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TOPOLOGICAL FUNCTORS AS TOTAL CATEGORIES

RICHARD GARNER

Abstract. A notion of central importance in categorical topology is that of topological
functor. A faithful functor E → B is called topological if it admits cartesian liftings of all
(possibly large) families of arrows; the basic example is the forgetful functor Top→ Set.
A topological functor E → 1 is the same thing as a (large) complete preorder, and the
general topological functor E → B is intuitively thought of as a “complete preorder
relative to B”. We make this intuition precise by considering an enrichment base QB such
that QB-enriched categories are faithful functors into B, and show that, in this context, a
faithful functor is topological if and only if it is total (=totally cocomplete) in the sense
of Street–Walters. We also consider the MacNeille completion of a faithful functor to
a topological one, first described by Herrlich, and show that it may be obtained as an
instance of Isbell’s generalised notion of MacNeille completion for enriched categories.

1. Introduction

One of the more inconvenient facts in mathematics is that of the relatively bad behaviour
of the category Top of topological spaces: though complete, cocomplete and extensive, it
is not regular, coherent, locally presentable, or (locally) cartesian closed. Many authors
have thus been led to propose replacing the category of spaces by some other category
which either embeds Top or embeds into Top in a reasonable manner, but which possesses
some of the desirable properties that Top itself lacks; some examples are the categories of
quasitopological spaces, approach spaces, convergence spaces, uniformity spaces, nearness
spaces, filter spaces, epitopological spaces, Kelley spaces, compact Hausdorff spaces,
∆-generated spaces, or of sheaves on some small subcategory of Top.

In attempting to impose some kind of order on this proliferation of notions, a useful
organising framework is that of categorical topology [7]; a key insight of which is that
categories of space-like structures are most fruitfully studied not as categories simpliciter,
but as categories equipped with a faithful functor A → Set. Desirable properties of a
category of space-like structures can be re-expressed as properties of this functor, and
the process of replacing Top by a category with such properties then becomes that of
adjoining those desirable properties to the usual forgetful functor Top→ Set, or some
subfunctor thereof; see [16] for an overview.
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In general, categorical topology studies faithful functors not just into Set, but into
an arbitrary base category B. When B = 1, such functors are simply preorders; this
motivates the step of regarding a general faithful functor p : E → B as a “preorder relative
to B”, and many aspects of categorical topology can be seen as as elucidation of this
idea. Of particular importance are the “complete preorders relative to B”, the so-called
topological functors [11, 1, 19]. A faithful functor is topological if it admits a generalisation
of the characterising property of a Grothendieck fibration in which one may form cartesian
liftings not just of single arrows, but of arbitrary (possibly large) families of them.

The intuition that topological functors are relativised complete preorders can be seen in
many places throughout the literature: for example, in the various completion processes by
which a faithful functor may be turned into a topological one [8], which correspond to the
constructions by which a poset may be turned into a complete lattice, and indeed reduce to
these constructions when B = 1. However, nowhere is this basic intuition wholly justified.
The objective of this paper is to rectify this by way of enriched category theory: given a
category B, we describe an enrichment base for which the enriched categories are faithful
functors into B, and the enriched categories which are total (= totally cocomplete)—in a
sense to be recalled below—are the topological functors into B.

It is worth saying a few words about the kind of enrichment base we will require. Most
enrichments, as in [13], involve a monoidal category V , with a V-category then having homs
which are objects of V . For example, when V is the monoidal poset (2,∧,>), V-categories
are precisely preorders, and so we may regard order theory as a particular kind of enriched
category theory. In the early 1980’s, Walters [26, 27] realised the value of a more general
kind of enrichment (first suggested by Bénabou [3]) based on a bicategory W; in a W-
category, each object is typed by an object of W , while the homs are appropriately-typed
morphisms of W . This kind of enrichment includes the more familiar kind on regarding a
monoidal category V as a one-object bicategory.

Walters’ application for this notion was to sheaf theory: for each site, he describes a
bicategory W such that Cauchy-complete, symmetric, skeletal W-categories are precisely
sheaves on that site. More generally, posets internal to sheaves correspond to Cauchy-
complete skeletal W-categories1 and so we may regard order theory internal to a topos as
another kind of enriched category theory. Both the monoidal poset (2,∧,>) (seen as a
one-object bicategory) and Walters’ bases for enrichment are instances of a general class
of well-behaved bicategories, the quantaloids [20], whose enriched category theory [24, 25]
behaves like non-standard order theory. A quantaloid is a bicategory whose homs are
complete posets, and whose composition preserves joins in each variable. The enrichment
bases which give rise to faithful functors over a base B are also quantaloids, and this
justifies our viewing their theory as non-standard order theory: our main result can then
be seen as saying that, for this non-standard order theory, the complete preorders are the
topological functors into B.

Beyond proving our basic equivalence, we give an application to MacNeille completions.

