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A SERRE-SWAN THEOREM FOR GERBE MODULES ON ÉTALE
LIE GROUPOIDS

CHRISTOPH SCHWEIGERT, CHRISTOPHER TROPP AND ALESSANDRO
VALENTINO

Abstract. Given a torsion bundle gerbe on a compact smooth manifold or, more
generally, on a compact étale Lie groupoid M , we show that the corresponding category
of gerbe modules is equivalent to the category of finitely generated projective modules
over an Azumaya algebra on M . This result can be seen as an equivariant Serre-Swan
theorem for twisted vector bundles.

1. Introduction

The celebrated Serre-Swan theorem relates the category of vector bundles over a compact
smooth manifold M to the category of finite rank projective modules over the algebra of
smooth functions C∞(M,C) of M (see [GBV, Mor] for the Serre-Swan theorem in the
smooth category). It relates geometric and algebraic notions and is, in particular, the
starting point for the definition of vector bundles in non-commutative geometry.

A bundle gerbe on M can be seen as a geometric realization of its Dixmier-Douady
class, which is a class in H3(M ;Z). To such a geometric realization, a twisted K-theory
group can be associated. Gerbe modules have been introduced to obtain a geometric
description of twisted K-theory, see e.g. [BCMMS, TXL, BX]. A bundle gerbe (with
connection) describes a string background with non-trivial B-field; gerbe modules (with
connection) arise also as Chan-Patton bundles on the worldvolume M of D-branes in such
backgrounds [Gaw]. It is an old idea that, in the presence of a non-trivial B-field, the
worldvolume of a D-brane should become non-commutative in some appropriate sense.
This has lead to the idea [Kap] that an Azumaya algebra over M then plays the role of
the algebra of functions on M and that a version of the Serre-Swan theorem should relate
gerbe modules and finitely generated projective modules over this Azumaya algebra. This
idea has been made mathematically rigourous in [Kar, Theorem 3.5], using the language
of twisted vector bundles which requires using a suitable open cover of M and working
with locally defined quantities.

In this note we first derive this result, but with rather different techniques, using
descent theory. Our key insight can be described as follows (cf. Lemma 3.1.1): a gerbe
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module on M is a vector bundle E on the space Y of a surjective submersion Y → M ,
together with additional data. We show that, given two gerbe modules E,E ′ over the same
gerbe, the homomorphism bundle Hom(E,E ′) is not only a vector bundle over Y , but
comes with enough data to turn it into an object in the descent category of vector bundles
Desc(Y →M). We then identify this category with the category of vector bundles on M
and use the global section functor in the spirit of the Serre-Swan theorem. This yields
an Azumaya algebra on M ; not surprisingly, the Azumaya algebra is not canonical and
depends on the gerbe module. Once the gerbe module is fixed, our construction is natural
and thus yields for any gerbe module a module over this Azumaya algebra.

The stack of vector bundles naturally extends from smooth manifolds to Lie groupoids.
Since our techniques are based on general descent techniques, they can be transferred to
étale groupoids, so that we finally obtain theorem 4.19, a Serre-Swan theorem for gerbe
modules on étale Lie groupoids. Action groupoids provide examples of étale Lie groupoids.
Our results, apart from their intrinsic mathematical interest, therefore have applications
to D-branes in string backgrounds with group actions and to D-branes in orbifolds with
B-fields.

Our note is organized as follows: section 2 contains some preliminaries; in section
3, we use descent techniques to prove the Serre-Swan theorem 3.9 for gerbe modules on
smooth compact manifolds. In section 4, we generalize our results to étale Lie groupoids.

2. Preliminaries

2.1. Gerbes and gerbe modules. In this section we will recall some background
material on gerbes and gerbe modules, referring to [Mu, W] for further details. We stress
that all gerbes and gerbe modules are not equipped with a connection.
In the following, given a surjective submersion Y → M , Y

[k]
M will denote the k-th fibered

product of Y over M , and πi : Y
[k]
M → Y

[k−1]
M the map given by omitting the i-th entry.

Similarly, πi1i2...im : Y
[k]
M → Y

[k−m]
M denotes the composition πi1 ◦ πi2 ◦ . . . ◦ πim .

2.2. Definition. A bundle gerbe G over a manifold M consists of a triple (Y, L, µ),

where π : Y →M is a surjective submersion, L a hermitian line bundle over Y
[2]
M , and

µ : π∗3L⊗ π∗1L→ π∗2L

is a bundle isomorphism over Y
[3]
M satisfying the natural associativity condition over Y

[4]
M .

Given a bundle gerbe G, we can introduce the notion of G-modules and their mor-
phisms.

