ-field F ⊂ G, we denote the set of all bounded R-valued F -measurable functions
by L∞(Ω,F). Let L∞(Ω,F ,P|F) be the quotient space of L∞(Ω,F) under the equivalence
relation ∼P defined by X ∼P Y iff X = Y P-a.s.. Then, the space L∞(Ω,F ,P|F) becomes
a Banach space with the usual sup norm.

It is easy to see that VaRα(X) = VaRα(Y ) for X, Y ∈ L∞(Ω,G) if X ∼P Y . Therefore,
we can think that the domain of the function VaRα is L∞(Ω,G,P). Then, we have the
following proposition.

2.1. Proposition. For α, β ∈]0, 1[, X, Y ∈ L∞(Ω,G,P) and a ∈ R,

1. VaRα(X + a) = VaRα(X)− a,

2. X ≤ Y ⇒ VaRα(X) ≥ VaRα(Y ),

3. VaRα(0) = 0,
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4. α ≤ β ⇒ VaRα(X) ≥ VaRβ(X).

One of the biggest issues in financial risk management is to find a class of good risk
measure functions ρ : L∞(Ω,G,P) // R whose value ρ(X) gives a necessary amount of
capital which, if added to X, avoids the risk reasonably. The following is a base class of
functions for measuring risk, which contains VaRα.

2.2. Definition. A one period monetary risk measure is a function
ρ : L∞(Ω,G,P) // R satisfying the following axioms

1. Cash invariance: (∀X)(∀a ∈ R) ρ(X + a) = ρ(X)− a,

2. Monotonicity: (∀X)(∀Y ) X ≤ Y ⇒ ρ(X) ≥ ρ(Y ),

3. Normalization: ρ(0) = 0.

Here is another example of one period monetary risk measures, called the Average
Value at Risk .

AVaRα(X) :=
1

α

∫ α

0

VaRu(X)du (4)

Instead of fixing a particular confidence level α, we average VaR over all levels u ≤ α
and thus “look further into the tail” of the distribution of X. AVaRα has the following
properties.

2.3. Proposition. For α ∈]0, 1[, X, Y ∈ L∞(Ω,G,P), λ ∈ [0, 1] and ξ > 0,

1. AVaRα(X) ≥ VaRα(X),

2. Convexity: AVaRα(λX + (1− λ)Y ) ≤ λAVaRα(X) + (1− λ)AVaRα(Y ),

3. Subadditivity: AVaRα(X + Y ) ≤ AVaRα(X) + AVaRα(Y ),

4. Positive homogeneity: AVaRα(ξX) = ξAVaRα(X).

The first property in Proposition 2.3 says that AVaR requires more capital than VaR
for managing risk of financial instruments. The International regulatory frame-
work for banks( Basel III ) requires banks to use AVaR instead of VaR for their
risk management because of the properties described in Proposition 2.3, especially the
subadditivity condition that meets our intuition when handling risk.

Since [Artzner et al., 1999], an axiomatic approach for defining monetary risk measures
becomes popular in both theoretical and practical aspects of risk management. There
are several proposed sets of axioms including convex monetary risk measures =
monetary risk measures satisfying the convexity condition and coherent monetary risk
measures = convex monetary risk measures satisfying the subadditivity and the positive
homogeneity conditions. However, we have not yet determined the standard set of axioms
for appropriate monetary risk measures, which relates to the discussion in Section 5.
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We sometimes adopt the practice of using a monetary value measure ϕ instead
of using a monetary risk measure ρ below by conforming the manner in recent literature
such as [Artzner et al., 2007] and [Kusuoka and Morimoto, 2007], where we have a relation
ϕ(X) = −ρ(X) for any possible scenarioX. In case ρ = VaRα, its corresponding monetary
value measure becomes

ϕ(X) = −VaRα(X) = sup{m ∈ R | P(X < m) ≤ α}. (5)

Therefore, a value ϕ(X) of a monetary value measure ϕ : L∞(Ω,G,P) // R is a
guaranteed value that we can have for X in a reasonable sense. Here is a direct definition
of monetary value measures.