1Although the general Cauchy-complete W-category corresponds not to a preorder internal to sheaves,
but to a stack of preorders.
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The classical MacNeille completion [17] of a poset P is the smallest complete poset into
which P embeds, and may be constructed by Dedekind cuts: its elements are pairs (L,U)
of subsets of P wherein L is the set of all lower bounds of U , and U the set of all upper
bounds of L. In [8] is described a more general “MacNeille completion”, which turns a
faithful functor into B to a topological one, and includes the classical MacNeille completion
as the special case B = 1. We unify these constructions by showing that they are an
instance of the general notion of “MacNeille completion” for enriched categories first
described by Isbell [12].

2. Topological functors

Since questions of size are relevant in what follows, let us first make clear our conventions.
A set will be called small if it lies within some fixed Grothendieck universe κ, and large
otherwise. All categories in this paper will be assumed to have small hom-sets and a
(possibly large) set of objects2.

We begin by recalling the definition of topological functor [1, 19].

2.1. Definition. Let p : E → B be a faithful functor, and I a (possibly large) set. Given
objects (xi ∈ E)i∈I and morphisms (gi : pxi → z ∈ B)i∈I , a final lifting is an object z̄ ∈ E
with pz̄ = z such that, for any θ ∈ B(z, pe),

z
θ−→ pe lifts to a map z̄ → e iff each pxi

θ.gi−−→ pe lifts to a map xi → e. (*)

The functor p is called topological if it admits all final liftings.

2.2. Examples. The basic example of a topological functor is the forgetful functor
Top → Set: given spaces (Xi | i ∈ I) and functions (gi : UXi → Z), we obtain a final
lifting by equipping Z with the topology in which V ∈ O(Z) just when g−1i (V ) ∈ O(Xi)
for each i. Similarly, the categories of quasitopological spaces, limit spaces, filter spaces,
subsequential spaces and so on, all admit topological forgetful functors to Set; see [6].
Other interesting examples of categories topological over Set include the category of
bornological spaces; the category F of sets equipped with a filter of subsets [5]; and the
categories of diffeological and Chen spaces [2].

An easy way of obtaining topological functors whose codomain is not Set is using the
result that, if T is a small category with finite limits, and p : E → B is topological, then so
too is Lex(T, E) → Lex(T,B). So, for example, the forgetful functors from topological
groups or topological vector spaces to groups or vector spaces are topological. Another
class of examples to bear in mind are those with B = 1; as in the introduction, a faithful
functor into 1 is just a (large) preorder, and such a functor is topological just when the
preorder admits all joins.

2Our conventions deviate here from those commonly used in the categorical topology literature, where
a small category is defined as one with a set of objects, and a large category may have a proper class of
them. This avoids problems such as the failure of the collection of subclasses of a fixed class to form a
class.
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2.3. Remark. Dually, an initial lifting of a family (gi : z → pxi ∈ B)i∈I is a final lifting
with respect to pop; and clearly, a functor p admits all initial liftings just when pop is
topological. One might be tempted to call such a p optopological, but it turns out that
this is unnecessary: a functor is topological if and only if its opposite is so. This is the
topological duality theorem [1, 19, 10]; in the case B = 1, it reduces to the result that a
preorder admits all meets if and only if it admits all joins. We return to this point in
Section 6 below.

2.4. Remark. The definition of a topological functor is sometimes taken to include extra
side-conditions. One is that it should be amnestic—meaning that the fibres are posets,
not preorders. This requirement is inessential for the basic theory. Another common
side-condition is that the fibres should be small categories; again, this is unnecessary for
the basic theory.

3. Faithful functors as enriched categories

Towards our characterisation of topological functors, we now describe how faithful functors
into a fixed base category B may be seen as categories enriched in an associated quantaloid.
As in the introduction, a quantaloid [20] is a bicategory Q whose hom-categories Q(A,B)
are complete (small) lattices, and whose whiskering functors (–) ◦ f : Q(B,C)→ Q(A,C)
and g◦(–) : Q(A,B)→ Q(A,C) preserve all joins. It follows that these whiskering functors
have right adjoints, denoted by

[f, –] : Q(A,C)→ Q(B,C) and {g, –} : Q(A,C)→ Q(A,B)

respectively. Existence of these right adjoints is the bicategorical counterpart to a monoidal
category’s being left and right closed, and ensures that there is a workable theory of enriched
categories over such a base.

3.1. Examples. A one-object quantaloid is a (unital) quantale (Q,&, 1) in the sense
of [18]: a complete lattice Q with an associative unital multiplication &: Q×Q→ Q that
preserves joins in each variable. In particular, any locale L yields a quantale (L,∧,>).
Another important example, due to Lawvere [15], is the quantale (R+,+, 0) of non-negative
real numbers with the reverse of the usual ordering.