2.3. Definition. Let G = (Y, L, µ) be a bundle gerbe over M . A gerbe module M over
G (or G-module) is a pair (E, ρ), where E → Y is a finite rank hermitian vector bundle,
and

ρ : L⊗ π∗1E → π∗2E
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is an isomorphism of hermitian vector bundles on Y
[2]
M , satisfying a compatibility condition

over Y
[3]
M , namely the bundle maps obtained from pullbacks of ρ and µ

π∗3L⊗ π∗1(L⊗ π∗1E)→ π∗3L⊗ π∗21E → π∗23E

and
π∗3L⊗ π∗1(L⊗ π∗1E)→ π∗2L⊗ π∗12E → π∗23E

coincide.

Any bundle gerbe admits a trivial gerbe module, given by the pair (0, id).

2.4. Definition. Let G = (Y, L, µ) be a bundle gerbe, and M = (E, ρ), N = (E ′, ρ′)
be G-modules. A G-module morphism M → N is given by a vector bundle morphism
f : E → E ′ such that the following diagram of morphisms of hermitian vector bundles on
Y

[2]
M

L⊗ π∗1E
ρ //

id⊗π∗1f
��

π∗2E

π∗2f

��
L⊗ π∗1E ′

ρ′ // π∗2E
′

(1)

commutes. We will denote by HomG(M,N ) the space of G-module morphisms between
M and N .

G-modules and their morphisms form a category G−mod. Moreover, the direct sum of
vector bundles and bundle morphisms induces a direct sum on G−mod, with the trivial
gerbe module (0, id) as the neutral element.
It is not difficult to prove the following

2.5. Lemma. Let G be a bundle gerbe over M . Then G−mod is a C-linear category.

2.6. Azumaya algebras over manifolds. Recall that an Azumaya algebra over a
commutative (local) ring R is an R-algebra A such that:

1. A is free and finite rank as an R-module

2. A⊗R Aop ' EndR(A) via the assignment a⊗ b→ a · ( ) · b.

2.7. Lemma. For a complex vector space V , the endomorphism algebra End(V ) is an
Azumaya algebra.

A generalization of the notion of Azumaya algebra in the context of algebraic geometry
is due to Grothendieck [G]. In the following we give the relevant definition in the smooth
setting.
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2.8. Definition. An Azumaya algebra over a manifold M is a complex algebra A which
can be obtained as the algebra of sections of an algebra bundle on M whose fibers are
Azumaya algebras.

In the following, A will denote either the algebra of sections or the actual algebra
bundle, and we will pass between the two equivalent descriptions freely. Moreover, we
will often omit to indicate the manifold M .
An example of an Azumaya algebra over a manifold M is given by the sections of the
endomorphism bundle End(E), where E is a complex vector bundle.
Azumaya algebras over M are equipped with a tensor product, given by the tensor product
of algebra bundles. We will say that two Azumaya algebras A1 and A2 are equivalent if
there exist vector bundles E1 and E2 such that

A1 ⊗ End(E1) ' A2 ⊗ End(E2)

The set of equivalence classes of Azumaya algebras over M forms a group, the Brauer
group of M with inverses represented by opposite algebras.

3. Gerbe modules and descent data

3.1. Descent category. Let Y
π−→M be a surjective submersion, and let S : Manop →

Cat be a pre-sheaf over the site of manifolds with values in categories. To these data we
can assign the descent category DescS(Y

π−→M) defined as follows [B, NS, H]:

1. an object is a pair (E,ϕ), where E is an object in S(Y ) and ϕ is an isomorphism

ϕ : π∗1E ' π∗2E

over Y
[2]
M satisfying the associativity condition π∗2(ϕ) = π∗3(ϕ) ◦ π∗1(ϕ) over Y

[3]
M .

2. a morphism (E,ϕ)→ (E ′, ϕ′) is given by an element f ∈ HomS(Y )(E,E
′) for which

the following diagram commutes

π∗1E
ϕ //

π∗1(f)

��

π∗2E

π∗2(f)

��
π∗1E

′ ϕ′ // π∗2E
′

We have a canonical functor π∗ : S(M) → DescS(Y
π−→M), which assigns to E ∈ S(M)

the pair (π∗E, id). Moreover, when S is a stack for surjective submersions, the functor π∗

is an equivalence of categories.
We will be interested in the case where S = Vect, the stack of vector bundles. To sim-
plify the notation, we will denote with Desc(Y

π−→M) the descent category associated to
Y

π−→M and Vect. In this case, π∗ has a canonical inverse D : Desc(Y
π−→M)→ Vect(M)
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(See [B], Chapter 5).