2.4. Definition. A one period monetary value measure is a function
ϕ : L∞(Ω,G,P) // R satisfying the following axioms

1. Cash invariance: (∀X)(∀a ∈ R) ϕ(X + a) = ϕ(X) + a,

2. Monotonicity: (∀X)(∀Y ) X ≤ Y ⇒ ϕ(X) ≤ ϕ(Y ),

3. Normalization: ϕ(0) = 0.

Here is another example of one period monetary value measures, called an entropic
value measure defined by

ϕ(X) := λ−1 logEP[eλX ] (6)

where λ is a positive real number. We will use this in Section 3.
Note that the convexity condition of monetary risk measures indicated in Proposition

2.3 is modified to the following concavity condition for monetary value measures.

2.5. Definition. A monetary value measure ϕ : L∞(Ω,G,P) //R is called concave if
for X, Y ∈ L∞(Ω,G,P) and λ ∈ [0, 1],

ϕ(λX + (1− λ)Y ) ≥ λϕ(X) + (1− λ)ϕ(Y ). (7)

So far, we only have had two times 0 and 1, which was the one period framework.
We only measure the risk of X once at time 0. However, it is more realistic to think the
situation that we measure the risk of X several times between present (0) and future (1).
We call this a dynamic model .

Now let T > 0 be a fixed time, called a horizon and suppose we have a family of
σ-fields, G = {Gt}t∈[0,T ] such that Gs ⊂ Gt ⊂ G whenever s ≤ t ≤ T . This type of family
of σ-fields is called a filtration . We may measure the risk of the GT -measurable random
variable X at anytime t ∈ [0, T ], which leads to the following definition.
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2.6. Definition. For a σ-field F ⊂ G, we write L(F) for L∞(Ω,F ,P|F). Let G =
{Gt}t∈[0,T ] be a filtration. A dynamic monetary value measure is a collection of
functions ϕ = {ϕt : L(GT ) // L(Gt)}t∈[0,T ] satisfying

1. Cash invariance: (∀X ∈ L(GT ))(∀Z ∈ L(Gt)) ϕt(X + Z) = ϕt(X) + Z,

2. Monotonicity: (∀X ∈ L(GT ))(∀X ∈ L(GT )) X ≤ Y ⇒ ϕt(X) ≤ ϕt(Y ),

3. Normalization: ϕt(0) = 0.

Since dynamic monetary value measures treat multi-period situations, we may require
some extra axioms to regulate them along the temporal dimension. Here are two possible
such axioms.

2.7. Axiom. [Dynamic programming principle] For 0 ≤ s ≤ t ≤ T , (∀X ∈ L(GT )) ϕs(X)
= ϕs(ϕt(X)).

2.8. Axiom. [Time consistency] For 0 ≤ s ≤ t ≤ T , (∀X, ∀Y ∈ L(GT )) ϕt(X) ≤
ϕt(Y ) ⇒ ϕs(X) ≤ ϕs(Y ).

Both axioms are quite popular in dynamic risk measure theory. Especially, the ax-
iom of dynamic programming principle is indispensable when we calculate values of ϕt
recursively by so-called Bellman equations .

All the discussions we made in this section so far describe the situations under a fixed
probability measure P. However, after experiencing some crises including the Lehman
shock recently, the financial industry has begun to think the situation where we cannot
determine a unique probability to compute the risk. In other words, they started thinking
about situations having multiple subjective probabilities. This is called ambiguity . The
category χ defined in Section 3 provides an integrated framework for risk and ambiguity.
We have not had such an integrated framework in classical financial risk management
theory.