Quantaloids with more than one object arise, amongst other places, in the work of
Walters [27, 26]: given a topological space (or locale) X, he considers the quantaloid QX
whose objects are open sets of X, and for which QX(U, V ) is the complete lattice of open
sets of X contained in U ∩ V . Analogously, if (C, J) is a (standard) site, then there is a
quantaloid QC whose objects are those of C, and for which QC(X, Y ) is the complete lattice
of subsheaves of C(–, X × Y ). See [9] for an abstract characterisation of such quantaloids.

The notions of category, functor and transformation enriched in a quantaloid are
particular cases of the bicategorical ones of [22], though rather easier to state in this
special case due to the partially ordered homs, which ensure that all 2-cell axioms are
automatically satisfied. For more on quantaloid-enriched category theory, see [24, 25].
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3.2. Definition. If Q is a quantaloid, a Q-enriched category, or Q-category C, is given
by:

• A (possibly large) set of objects ob C;
• For each x ∈ ob C, an object |x| ∈ Q, called the extent of x; and
• For all x, y ∈ ob C, a hom-object C(x, y) ∈ Q(|x|, |y|);

all such that

• For all x ∈ ob C, we have 1|x| 6 C(x, x) in Q(|x|, |x|);
• For all x, y, z ∈ ob C, we have C(y, z) ◦ C(x, y) 6 C(x, z) in Q(|x|, |z|).

If C and D are Q-categories, a Q-functor F : C → D is an extent-preserving function
F : ob C → obD such that C(x, y) 6 D(Fx, Fy) in Q(|x|, |y|) for all x, y ∈ ob C. Between
Q-functors F,G : C → D there exists at most one Q-transformation, which exists just
when 1|x| 6 D(Fx,Gx) for all x ∈ ob C, and will then be notated as F 6 G. We write
Q-CAT for the locally posetal 2-category of (possibly large) Q-categories.

3.3. Example. When Q is a quantale seen as a one-object quantaloid, Q-enriched
categories are categories enriched in the quantale seen as a monoidal poset. For example,
categories enriched in the one-object quantaloid (2,∧,>) are preordered sets; whilst
Lawvere showed in [15] that categories enriched in the one-object quantaloid (R+,+, 0)
are (generalised) metric spaces. For the quantaloid QX associated to a topological space
X, Cauchy-complete skeletal QX-enriched categories are, as in the introduction, posets
internal to Sh(X), and correspondingly for the quantaloid associated to a site (C, J).

We now describe the quantaloid-enrichments that will be relevant in this paper.

3.4. Definition. [20] The free quantaloid QB on an ordinary category B has the same
objects as B; morphisms U : X −7→ Y in QB are subsets U ⊆ B(X, Y ), ordered by inclusion;
the composition of U : X −7→ Y with V : Y −7→ Z is given by V ◦ U = {v ◦ u | v ∈ V, u ∈
U} ⊆ B(X,Z); while the identity map at X is {1X} : X −7→ X. The right adjoints to
whiskering are constructed as follows for each U : X −7→ Y , V : Y −7→ Z and W : X −7→ Z
in QB:

[U,W ] = {v ∈ B(Y, Z) | vu ∈ W for all u ∈ U}
and {V,W} = {u ∈ B(X, Y ) | vu ∈ W for all v ∈ V } .

Given an ordinary category B, consider now what it is to give a category enriched in the
free quantaloid QB. We have a set ob E of objects; for each x ∈ ob E an object |x| ∈ obB;
and for each x, y ∈ ob E a subset E(x, y) ⊆ B(|x|, |y|), in such a way that 1|x| ∈ E(x, x)
and whenever f ∈ E(x, y) and g ∈ E(y, z) we have also g ◦ f ∈ E(x, z). These data are
clearly those of an ordinary category E together with a faithful functor p : E → B sending
x to |x|. Similar calculations with respect to functors and transformations now show that:
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3.5. Proposition. If QB is the free quantaloid on the ordinary category B, then the
2-category QB-CAT is 2-equivalent to the full sub-2-category of the strict slice CAT/B
on the faithful functors.

4. Totality for quantaloid-enriched categories

In this section, we discuss totality in the context of quantaloid-enriched categories. The
notion of totality of a category was introduced in [21, 23] in an abstract context broad
enough to encompass ordinary categories but also enriched and internal ones. An ordinary
(possibly large) category C is called total if its Yoneda embedding C → [Cop,Set] admits
a left adjoint3. Totality implies cocompleteness, the existence of all small colimits, but
also the existence of certain large ones, which can be used, for example, to avoid solution-
set conditions in the adjoint functor theorem; see [21, Theorem 18]. Most categories
arising in mathematical practice are total: for instance, any locally presentable category,
in particular, any Grothendieck topos; any category monadic over Set; any category
admitting a topological functor to Set; and so on.