Let G = (Y, L, µ) be a bundle gerbe over M , and let M = (E, ρ) and N = (E ′, ρ′) be
G-modules. Consider the homomorphism bundle Hom(E,E ′) ' E∗⊗E ′ on Y . 1 Consider
the isomorphism

ϕEE′ : π∗2Hom(E,E ′)→ π∗1Hom(E,E ′) (2)

of hermitian line bundles on Y
[2]
M induced by

π∗2E
∗ ⊗ π∗2E ′

(ρ)∗⊗(ρ′)−1

−−−−−−−→ π∗1E
∗ ⊗ (L∗ ⊗ L)⊗ π∗1E ′

id⊗c⊗id−−−−→ π∗1E
∗ ⊗ π∗1E ′ (3)

where c : L∗ ⊗ L→ C denotes the canonical isomorphism.
We have then the following central lemma

3.2. Lemma. (Hom(E,E ′), ϕ−1
EE′) is an object in Desc(Y

π−→M).

Proof. To simplify the notation, we set ϕ = ϕEE′ . We have to prove that ϕ−1 satisfies
the associativity condition π∗2ϕ

−1 = π∗3ϕ
−1◦π∗1ϕ−1, or, equivalently, that ϕ satisfies π∗2ϕ =

π∗1ϕ ◦ π∗3ϕ. We will simplify the notation by using Eij, ϕij, etc. for π∗ijE, π∗ijϕ, etc. .
First, recall that the isomorphism µ sits in the following commutative diagram

L∗1 ⊗ L∗3 ⊗ L3 ⊗ L1
(µ∗)−1⊗µ //

c3

��

L∗2 ⊗ L2

c2

��
L∗1 ⊗ L1 c1

// C

(4)

where we have used the canonical pairing ci : L∗i ⊗ Li → C. By using that the morphism
ρ and ρ′ are compatible with µ, we see that the morphism ϕ2 can be obtained as

E∗23 ⊗ E ′23

ρ∗3⊗(ρ′3)−1

// E∗13 ⊗ L∗3 ⊗ L3 ⊗ E ′13

ρ∗1⊗(ρ′1)−1

// E∗12 ⊗ L∗1 ⊗ L∗3 ⊗ L3 ⊗ L1 ⊗ E ′12

(µ∗)−1⊗µ
��

E∗12 ⊗ L∗2 ⊗ L2 ⊗ E ′12

c2
��

E∗12 ⊗ E ′12

(5)
Moreover, we have the following commutative diagram

E∗13 ⊗ L∗3 ⊗ L3 ⊗ E ′13

c3 //

ρ∗1⊗(ρ′1)−1

��

E∗13 ⊗ E ′13

ρ∗1⊗(ρ′1)−1

��
E∗12 ⊗ L∗1 ⊗ L∗3 ⊗ L3 ⊗ L1 ⊗ E ′12 c3

// E∗12 ⊗ L∗1 ⊗ L1 ⊗ E ′12

(6)

1Whenever we refer to homomorphism bundles, the symbol Hom is used without subscript; homomor-
phism sets in categories in contrast always have a subscript.
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The proof is completed by the following commutative diagram

E∗23 ⊗ E ′23

ϕ3 //

ρ∗3⊗(ρ′3)−1

��

E∗13 ⊗ E ′13

ϕ1 //

ρ∗1⊗(ρ′1)−1

��

E∗12 ⊗ E ′12

E∗13 ⊗ L∗3 ⊗ L3 ⊗ E ′13

c3

22

ρ∗1⊗(ρ′1)−1

��

E∗12 ⊗ L∗1 ⊗ L1 ⊗ E ′12

c1

33

E∗13 ⊗ L∗1 ⊗ L∗3 ⊗ L3 ⊗ L1 ⊗ E ′13 (µ∗)−1⊗µ
//

c3
22

E∗13 ⊗ L∗2 ⊗ L2 ⊗ E ′13

c3

OO

(7)
Notice that the whole diagram is commutative, since every single subdiagram is commu-
tative as a consequence of the definition of ϕ3, ϕ1, diagram (4) and (6). In particular, the
outer square is commutative: by diagram (5), the morphism obtained as the composition
of the left, lower and right outer edge coincides with the morphism ϕ2, hence we have
that ϕ2 = ϕ1 ◦ ϕ3.

3.3. Lemma. Let M = (E, ρ), N = (E ′, ρ′) and P = (E ′′, ρ′′) be G-modules, and let f ∈
HomG(M,N ). Then f induces a morphism (Hom(E,E ′), ϕ−1

EE′) → (Hom(E,E ′′), ϕ−1
EE′′)

in Desc(Y
π−→M).