Here are some fundamental tools for handling multiple probabilities. Suppose that we
have two probability measures P and Q defined on (Ω,G). Then, Q is called absolutely
continuous to P, denoted by Q � P, if for all A ∈ G, P(A) = 0 implies Q(A) = 0. Q
is called equivalent to P, denoted by Q ≈ P, if Q � P and P � Q. Now we have the
famous Radon-Nikodym theorem.

2.9. Theorem. [Radon-Nikodym] Let P and Q be two probability measures on (Ω,G) with
Q � P. Then, there exists a unique (up to P-a.s.) P-integrable positive random variable
Z such that for all A ∈ G,

Q(A) =

∫
A

ZdP. (8)

We write this Z as dQ
dP and call it a Radon-Nikodym derivative .
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We end our brief introduction to financial risk management here. For those who are
interested in more detail about this, please consult financial textbooks such as [Föllmer
and Schied, 2011].

3. Generalized Conditional Expectations

We fix a measurable space (Ω,G) for the rest of this note. Let F ⊂ G be a sub σ-
field. A conditional expectation given F under the probability measure P is a projection
from L∞(Ω,F ,P|F) to L∞(Ω,G,P). The concept of conditional expectations is crucially
important in probability theory.

In this section, we introduce a category called χ which will be a base category through-
out this note, and define a generalized conditional expectation functor on it.

3.1. Definition. [Category χ] Let χ := χ(Ω,G) be the set of all pairs of the form (F ,P)
where F is a sub-σ-field of G and P is a probability measure on G. For an element
U ∈ χ, we denote its σ-field and probability measure by FU and PU , respectively. That is,
U = (FU ,PU).

Let us introduce a binary relation ≤χ on χ by for U and V in χ,

V ≤χ U iff FV ⊂ FU and PV � PU (9)

where PV � PU means that PU is absolutely continuous to PV . Then, obviously the system
(χ,≤χ) is a preordered set. Hence we can think of χ as a category having exactly one
arrow ∗VU : V // U in χ if and only if V ≤χ U .

We may be able to think of the category χ having two dimensions; one is a temporal
dimension or risk dimension that is represented in a horizontal direction in Figure 3,
and the other is a spacial dimension or ambiguity dimension representing in a vertical
direction.

Note that for objects U ,V ∈ χ, U is isomorphic to V (we write this by U ' V) if and
only if FV = FU and PV ≈ PU (equivalent probability measures) .

First, we will make a mapping of an object U of χ to a Banach space L∞(Ω,FU ,PU |FU )
be a functor. Here is an auxiliary definition used in the subsequent proposition.

3.2. Definition. For an object U in χ and X ∈ L∞(Ω,FU), define a subset [X]U ⊂
L∞(Ω,FU) by

[X]U := {Y ∈ L∞(Ω,FU) | Y ∼PU X}. (10)

3.3. Proposition. Suppose that there are arrows W // V // U in χ.

1. L∞(Ω,FW ,PW |FW ) = {[X]W | X ∈ L∞(Ω,FW)}.

2. For X ∈ L∞(Ω,FW), [X]W ⊂ [X]V .

3. For X, Y ∈ L∞(Ω,FW), [X]W = [Y ]W implies [X]V = [Y ]V .

4. For X ∈ L∞(Ω,FW) and Z ∈ [X]V , [X]U = [Z]U .
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Figure 3.1:

Proof.

1. For X, Y ∈ L∞(Ω,FW), {X = Y } ∈ FW . Therefore, PW{X = Y } = PW |FW{X =
Y }. Thus, X ∼PW |FW

Y = X ∼PW Y .

2. Since FW ⊂ FV , L∞(Ω,FW) ⊂ L∞(Ω,FV). Also since PV � PW , Y ∼PW X implies
Y ∼PV X.

3. By 2, we have [X]V ⊃ [X]W = [Y ]W ⊂ [Y ]V . Then, since [X]W is nonempty, two
equivalence classes [X]V and [Y ]V coincide.