As explained in [14], defining totality in the enriched context requires some delicacy:
the näıve definition—involving a left adjoint to the Yoneda embedding into the enriched
presheaf category—is complicated by the fact that the presheaves on a large W-category
in general only form a W ′-category for some universe-enlargement W ′ of W. One can
avoid this issue by restating the definition of totality purely in terms of the large colimits
required to exist, but when enriching in a quantaloid Q this is unnecessary. Because the
hom-categories of Q are complete posets, they admit all of the large limits necessary for
the presheaves on a large Q-category to exist as a Q-category; and so the näıve definition
of totality is, in this context, valid.

4.1. Definition. Let Q be a quantaloid, and C a Q-enriched category. A presheaf ϕ on
C is given by:

• An object |ϕ| ∈ Q, the extent of ϕ; and
• For each x ∈ ob C, an arrow ϕ(x) : |x| → |ϕ| in Q,

such that we have ϕ(y) ◦ C(x, y) 6 ϕ(x) : |x| → |ϕ| for all x, y ∈ ob C. The presheaf
Q-category PC has these presheaves as objects, with the specified extents, and hom-arrows
given by

PC(ϕ, ψ) =
∧
x∈C[ϕ(x), ψ(x)] : |ϕ| → |ψ| .

The Yoneda embedding Y : C → PC sends x to the representable presheaf C(–, x) with
extent |x| and with components C(–, x)(y) = C(y, x).

3Our standing assumptions, that every category be locally small, ensure that the Yoneda embedding
C → [Cop,Set] exists; yet if C is not small, then [Cop,Set] may itself fail to satisfy this same standing
assumption. This is, in fact, an instance of the delicacy described in the following paragraph: the category
of presheaves on the large Set-category C need not form a Set-category.
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4.2. Definition. A Q-category C is called total if the Yoneda embedding Y : C → PC
admits a left adjoint in Q-CAT.

We prefer to use total rather than cocomplete for this notion, reserving the latter to
mean, as is standard, “having all small colimits”. Note that in [24], Stubbe uses cocomplete
for what appears to be our total ; but he in fact works under the restriction that Q should
be a small quantaloid, and C a small Q-category, so that his nomenclature is compatible
with ours.

4.3. Example. For any Q-category C, PC is total; the left adjoint µ : PPC → PC of the
Yoneda embedding is defined at Φ by µ(Φ)(x) =

∨
ϕ∈PC Φ(ϕ) ◦ ϕ(x).

As explained above, totality is equivalent to the existence of certain large colimits. In
the quantaloid-enriched case, it is actually equivalent to the existence of all large colimits.

4.4. Definition. Let Q be a quantaloid and F : I → C a Q-functor.

• The singular Q-functor C(F, –) : C → PI sends c ∈ C to C(F, c) with extent |c| and
components C(F, c)(x) = C(Fx, d) : |x| → |c|.

• Given ϕ ∈ PI, a weighted colimit of F by ϕ is a left adjoint to C(F, –) at ϕ, given
by an object ϕ ? F of C with extent |ϕ| such that C(ϕ ? F, c) = PI(ϕ, C(F, c)) in
Q(|ϕ|, |c|) for all c ∈ C.

4.5. Proposition. [24, Corollary 5.4] A Q-category C is total if and only if it admits all
(possibly large) colimits.

Proof. All colimits exist in C just when every singular functor C(F, –) : C → PI admits a
left adjoint. Now C(F, –) is the composite of Y : C → PC with the Q-functor F ∗ : PC → PI
defined by (F ∗ϕ)(x) = ϕ(Fx), and F ∗ always has a left adjoint F! : PI → PC, defined by
(F!ψ)(c) =

∨
x∈I ψ(x) ◦ C(c, Fx); whence every C(F, –) will have a left adjoint just when Y

does, that is, just when C is total.

5. Topological functors as total categories

We are now ready to prove our main result: that total categories enriched in the free
quantaloidQB correspond to topological functors into B. Given a faithful functor p : E → B,
corresponding via Proposition 3.5 to a QB-category Ē , we will notate by

E Y //

p
""

PE

Pp
||

B

(1)

the arrow of CAT/B corresponding to the Yoneda QB-functor Ē → PĒ . Unfolding the
definitions, an object of PE over z ∈ B is an object of PĒ with extent z; thus given by
subsets ϕ(x) ⊆ B(px, z) for each x ∈ E such that

f ∈ ϕ(y) and g ∈ E(x, y) =⇒ f ◦ p(g) ∈ ϕ(x) ;
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in other words, by a subfunctor ϕ ⊆ B(p–, z), which we call a p-sieve on z. Given another
p-sieve ψ ⊆ B(p–, w), a morphism ϕ → ψ in PE is a map θ : z → w in B such that
θ ◦ f ∈ ψ(x) whenever f ∈ ϕ(x). The functor Y : E → PE sends e ∈ E to the p-sieve
E(–, e) ⊆ B(p–, pe). Note that Pp is topological by Example 4.3.