Proof. Recall that a gerbe module morphism is an (hermitian) vector bundle morphism
satisfying a compatibility condition with the morphism ρ, namely diagram (1). If we
denote by abuse of notation the morphism of vector bundles by f as well, f : E ′ → E ′′,
it is then straightforward to show that the morphism

Hom(E,E ′) → Hom(E,E ′′)
β → f ◦ β (8)

satisfies the condition for a morphism in the descent category.

Let M = (E, ρ) be a possibly trivial G-module. Then Lemma 3.2 and Lemma 3.3
guarantee that we have a functor

F̃M : G −mod → Desc(Y
π−→M)

(E ′, ρ′) 7→ (Hom(E,E ′), ϕ−1
EE′)

f 7→ (β → (f ◦ β))

(9)

Moreover, we have

3.4. Proposition. The functor F̃M is a faithful C-linear functor.

Proof. Since the functor Hom(E,−) is C-linear and faithful, the functor F̃M inherits
these properties.
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3.5. Proposition. To any nontrivial G-moduleM = (E, ρ) we can canonically associate
an Azumaya algebra AM over M .

Proof. Define
AM := Γ(M,D(F̃M(M))) (10)

where D is the canonical inverse D : Desc(Y
π−→ M) → Vect(M) and Γ is the global

section functor.
Notice that End(E) := Hom(E,E) is an algebra bundle over Y and ϕ−1

EE is an algebra
bundle isomorphism. Since D is a tensor functor, then the bundle D(F̃M(M)) is an alge-
bra bundle over M such that π∗(D(F̃M(M))) ' End(E). Moreover, since Γ(Y,End(E))
is an Azumaya algebra over Y , the same is true for AM.

3.6. Equivalence of categories. The Serre-Swan theorem states that the section
functor Γ induces an equivalence between the category of vector bundles over a compact
manifold M and the category of finitely generated projective C∞(M ;C)-modules.
Let M = (E, ρ) be a nontrivial G-module, and consider the category pfmod−AM of
projective and finitely generated right modules over the Azumaya algebra AM over M .
Let N = (E ′, ρ′) be an arbitrary G-module, and define

AMN := Γ(M,D(F̃M(N ))) (11)

3.7. Lemma. AMN is a projective and finitely generated right module over AM.

Proof. First, notice that Hom(E,E ′) is a finitely generated right module over End(E).
It is moreover fibrewise projective, since the fibers are finite-dimensional modules over
the endomorphism algebra of a finite dimensional vector space, i.e. a full matrix algebra.
Taking into account the isomorphisms ϕEE′ and ϕEE, we have that F̃M(N ) is right
F̃M(M)-module in Desc(Y

π−→ M). Finally, use that both D and Γ are tensor functors,
and that they preserve projectivity.

3.8. Lemma. A morphism N → P of G-modules induces a morphism AMN → AMP of
AM-modules.

Proof. Use that any bundle morphism E ′ → E ′′ induces a morphism Hom(E,E ′) →
Hom(E,E ′′) which is also an End(E)-module morphism.

The results above allow us to define a functor

FM : G−mod → pfmod−AM
N 7→ AMN

N → P 7→ AMN → AMP
(12)

3.9. Theorem. Let M be a compact manifold, and let G be a bundle gerbe on M . If G
admits a nontrivial gerbe moduleM, then the functor FM is a fully faithful and essentially
surjective C-linear functor.
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Proof. The faithfulness and C-linearity is guaranteed by the fact that the functors FM,
D, and Γ are faithful and C-linear. We have then to prove fullness and essential surjec-
tivity.

1. Fullness: Let f ∈ HomAM(AMN ,AMP). Since both Γ andD are full tensor functors,
to f there corresponds a morphism Hom(E,E ′) → Hom(E,E ′′) which is also an
End(E)-module morphism. We have the following canonical isomorphism

Hom(Hom(E,E ′),Hom(E,E ′′)) ' End(E)⊗ Hom(E ′, E ′′) ; (13)

The space of bundle homomorphisms HomVect(E,E
′) is then obtained from the

space of bundle morphisms from the trivial bundle C to the homomorphism bundle,
HomVect(C,Hom(E,E ′)) ∼= HomVect(E,E

′). As consequence, HomVect(Hom(E,E ′),
Hom(E,E ′′)) ∼= HomVect(C,End(E) ⊗ Hom(E ′, E ′′). Under this isomorphism, the
action of the algebra bundle End(E) is multiplication on the first factor. Hence
those bundle morphisms in HomVect(Hom(E,E ′),Hom(E,E ′′)) that are End(E)-
morphisms are in bijection with HomVect(C,Hom(E ′, E ′′)) ∼= HomVect(E

′, E ′′). (This
proof works quite generally in a symmetric monoidal category with duals in which
all objects have invertible dimension.)
Inspection shows that the compatibility with the morphisms ϕEE′ and ϕEE′′ over
Y

[2]
M guarantees that f̃ is indeed a morphism of G-modules.