4. Since [Z]V = [X]V , it is an immediate consequence of 3.

Proposition 3.3 makes the following definition well-defined.

3.4. Definition. [Functor L]
A functor L : χ // Set is defined by:

V

��

� L // LV :=

LV
U
��

L∞(Ω,FV ,PV |FV ) 3 [X]V_

LV
U
��

U � L // LU := L∞(Ω,FU ,PU |FU ) 3 [X]U

Now we are ready to develop one of the key functors in this note, a generalized con-
ditional expectation that will be well-defined by the following proposition.

3.5. Proposition. For W // V // U in χ and X ∈ LU ,

1. EPU [X|FV ]dPU
dPV
|FV = EPV [X dPU

dPV
|FU |FV ] PV-a.s.,

2. dPV
dPW
|FU ×

dPU
dPV
|FU = dPU

dPW
|FU PU -a.s..
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Proof.

1. When Q� P and F ⊂ G, we have

dQ
dP
|F= EP [

dQ
dP
| F ] P-a.s. (11)

and

EQ[X | F ] =
EP [X dQ

dP | F ]

EP [dQ
dP | F ]

Q-a.s. (12)

by Proposition A.11 and Proposition A.12 in [Föllmer and Schied, 2011]. Then, by
(11) and since X is FU -measurable, we have with PV-a.s.,

EPV [X
dPU
dPV

|FU | FV ] = EPV [XEPV [
dPU
dPV

| FU ] | FV ]

= EPV [EPV [X
dPU
dPV

| FU ] | FV ]

= EPV [X
dPU
dPV

| FV ].

Therefore, again by (11) and (12), we get the desired equation.

2. By (11), (12) and again by (11), we have with PU -a.s.,

dPU
dPV

|FU = EPV [
dPU
dPV

| FU ] =
EPW [dPU

dPV

dPV
dPW
| FU ]

EPW [ dPV
dPW
| FU ]

=
EPW [ dPU

dPW
| FU ]

EPW [ dPV
dPW
| FU ]

=

dPU
dPW
|FU

dPV
dPW
|FU

.

3.6. Definition. [Generalized Conditional Expectation] A generalized conditional
expectation is a contravariant functor E : χop // Set defined by for V // U in χ,

V

��

� E // E(V) := LV

U � E // E(U) :=

EVU

OO

LU

where

EVU (X) := EPU [X|FV ]
dPU
dPV
|FV (13)

for X ∈ LU .
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Note that EVU in Definition 3.6 is well-defined by Proposition 3.5. See also Figure 3.2
and Figure 3.3.

Classical conditional expectations do not accept changes of probability measures within
them while our generalized conditional expectations are sensitive to the ambiguity di-
mension as well as the risk dimension, which is a direct result of using the categorical
framework χ.

EPU [X|FV ]dPU
dPV
|FV

∈

=EPV [X dPU
dPV
|FU |FV ] X dPU

dPV
|FU

∈

�oo

L(FV ,PV) L(FU ,PV)oo

L(FV ,PU)

OO

L(FU ,PU)

EVU
ee

oo

OO

EPU [X|FV ]

∈
_

OO

X

∈
_

OO

�oo

Figure 3.2:

4. Monetary Value Measures

In this section, we transplant the concept of dynamic monetary value measures introduced
in Definition 2.4 to the category χ as a presheaf, and investigate its properties.

4.1. Definition. [Monetary Value Measures] A monetary value measure is a
contravariant functor

ϕ : χop // Set

satisfying the following two conditions:

1. for U ∈ χ, ϕ(U) := LU ,

2. for V // U in χ, the map ϕVU := ϕ(V // U) : LU // LV satisfies

(a) Cash invariance: (∀X ∈ LU)(∀Z ∈ LV) ϕVU(X+LVU(Z)) = ϕVU(X)+Z PV-a.s.,

(b) Monotonicity: (∀X ∈ LU)(∀Y ∈ LU) X ≤ Y ⇒ ϕVU(X) ≤ ϕVU(Y ) PV-a.s.,

(c) Normalization: ϕVU(0LU ) = 0LV PV-a.s. if PV = PU .