5.1. Remark. The construction of Pp from p is well-known in the categorical topology
literature; in the notation of [8], it is the completion (E−2, p−2) of (E , p).

We now give our main result; in (ii), we allow ourselves to identify a p-sieve ϕ ⊆ B(p–, z)
with the family of maps (g : px→ z)x∈E,g∈ϕ(x).

5.2. Theorem. Let p : E → B be a faithful functor and Ē the corresponding QB-category.
The following are equivalent:

(a) p is topological;
(b) p admits all final liftings of p-sieves;
(c) Y : E → PE in (1) admits a left adjoint over B;
(d) Ē is total.

Proof. Clearly (a) implies (b); conversely, suppose that p admits final liftings of p-sieves;
we will show that any family g = (gi : pxi → z)i∈I admits a final lifting. Given such a g,
form the p-sieve ϕ ⊆ B(p–, z) with

ϕ(x) = {f : px→ z | f = gi ◦ pk for some i ∈ I and k : x→ xi in E} , (2)

and let z̄ be a final lifting of ϕ. We claim that z̄ is also a final lifting of g; which will
follow so long as for all θ ∈ B(z, pe),

θ ◦ gi : pxi → pe lifts to a map xi → e for all i ∈ I
⇐⇒ θ ◦ g : px→ pe lifts to a map x→ e for all g ∈ ϕ(x) .

The leftward implication follows since each gi ∈ ϕ(xi); the rightward since each g ∈ ϕ(x)
factors as gi ◦ pk. Thus (b) implies (a). We now show that (b) ⇔ (c). To say that Y has
a left adjoint at an object ϕ ⊆ B(p–, z) of PE is to say that there is an object ϕ̄ ∈ E with
pϕ̄ = z such that, for all θ ∈ B(z, pe),

z
θ−→ pe lifts to a map ϕ̄→ e in E iff it lifts to a map ϕ→ Y e in PE . (†)

But to say that θ lifts to a map ϕ→ Y e is to say that θ ◦ g : px→ pe lifts to a map x→ e
for every g ∈ ϕ(x), and so condition (†) says precisely that ϕ̄ is a final lifting of the sieve
ϕ. Finally, (c) ⇔ (d) by Proposition 3.5.
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6. Duality

In Remark 2.3 we mentioned the topological duality theorem, which states that a functor
p : E → B is topological if and only if pop : Eop → Bop is so. In this section, we explain this
result in terms of a general result of quantaloid-enriched category theory: namely, that the
notion of total Q-category is self-dual. The starting point is the adjoint functor theorem
for Q-categories.

6.1. Proposition. [24, Proposition 4.6] If F : C → D is a Q-functor and d ∈ D, then a
right adjoint for F at d is given by Gd = D(F, d) ? 1C whenever this colimit exists in C
and is preserved by F .

Proof. Under the stated hypotheses, we must verify that C(c,Gd) = D(Fc, d). On the
one hand, we have 1|d| 6 C(Gd,Gd) = PC(D(F, d), C(1, Gd)), whence D(Fc, d) 6 C(c,Gd)
as required; conversely, since FGd has the universal property of D(F, d) ? F , we have
1|d| 6 PC(D(F, d),D(F, d)) = D(FGd, d) whence C(c,Gd) 6 D(FGd, d) ◦ D(Fc, FGd) 6
D(Fc, d) as required.

6.2. Corollary. [Adjoint functor theorem] If C is a total Q-category, and F : C → D
preserves all (large) colimits, then F has a right adjoint in Q-CAT.

We now apply this result to show that the notion of totality for Q-categories is self-dual.
First we make clear the sense of that duality.

6.3. Definition. The copresheaf category P†C on aQ-category C has as objects ϕ, families
of maps ϕ(x) : |ϕ| → |x| satisfying C(x, y) ◦ ϕ(x) 6 ϕ(y), and hom-objects defined by
P†C(ϕ, ψ) =

∧
x∈C{ψ(x), ϕ(x)} (note the reversal of order!). The dual Yoneda embedding

Y † : C → P†C sends x to C(x, –). We say that C is cototal if Y † : C → P†C admits a right
adjoint.

6.4. Remark. We can go on to define a weighted limit {ψ, F} of a Q-functor F : I → C
by a weight ψ ∈ P†I as a right adjoint at ψ to the dual singular functor C(1, F ) : C → P†I;
then as in Proposition 4.5, we may conclude that a Q-category is cototal just when it
admits all large limits.

6.5. Remark. Any Q-category C has an opposite Cop which is a Qop-category; now P†
as defined above is equally (P(Cop))op, and Y † the opposite of Y : Cop → P(Cop). In these
terms, the Q-category C is cototal just when Cop is a total Qop-category.