2. Essential surjectivity: Let B ∈ pfmod−AM. Recall that AM is a projective and
finitely generated module over the algebra C∞(M ;C): indeed, C∞(M ;C) sits in the
center of AM, and the action is via multiplication. This implies that B is a finitely
generated and projective C∞(M ;C)-module as well. Hence, there exists an object
B ∈ Vect(M) which is a right module over the algebra bundle D(F̃M(M)) on M ,
and such that Γ(B) ' B.
Consider the bundle π∗B over Y . It is a finitely generated and projective right
module over End(E) ' π∗D(F̃M(M)). Notice that this means in particular that
the fiber of π∗B over a point y is a finitely generated and projective module over
End(Ey). A classical result concerning endomorphism algebras states that for any
finite dimensional vector space V and any finitely generated and projective right
module Q over End(V ), we have a canonical isomorphism

Q ' Hom(V,Q⊗End(V) V ) (14)

as right End(V)-modules. Applying this result to vector bundles, we have

π∗B ' Hom(E, π∗B ⊗End(E) E) (15)

Finally, we have to show that the bundle π∗B ⊗End(E) E comes equipped with a
gerbe module morphism. This is indeed induced by the morphism ρ (recall that
M = (E, ρ)) as follows. First, recall that we have canonically

End(π∗1E) ' End(π∗1E ⊗ L) (16)
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Moreover, the morphism ρ : π∗1E ⊗ L → π∗2E is a module morphism along the
algebra bundle morphism ρ∗ : End(π∗1E) → End(π∗2E), where we have used the
isomorphism (16). We have then the following isomorphism

π∗1(π∗B ⊗End(E) E)⊗ L ' (π∗1π
∗B ⊗End(π∗1E) π

∗
1E)⊗ L

' π∗1π
∗B ⊗End(π∗1E) (π∗1E ⊗ L)

' π∗2π
∗B ⊗End(π∗2E) π

∗
2E

' π∗2(π∗B ⊗End(E) E)

(17)

which can proved to be compatible with µ.

4. Gerbe modules on Lie groupoids

In this section we will see how Theorem 3.9 can be extended from the category of smooth
manifolds to the category of étale Lie groupoids.

4.1. Vector bundles on Lie groupoids. In the following we recall some basic results
about the category of vector bundles on Lie groupoids.
Let G = (G0, G1) be a Lie groupoid with source and target map s, t : G1 → G0, respec-
tively. Recall that a vector bundle over G is given by a vector bundle E → G0 together
with an isomorphism ψE : s∗E

'−→ t∗E which satisfies a cocycle condition over G1×G0 G1.
A morphism between two vector bundles (E,ψE) and (F, ψF ) over G is given by a mor-
phism of vector bundles f : E → F over G0 which is compatible with the isomorphisms
ψE and ψF over G1. Finite rank vector bundles on G and their morphisms form a C-linear
symmetric monoidal category with duals Vect(G): indeed, the dual of (E,ψE) is given
by (E∗, (ψ∗E)−1). The monoidal unit in Vect(G) is given by (C, id), which by abuse of
notation we denote C.

Let (C,⊗) be a monoidal category, and let U and V in C. The internal hom Hom(U, V ),
if it exists, is an object in C for which there is an isomorphism

HomC(W,Hom(U, V )) ' HomC(W ⊗ U, V )

which is natural in U , V and W .

4.2. Lemma. The category Vect(G) admits an internal hom Hom(E,F ) for all E and F .

Proof. Define
Hom(E,F ) := (E∗ ⊗ F, (ψ∗E)−1 ⊗ ψF ) (18)

and let W ∈ Vect(G). First, notice that

HomVect(G)(W,E
∗ ⊗ F ) ⊂ HomVect(G0)(W,E

∗ ⊗ F ) 'Ξ HomVect(G0)(W ⊗ E,F )
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where
Ξ(f) : W ⊗ E f⊗id−−−→ E∗ ⊗ F ⊗ E trE−−→ F (19)

for f ∈ Hom(W,E∗ ⊗ F ) and trE : E∗ ⊗ E → C the canonical pairing. By using the
invariance of the trace pairing trE under isomorphisms, we have the following commutative
diagram