At this point, we do not require the monetary value measures to satisfy familiar
conditions such as concavity or positive homogeneity. Instead of doing so, we want to see
what kind of properties are deduced from this minimal setting.
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−× dPV
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Risk //
L(FV ,PU)oo
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L(FU ,PU)oo
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hh

−× dPU
dPV
|FU
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Figure 3.3:

W

��

� ϕ //

��

ϕ(W) := LW

V

��

� ϕ // ϕ(V) :=

OO

LV

ϕW
V

OO

U � ϕ // ϕ(U) :=

OO

LU

ϕV
U

OO
ϕW
U

^^

Figure 4.1:

The most crucial point of Definition 4.1 is that ϕ does not move only in the direction
of time but also moves over several absolutely continuous probability measures internally.
This means we have a possibility to develop risk measures including ambiguity within this
formulation.

Another key point of Definition 4.1 is that ϕ is a contravariant functor. So, for any
triple W // V // U in χ, we have, as seeing in Figure 4.1,

ϕUU = 1LU and ϕWV ◦ ϕVU = ϕWU . (14)

The following example is a variation of (6).

4.2. Example. [Entropic Value Measure] For a positive real number λ, an entropic
value measure is a contravariant functor ϕ : χop // Set defined by

ϕ(U) := LU and ϕVU(X) := λ−1 log EVU (eλX) (15)

for V // U in χ and X ∈ LU . Then, it is easy to see that the contravariant functor ϕ is
well-defined and is a monetary value measure.
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Now in case FV = FU , we have

ϕVU(X) = λ−1 log EVU (eλX) = λ−1 log
(
eλX

dPU
dPV
|FV

)
= X + λ−1 log

(dPU
dPV
|FV

)
.

In particular, we have ϕVU(0LU ) = λ−1 log
(
dPU
dPV
|FV

)
, which is not 0LV unless PV = PU on

FV .
This is the reason we require the assumption PV = PU in the normalization condition

in Definition 4.1.

Here are some properties of monetary value measures.

4.3. Proposition. Let ϕ : χop //Set be a monetary value measure, and W //V //U
be arrows in χ.

1. If PV = PU , we have ϕVU ◦ LVU = 1LV .

2. Idempotence: If PV = PU , we have ϕVU ◦ LVU ◦ ϕVU = ϕVU .

3. Local property: (∀X ∈ LU)(∀Y ∈ LU)(∀A ∈ V) ϕVU(1AX + 1AcY ) = 1Aϕ
V
U(X) +

1AcϕVU(Y ).

4. Dynamic programming principle: If PV = PU , we have ϕWU = ϕWU ◦ LVU ◦ ϕVU .

5. Time consistency: (∀X ∈ LU)(∀Y ∈ LU) ϕVU(X) ≤ ϕVU(Y ) ⇒ ϕWU (X) ≤ ϕWU (Y ).

Proof.

1. For X ∈ LV , we have by cash invariance and normalization, ϕVU(LVU(X)) = ϕVU(0LU +
LVU(X)) = ϕVU(0LU ) +X = X.

2. Immediate by (1).

3. First, we show that for any A ∈ V ,

1Aϕ
V
U(X) = 1Aϕ

V
U(1AX). (16)

Since X ∈ L∞(Ω,U ,P), we have |X| ≤ ‖X‖∞. Therefore,

1AX − 1Ac‖X‖∞ ≤ 1AX + 1AcX ≤ 1AX + 1Ac‖X‖∞.