For a faithful functor p : E → B, seen as a category enriched over the free quantaloid
QB, applying the copresheaf construction yields the topological functor P†p : P†E → B for
which objects over z are cosieves ϕ ⊆ B(z, p–) and morphisms from ϕ to ψ ⊆ B(w, p–) are
morphisms θ : z → w of B such that f ∈ ψ(x) implies f ◦ θ ∈ ϕ(x); in the notation of [8],
this is the completion (E2, p2) of (E , p).

6.6. Theorem. [24, Proposition 5.10] A Q-category C is total just when it is cototal.
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Proof. A straightforward calculation shows that the dual Yoneda embedding Y † : C → P†C
preserves all colimits; thus, if C is total, then Y † has a right adjoint, whence C is cototal.
The converse implication is dual.

6.7. Remark. More generally, Proposition 6.1 and its dual provide formulas for computing
limits in Q-categories in terms of colimits and vice versa; c.f. [24, Proposition 5.8]. The
situation is encapsulated in terms of the Isbell adjunction [12]

PC
↑=PC(1,Y )

//
⊥ P†C

↓=P†C(Y †,1)
oo (3)

between the singular functor of Y † and the dual singular functor of Y . Given ψ ∈ P†C,
the weighted limit {ψ, 1C} can be computed as (↓ψ) ? 1C whenever the latter colimit exists.
Dually, ϕ ? 1C can be computed as the limit {↑ϕ, 1C}.

In the context of enrichment over a free quantaloid QB, taking Theorem 6.6 together
with Remark 6.5 and Theorem 5.2 recovers the topological duality theorem of Remark 2.3.
From Remark 6.7, we obtain the explicit formula for computing final liftings along p in
terms of initial ones: the Isbell adjunction for p : E → B sends a sieve ϕ ⊆ B(p–, z) to the
cosieve ↑ϕ, and a cosieve ψ ⊆ B(z, p–) to the sieve ↓ψ defined by the following formulae:

↑ϕ = {g : z → px | g ◦ h : py → px lifts to y → x ∀h : py → z in ϕ}
↓ψ = {h : py → z | g ◦ h : py → px lifts to y → x ∀g : z → px in ψ} .

(4)

Thus given a family of maps g = (gi : pxi → z)i∈I , on forming the sieve ϕ ⊆ B(p–, z) they
generate, and the conjugate cosieve ↑ϕ ⊆ B(p–, z), Remark 6.7 asserts that an initial
lifting for g can be obtained as a final lifting for ↑ϕ; and dually.

7. MacNeille completions

In this final section, we give an application of our main result to MacNeille completions.
As in the introduction, the MacNeille completion of a preorder X is the poset RX
whose elements are pairs (L,U) of subsets of X with L = ↓U and U = ↑L, ordered by
(L,U) 6 (L′, U ′) iff L ⊆ L′ (equivalently, U ⊇ U ′); here we write

↓ U = {` ∈ X | ` 6 u ∀u ∈ U} and ↑ L = {u ∈ X | ` 6 u ∀` ∈ L} .

RX is a complete lattice, with meets
∧
i(Li, Ui) = (

∧
i Li, ↑(

∧
i Li)) and joins defined

dually, and there is an order-embedding J : X → RX sending x to (↓ {x}, ↑ {x}) that
preserves all meets and joins that exist in X and is join- and meet-dense. These properties
in fact serve to characterise RX up to equivalence of preorders; it follows that R is
idempotent, in the sense that J is an equivalence whenever X is a complete preorder.
There is an alternate characterisation in terms of cut-continuous maps [4]. A lower cut
in a poset is a subset of the form ↓ U , and a map of preorders f : X → Y is called lower
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cut-continuous when f−1 preserves lower cuts. Now the assignation X 7→ RX provides
a bireflection of the 2-category of preorders and lower cut-continuous maps to its full
sub-2-category on the complete preorders.

In [8], Herrlich introduced the notion of MacNeille completion of a faithful functor to a
topological one; this completion has the same good properties of the MacNeille completion
of a preorder, and indeed reduces to it in the case where B = 1. In this section, we
will justify the nomenclature by exhibiting the topological MacNeille completion as an
instance of the general process of “MacNeille completion” for categories enriched over an
arbitrary base; the construction here was first described (for unenriched categories) by
Isbell [12]. It is rather less well-behaved for general enriched categories than for preorders,
but when the enrichment base happens to be a quantaloid, all of the good properties of
the order-theoretic case are retained; it is this situation that we shall now describe.

We motivate the construction with some remarks about the MacNeille completion of a
preorder X. Note that if (L,U) ∈ RX, then L is a downset and U an upset in X; and on
viewing X as a category enriched in the one-object quantaloid (2,∧,>), such downsets
and upsets in X are the respective objects of the presheaf and copresheaf categories PX
and P†X. The operations ↑ and ↓ described above are now precisely those of the Isbell
adjunction (3) for X. This adjunction is a Galois connection between posets; and RX is
one of the several equivalent descriptions of the poset of fixpoints of this Galois connection.