s∗W ⊗ s∗E ψW⊗ψE //

s∗(f)⊗id
��

t∗W ⊗ t∗E
t∗(f)⊗id
��

s∗E∗ ⊗ s∗F ⊗ s∗E
(ψ∗E)−1⊗ψF⊗ψE//

trs∗E
��

t∗E∗ ⊗ t∗F ⊗ t∗E
trt∗E
��

s∗F
ψF // t∗F

(20)

for any f ∈ HomVect(G)(W,E
∗⊗F ). The outer commutative square assures then that the

isomorphism Ξ maps HomVect(G)(W,E
∗ ⊗ F ) to the subspace HomVect(G)(W ⊗ E,F ) ⊂

HomVect(G)(W,E
∗⊗F ). Moreover, notice that the isomorphism Ξ is natural in W , E, and

F .

In particular, since the construction above is natural, we have the internal hom functor

Hom(−,−) : Vect(G)op × Vect(G)→ Vect(G)

4.3. Lemma. For any E ∈ Vect(G), End(E) is an algebra object in Vect(G).

Informally speaking, this means that End(E) is an algebra bundle on G0, with a
multiplication that is compatible with the isomorphism ψE.

Proof. The multiplication morphism

m : End(E)⊗ End(E)→ End(E) (21)

is induced by the vector bundle morphism

E∗⊗E⊗E∗⊗E id⊗cE∗E−−−−−→ E∗⊗E⊗E⊗E∗ id⊗cEE⊗id−−−−−−→ E∗⊗E⊗E⊗E∗ trE⊗cEE∗−−−−−−→ E∗⊗E (22)

where cAB denote the symmetric braiding between the two vector bundles A and B.
The associativity of m is guaranteed by the associativity of the tensor product of vector
bundles and bundle morphisms.

Similarly, we have the following

4.4. Lemma. For any E and F in Vect(G), Hom(E,F ) is a right module over End(E)
and a left module over End(F ).

4.5. Lemma. For any E, M and N in Vect(G), we have a canonical isomorphism of
vector spaces

HomEnd(E)(Hom(E,M),Hom(E,N)) ' HomVect(G)(M,N)
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Proof. The proof follows from

HomEnd(E)(Hom(E,M),Hom(E,N)) ' HomEnd(E)(E
∗ ⊗M,E∗ ⊗N))

' HomEnd(E)(E
∗ ⊗M ⊗ E,N)

' HomEnd(E)(M ⊗ End(E), N)
' HomVect(G)(M,N)

4.6. Remark. The results above hold in general for any symmetric monoidal category
C with duals. See [EGNO] for a discussion of these results in the case of more general
tensor categories and module categories over them.

We conclude this section on vector bundles over Lie groupoids with the following

4.7. Lemma. Let L be a line bundle over a Lie groupoid G = (G0, G1). Then there is a
canonical isomorphism

L∗ ⊗ L '−→ C (23)

Proof. Consider the isomorphism c : L∗ ⊗ L → C given by the canonical pairing. It is
immediate to see that the following diagram commutes

s∗L∗ ⊗ s∗L
(ψ∗L)−1⊗ψL //

s∗c
��

t∗L∗ ⊗ t∗L
t∗c
��

C
id

// C

4.8. Gerbes and gerbe modules on Lie groupoids. Gerbes on Lie groupoids can
be described in two equivalent ways: they can be seen as objects of a bicategory obtained
via the plus construction applied to the 2-stack of gerbes over manifolds [NS], or by
internalizing to Lie groupoids the definition given in Section 2.1, where we substitute
manifolds with Lie groupoids, line bundles over manifolds with line bundles over Lie
groupoids, etc. [H]. In this paper, we will follow the second description, with the technical
caveat to replace the notion of surjective submersion in manifolds with the appropriate
one in Lie groupoids: as shown in [NS], the appropriate notion is that of a weak equivalence
of groupoids.

4.9. Definition. Let Γ and Λ be Lie groupoids. A morphism F : Γ→ Λ is called a weak
equivalence if

1. The diagram

Γ1
F1 //

s×t
��

Λ1

s×t
��

Γ0 × Γ0 F0×F0

// Λ0 × Λ0

is a pullback diagram.
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2. The smooth map
Γ0 ×Λ0 Λ1 → Λ0

is a surjective submersion.

To generalise the notion of a bundle gerbe over a manifold, we need the notion of a
fiber product of groupoids.