Then, by cash invariance and monotonicity,

ϕVU(1AX)− 1Ac‖X‖∞ = ϕVU(1AX − 1Ac‖X‖∞)

≤ ϕVU(X)

≤ ϕVU(1AX + 1Ac‖X‖∞) = ϕVU(1AX) + 1Ac‖X‖∞.
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Then,

1Aϕ
V
U(1AX) = 1A(ϕVU(1AX)− 1Ac‖X‖∞)

≤ 1Aϕ
V
U(X)

≤ 1A(ϕVU(1AX) + 1Ac‖X‖∞) = 1Aϕ
V
U(1AX).

Therefore, we get (16).

Next by using (16) twice, we have

ϕVU(1AX + 1AcY ) = 1Aϕ
V
U(1AX + 1AcY ) + 1AcϕVU(1AX + 1AcY )

= 1Aϕ
V
U(1A(1AX + 1AcY )) + 1AcϕVU(1Ac(1AX + 1AcY ))

= 1Aϕ
V
U(1AX) + 1AcϕVU(1AcY )

= 1Aϕ
V
U(X) + 1AcϕVU(Y ).

4. By (2) and (14), we have

ϕWU = ϕWV ◦ ϕVU = ϕWV ◦ (ϕVU ◦ LVU ◦ ϕVU)

= (ϕWV ◦ ϕVU) ◦ (LVU ◦ ϕVU) = ϕWU ◦ LVU ◦ ϕVU .

5. Assume ϕVU(X) ≤ ϕVU(Y ). Then, by monotonicity and (14),

ϕWU (X) = ϕWV (ϕVU(X)) ≤ ϕWV (ϕVU(Y )) = ϕWU (Y ).

In Proposition 4.3, two properties, dynamic programming principle and time consis-
tency are usually introduced as axioms ([Detlefsen and Scandolo, 2006]). But, we derive
them naturally here from the fact that the monetary value measure is a contravariant
functor as a proposition. This may be seen as evidence that Axioms 2.7 and 2.8 are
correct in classical settings.

Before ending this section, we mention an interpretation of the Yoneda lemma in our
setting.

4.4. Theorem. [The Yoneda Lemma] For any monetary value measure ϕ : χop // Set
and an object U in χ, there exists a bijective correspondence yϕ,U specified by the following
diagram:

yϕ,U : Nat(Homχ(−,U), ϕ)
∼= // LU

α � // αU(∗UU)

X̃ X�oo
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where X̃ is a natural transformation defined by for any V // U in χ, X̃V(∗VU) := ϕVU(X).
Moreover, the correspondence is natural in both ϕ and U .

It makes sense to consider the representable functor Homχ(−,U) as a generalized time
domain with time horizon U . Then a natural transformation from Homχ(−,U) to ϕ can
be seen as a stochastic process that is (in a sense) adapted to ϕ, and its corresponding
FU -measurable random variable represents a terminal value (payoff) at the horizon.

The Yoneda lemma says that we have a bijective correspondence between those stochas-
tic processes and random variables.

5. Monetary Value Measures as Sheaves

As mentioned in Section 1, one of the motivations of our research is to explore some the-
oretical criteria for selecting appropriate sets of axioms. Since a monetary value measure
ϕ : χop //Set is a presheaf, it is natural to consider the possibility to use a Grothendieck
topology to characterize a set of monetary value measures that satisfy a given set of
axioms.

Now let A be a given set of axioms for monetary value measures. Then, we have
the largest Grothendieck topology JA on χ such that any monetary value measure ϕ :
χop // Set satisfying A becomes a sheaf 1.

In the following, we write Pr(χ) and Sh(χ, J) for, respectively, the corresponding
categories of presheaves and sheaves where J is a Grothendieck topology on χ. Then,
it is well-known that Sh(χ, J) is a reflective subcategory of Pr(χ) and its reflection πJ :
Pr(χ) // Sh(χ, J) is a left adjoint for its inclusion functor, preserving finite limits (See
Theorem 3.3.12 in [Borceux, 1994]).