Motivated by this, we now describe the MacNeille completion of a general quantaloid-
enriched category. First a preparatory result on adjunctions in the Q-enriched context;
the proof is entirely straightforward and so omitted.

7.1. Proposition. For any adjunction F : C � D : G of Q-categories, there are canonical
isomorphisms induced by F and G between the following Q-categories:

(a) The full replete image of G in C;
(b) The full subcategory of C on those objects X with X ∼= GFX;
(c) The Q-category of GF -algebras in C;

(d)–(f) The duals of (a)–(c);
(g) The Q-category whose objects are pairs (c, d) with Fc ∼= d and c ∼= Gd and whose

hom-object from (c, d) to (c′, d′) is C(c, c′) = D(d, d′).

The Q-categories (a)–(c) are reflective in C, while (d)–(f) are coreflective in D.

We write Fix(F,G) for any of the isomorphic Q-categories (a)–(g).

7.2. Definition. The MacNeille completion RC of a Q-category C is the Q-category
Fix(↑, ↓) associated to the Isbell adjunction (3); for concreteness, we take the representation
in (b), so thatRC comprises those ϕ ∈ PC with ϕ = ↓↑ϕ. Since ↑ and ↓ send representables
to representables, the Yoneda embedding factors through RC as J : C → RC, say.

7.3. Remark. Since ↓ : P†C → PC is right adjoint to the dual singular functor PC(1, Y ),
it must send ψ to {ψ, Y }. Thus every ϕ ∈ RC is a limit {↑ϕ, Y } of representables in PC;
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on the other hand, as RC is reflective in PC, it is limit-closed, and so RC is in fact the
closure of the representables in PC under (large) limits.

When Q is the one-object quantaloid (2,∧,>), the MacNeille completion of a Q-
category (=preorder) X is the classical MacNeille completion RX. When Q is the
one-object quantaloid (R+,+, 0), the MacNeille completion of Q-category (=generalised
metric space) was identified in [28] with its directed tight span completion. When Q is
the quantaloid associated to a space X or a site (C, J), the MacNeille completion of a
(Cauchy-complete, skeletal) Q-category is its MacNeille completion internal to the topos
of sheaves. Finally, for the free quantaloids which are our main concern in this paper, we
have that:

7.4. Proposition. Let QB be the free quantaloid on a category B. If p : E → B is a
faithful functor corresponding to a QB-category Ē, then the MacNeille completion of p
qua faithful functor corresponds to the MacNeille completion of Ē qua quantaloid-enriched
category.

Proof. The faithful functor Rp : RE → B corresponding to RE has as domain the full
subcategory of PE on those sieves ϕ ⊆ P(p–, b) with ϕ = ↓↑ϕ, for ↓ and ↑ defined as
in (4). This is precisely the construction of the MacNeille completion of p given in [8].

Our remaining results give characterisations of the MacNeille completion of a Q-
category that extend those for the classical case; having identified the scope of the notions
in particular examples, we shall henceforth feel free to work only in the general situation.
We begin with a preparatory result concerning density.

7.5. Proposition. For a Q-functor F : C → D, the following are equivalent:

(a) D(F, 1) : D → PC is fully faithful;
(b) Each d ∈ D is the colimit D(F, d) ? F ;
(c) Each d ∈ D is a colimit ϕ ? F for some ϕ ∈ PC.

We call F : C → D with any of these equivalent properties dense. The equivalence of
(a) and (b) is standard enriched category theory [13, Theorem 5.1]; that of (b) and (c) is
peculiar to the quantaloid-enriched case.

Proof. (a) and (b) both say that D(d, d′) = PC(D(F, d),D(F, d′)) for all d, d′ ∈ D, and
(b) clearly implies (c). It remains to show (c) ⇒ (b); thus fixing d ∈ D, we must show
that PC(D(F, d),D(F, d′)) 6 D(d, d′) for all d′ ∈ D (the converse inequality is automatic
by functoriality of D(F, 1)). By assumption, d is ϕ ? F for some ϕ; and so 1|d| 6 D(d, d) =
PC(ϕ,D(F, d)), whence PC(B(F, d),B(F, d′)) 6 PC(ϕ,B(F, d′)) = D(d, d′) as required.

7.6. Proposition. The MacNeille completion J : C → RC has the properties that:

(a) RC is total;
(b) J is fully faithful;
(c) J is dense and codense.
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These properties imply that:

(d) J preserves all limits and colimits that exist in C;
(e) Any full embedding of C into a total Q-category D extends to a full embedding of RC

into D.

and moreover characterise RC and J up to equivalence; in particular, R is idempotent in
the sense that J is an equivalence whenever C is total.