4.10. Definition. Let Γ1, Γ2 and Λ be Lie groupoids, and let F 1 : Γ1 → Λ and F 2 :
Γ2 → Λ be morphisms of Lie groupoids. The fiber product Γ1 ×Λ Γ2 is the groupoid such
that

Obj(Γ1 ×Λ Γ2) :=
{

(a, b, α) ∈ Γ1
0 × Γ2

0 × Λ1 : s(α) = F 1
0 (a), t(α) = F 2

0 (b)
}

and

Mor((a, b, α), (a′, b′, α′)) :=
{

(f, g) ∈ Mor(a, a′)×Mor(b, b′) : α ◦ F 2
1 (g) = F 1

1 (f) ◦ α′
}

One can show that if F 1 or F 2 is a weak equivalence of groupoids, then Γ1 ×Λ Γ2 is
also a Lie groupoid (see [Moe], section 2.3).
Given a weak equivalence Γ→ Λ, we will use the notation Γ[k] for the k-th fibered product
of Γ over Λ.
A bundle gerbe over a Lie groupoid Λ is then a triple (Γ, L, µ), where Γ

π−→ Λ is a weak
equivalence, L a line bundle over Γ[2], and µ an isomorphism over Γ[3] satisfying an as-
sociativity condition over Γ[4]. Similarly, Definition 2.3 carries through to Lie groupoids
immediately, and we obtain in particular a category of bundle gerbe modules. We have a
descent category Desc(Γ→ Λ) of vector bundles associated to a weak equivalence Γ→ Λ
of groupoids, defined by internalizing the construction in Section 3.1. Moreover, we have
an equivalence Vect(Λ) ' Desc(Γ→ Λ) induced by the pullback functor [NS].

Let G = (Γ, L, µ) be a bundle gerbe over Λ, and let M = (E, ρ) and N = (E ′, ρ′) be
G-modules. Consider the homomorphism

ϕEE′ : π∗2Hom(E,E ′)→ π∗1Hom(E,E ′) (24)

defined as in (3).
Since all the properties of the category of vector bundles over manifolds used there extend
directly to the category of vector bundles over Lie groupoids, we have, as shown in Section
4.1,

4.11. Lemma. (Hom(E,E ′), ϕ−1
EE′) is an object in Desc(Γ→ Λ).

In the same spirit we have the following
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4.12. Lemma. LetM = (E, ρ), N = (E ′, ρ′) and P = (E ′′, ρ′′) be G-modules, and let f ∈
HomG(M,N ). Then f induces a morphism (Hom(E,E ′), ϕ−1

EE′) → (Hom(E,E ′′), ϕ−1
EE′′)

in Desc(Γ→ Λ).

As in Section 3.1, given a possibly trivial G-module M we can set up a functor

F̃MGrp : G −mod→ Desc(Γ→ Λ) (25)

Since the internal Hom functor of vector bundles on Lie groupoids is C-linear and faithful,
the functor F̃M inherits these properties, hence we have

4.13. Proposition. The functor F̃M is a faithful C-linear functor.

4.14. Modules of sections and Serre-Swan Theorem. Recall that an étale Lie
groupoid is a Lie groupoid for which the source map (and, as a consequence, all the
structure maps – target, identity and composition) is a local diffeomorphism. Let G =
(G0, G1) be an étale Lie groupoid, and let C∞c (G) be its convolution algebra. In particular,
C∞c (G) admits the structure of a Hopf algebroid over the commutative algebra C∞c (G0).
Briefly, a Hopf algebroid is given by an algebra A together with a commutative subalgebra
A0 in which A has local units, and is equipped with a commutative coalgebra structure
(∆, ε) over the right A0-action, and a linear antipode S satisfying a certain number of
axioms. See [Mr], Definition 2.1 for details. In particular, in the case of the Hopf algebroid
associated to the groupoid G, we have

1. the algebra A is given by C∞c (G)

2. the commutative algebra A0 is given by C∞c (G0)

3. the counit ε : C∞c (G)→ C∞c (G0) is given by

ε(a)(x) :=
∑
s(g)=x

a(g)

for any a ∈ C∞c (G) and x ∈ G0. (This expression makes sense, since the Lie groupoid
is étale.)

4. the antipode S : C∞c (G)→ C∞c (G) is given by

S(a)(g) := a(g−1)

for any a ∈ C∞c (G) and g ∈ G.