Sh(χ, J) // // Pr(χ)
πJ
oo

πJ(ϕ)

∈

ϕ

∈

�oo

(17)

This fact suggests that for an arbitrary monetary value measure, the reflection functor
πJA provides one of its closest monetary value measures that may satisfy the given set of
axioms A. However, in general, the resulting sheaf πJA(ϕ) does not satisfy A. If there
is no such case, that is, all sheaves in the form of πJA(ϕ) satisfies A, then we call the
set of axioms A complete. In other words, the set of axioms A is complete if it has
enough members to characterize itself through a corresponding Grothendieck topology.
Reminding that the current ways of selecting axioms of risk measures in practice are kind
of ad hoc, it would not be so nonsense to have a new regulation for banks that requires
their using monetary value measures satisfy some complete set of axioms since at least it
guarantees some logical consistency.

Here is a formal definition of completeness of a set of axioms.

1For the existence of a largest such Grothendieck topology, see Example 3.2.14.d in [Borceux, 1994].
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5.1. Definition. Let A be a set of axioms for monetary value measures.

1. M[A] is the full and faithful subcategory of Pr(χ) whose objects are all monetary
value measures satisfying A.

2. M0 :=M[∅], that is, the category of all monetary value measures.

3. A is called complete if there exists a functor ηA : M0
//M[A] such that the

following diagram commutes.

M0
// //

ηA
��

Pr(χ)

πJA
��

M[A] // // Sh(χ, JA)

(18)

Note that the existence of the inclusion functor in the bottom of Diagram (18) is
guaranteed by the definition of JA. Also the functor ηA in Diagram (18) is actually a
restriction of πJA to M0. So, we have the following main result.

5.2. Theorem. Let A be a complete set of axioms. Then, for a monetary value measure
ϕ, πJA(ϕ) is the monetary value measure that is the best approximation satisfying axioms
A.

Proof. Since A is complete, for every ϕ ∈ M0 we have πJA(ϕ) = ηA(ϕ) ∈ M[A].
Therefore, πJA(ϕ) is a monetary value measure satisfying A.

Theorem 5.2 is especially important for practitioners since it is sometimes difficult to
check whether a monetary value measure at hand is adequate and safe to use, in other
words, whether it satisfies the given set of axioms. But, Theorem 5.2 tells us that they
can get a closest safe monetary value measure by remedying the original monetary value
measure through the functor πJA , in case A is complete.

We expect that some of the well-known sets of axioms such as those for concave
monetary value measures are complete. If we restrict the category χ to the category
that is not allowed to vary its probability measures, i.e. no ambiguity version, then we
have an example for a quite small Ω with which the axiom set of concave monetary value
measures is not complete [Adachi, 2012]. However, we have no significant result so far for
the current version of χ that accepts ambiguity.

6. Conclusion

We introduced a category χ that represents varying risk as well as ambiguity. We gave
a generalized conditional expectation as a contravariant functor on χ, which works not
only in risk direction but also in ambiguity direction.

We specified a concept of monetary value measures as a presheaf for χ. The resulting
monetary value measures satisfy naturally so-called time consistency condition as well as
dynamic programming principle.
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Finally, we discussed a possibility of applying the topology-as-axioms paradigm for
getting the best approximation of the monetary value measure that satisfies given axioms
from a monetary value measure at hand, which works in case the axioms are complete.

In future work, we will try to formulate a robust representation of concave monetary
value measures by using a representation of ambiguity within the category χ, which was
originally presented in [Artzner et al., 1999]. We also seek the possibility of representing
each individual axiom of monetary value measures as a specific Grothendieck topology
which may give us an insight about different aspects of the axioms of monetary value
measures, as well as investigating the completeness condition against the important sets
of axioms such as those of concave monetary value measures. We may be able to propose
a new set of axioms that is complete as a foundation of safe monetary value measure
theory.
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Clemens Berger, Université de Nice-Sophia Antipolis: cberger@math.unice.fr
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