Proof. RC is reflective in the total PC, and hence itself total; while J is a factorisation of
the fully faithful Y : C → PC and so itself fully faithful. Codensity follows from Remark 7.3
and density from its dual. For (d), a fully faithful dense functor F : A → B must preserve
limits, since it factorises the limit-preserving Yoneda embedding; dually, codensity implies
colimit-preservation. For (e), given F : C → D a full embedding with D total, let D′ be
the closure of C in D under colimits; then D′ is again total, and C → D′ is dense, so that
D′ can be identified with a limit-closed subcategory of PC containing the representables.
Now let D′′ be the closure of the representables in D′ under limits; then by construction
and Remark 7.3, D′′ ' RC, as required. Finally, for the uniqueness, observe that in the
construction just given, we have D′ = D if J is dense, and then D = D′ = D′′ if in addition
J is codense. The final clause follows since, if C is total, then 1C : C → C satisfies properties
(a)–(c).

We conclude by describing a universal property of the MacNeille completion of a
Q-category which generalises a universal property [4] of the classical case. In the following
definition, recall that for any Q-functor F : C → D, the Q-functor F ∗ : PD → PC is
defined at ϕ by (F ∗ϕ)(x) = ϕ(Fx).

7.7. Definition. A Q-functor F : C → D is cut-cocontinuous if F ∗ : PD → PC maps
RD into RC.

7.8. Proposition. F : C → D is cut-cocontinuous if and only if the singular functor
D(F, 1) : D → PC lands inside RC.

Proof. We must show that F ∗ maps RD into RC if and only if it maps the representables
into RC. For the non-trivial direction, note that F ∗ preserves all limits, each ϕ ∈ RD is a
limit of representables in PD, and RC is closed under limits in PC.

7.9. Proposition. For any Q-functor F : C → D, we have

F is a left adjoint

=⇒ F is cut-cocontinuous

=⇒ F preserves all (large) colimits.

If C is total, then all three conditions are equivalent.
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Proof. For the first implication, if F has a right adjoint G, then D(F, 1) = Y G : D → PC
clearly lands in RC. For the second implication, it suffices by Proposition 4.5 to show
that a cut-cocontinuous F preserves any colimit v = ϕ ? 1C existing in C. Now ↑ϕ =
PC(ϕ, Y ) = C(v, 1) = Y †v; and since D(F, 1) : D → PC factors through RC, we have
that PC(ϕ,D(F, 1)) = P†C(↑ϕ, ↑D(F, 1)) = P†C(Y †v, ↑D(F, 1)) = D(Fv, 1), so that Fv is
ϕ ? F as claimed. The final clause follows from the adjoint functor theorem.

Now let CCOCTS be the 2-category of Q-categories, cut-cocontinuous Q-functors, and
Q-transformations, and let TOT denote the full sub-2-category on the total Q-categories;
by the preceding proposition, the morphisms of TOT are the functors preserving all
colimits.

7.10. Proposition. The MacNeille completion J : C → RC is the value at C of a left
biadjoint to the inclusion 2-functor TOT→ CCOCTS.

Proof. Let C be a Q-category. Since RC is reflective in the total PC, it is itself total;
moreover, J : C → RC is cut-cocontinuous by Proposition 7.8, as its singular functor
RC(J, 1) : RC → PC is the inclusion. It remains to show that, for any total Q-category D,
the restriction Q-functor

CCOCTS(RC,D)
(–)◦J−−−→ CCOCTS(C,D) (5)

is an equivalence of preorders; we do so by exhibiting an explicit pseudoinverse. Given
a cut-cocontinuous F : C → D, define F# : RC → D by F#(ϕ) = ϕ ? F . We must show
that F# is cut-cocontinuous; equivalently, by Proposition 7.9, that it is a left adjoint.
By Proposition 7.8 and cut-cocontinuity of F , the singular functor D(F, 1) : D → PC
factors through RC, as H : D → RC, say; then as (–) ? F : PC → D is left adjoint to
D(F, 1), it follows that F# is left adjoint to H, as required. It remains to show that (–)#

is pseudoinverse to (–) ◦ J , for which we need two things:

(a) For any cut-cocontinuous F : C → D, we have F#J ∼= F ; but for each x ∈ C we have
F#(Jx) = C(–, x) ? F ∼= Fx by the Yoneda lemma.

(b) For any (cut-)cocontinuous G : RC → D, we have (GJ)# ∼= G. But (GJ)#(ϕ) =
ϕ ? GJ ∼= G(ϕ ? J) ∼= G(ϕ) using cocontinuity of G and density of J .

7.11. Remark. The notion of MacNeille completion is self-dual in that RC = (R(Cop))op.
It follows that RC is also characterised by a dual universal property: it provides a
bireflection of C, seen as an object of the 2-category CCONTS of Q-categories and
cut-continuous Q-functors, onto the full sub-2-category COTOT whose objects are the
cototal (=total) Q-categories.
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