5. the comultiplication ∆ : C∞c (G) → C∞c (G) ⊗C∞c (G0) C
∞
c (G) is given by the compo-

sition
C∞c (G)→ C∞c (G×s G)→ C∞c (G)⊗C∞c (G0) C

∞
c (G)

where the first homomorphism is induced by the diagonal embedding of G in G×sG,
and the second is given by the inverse of the isomorphism Ω : C∞c (G) ⊗C∞c (G0)

C∞c (G)→ C∞c (G×s G) given by

Ω(a⊗ a′)(g, g′) := a(g)a′(g′)
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Let E be a vector bundle over the groupoid G, and denote with Γc(E) the vector space
of smooth sections of the vector bundle E → G0. As shown in [Kal], Γc(E) admits a left
action of the Hopf algebroid C∞c (G) associated to G. Indeed, we have a bilinear map

C∞c (G)× Γc(E)→ Γc(E) (26)

given by

(af)(x) :=
∑
t(g)=x

a(g)(g · f(s(g))) (27)

Given a morphism ϕ : E → F of vector bundles over G, the induced homomorphism of
C∞c (G0)-modules Γ(ϕ) : Γc(E)→ Γc(F ) is also a homomorphism of left C∞c (G)-modules.
Hence, we have a functor

Γc : Vect(G)→ GMod (28)

from the category of vector bundles over the groupoid G to the category of left modules
over the Hopf algebroid C∞c (G) of the groupoid G.

4.15. Definition. Let G = (G0, G1) be an étale Lie groupoid. A left module M over
C∞c (G) is said to be of finite type if it is isomorphic as a C∞c (G0)-module to some sub-
module of the module C∞c (G0)k for some natural number k.

Given a left module M over C∞c (G) of finite type, consider for any x ∈ G0 the C∞c (G0)-
module IxM := IxC

∞
c (G0) ·M , where IxC

∞
c (G0) := {f ∈ C∞c (G0) : f(x) = 0}. Denote

M(x) := M/IxM (29)

the quotient C∞c (G0)(x)-module, where C∞c (G0)(x) := C∞c (G0)/IxC
∞
c (G0). Since M is of

finite type, one can prove that dimCM(x) <∞.

4.16. Definition. Let G = (G0, G1) be an étale Lie groupoid. A left module M over
C∞c (G) of finite type is said to be of constant rank if the function

x 7→ dimCM(x)

is constant over G0.

Let M and N be modules of finite type and constant rank over C∞c (G). Their direct
sum M ⊕ N is again of finite type and of constant rank. Moreover, the tensor product
M ⊗C∞c (G0) N can be given the structure of a left C∞c (G)-module [Kal]. With this tensor
product we have the following

4.17. Lemma. Let G = (G0, G1) be an étale groupoid. Modules of finite type and of
constant rank over the Hopf algebroid C∞c (G) and module morphisms form a monoidal
tensor category Mod(G).

Notice that the unit in Mod(G) is given by the algebra C∞c (G0) equipped with a trivial
left C∞c (G)-action. Moreover, we have the following
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4.18. Lemma. Let G = (G0, G1) be an étale groupoid, and let E be a vector bundle over
G. Then the left C∞c (G)-module Γc(E) is a module of finite type and of constant rank.

Lemma 4.18 tells us that the section functor Γc induces a tensor functor

Γc : Vect(G)→ Mod(G) (30)

from the category of vector bundles over the groupoid G to the category of modules of
constant type and of finite rank over the Hopf algebroid C∞c (G) of G.
Finally, we have a Serre-Swan type theorem for vector bundles over étale Lie groupoids[Kal].

4.19. Theorem. The functor Γc : Vect(G) → Mod(G) is an equivalence of tensor cate-
gories for any étale Lie groupoid.

4.20. Equivalence of categories. Let G = (G0, G1) be an étale groupoid, and we
will assume that the manifold of objects G0 is compact. Let G = (Γ, L, µ) be a bundle
gerbe over G, and M = (E, ρ) a nontrivial G-module. As in Proposition 3.5, we can
assign to M an infinite dimensional algebra defined as

AMGrp := Γ(D(F̃MGrp(M))) (31)

AMGrp is an algebra object with unit in Mod(G), with the unit morphism C∞(G0)→ AMGrp
given by the embedding via the identity section.
Moreover, for any other G-module N we obtain a right AMGrp-module given by

AMNGrp := Γ(D(F̃MGrp(N ))) (32)

Consider the category Mod − AMGrp of right AMGrp-modules in Mod(G), the category of
modules of constant type and of finite rank over the Hopf algebroid C∞c (G) of G.

By the same arguments as in Section 3.6, we have a functor

FMGrp : G −mod→ Mod−AMGrp (33)

By using the results in Section 4, the proof of Theorem 3.9 extends immediately to the
proof of

4.21. Theorem. Let G = (G0, G1) be an étale groupoid, with G0 a compact manifold.
Let G = (Γ, L, µ) be a bundle gerbe over G admitting a nontrivial G-module M. Then the
functor FMGrp is C-linear, fully faithful and essentially surjective, hence an equivalence of
categories.
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